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D. Kurzmitteilungen

NIKLAUS BUHLMANN, Ziirich

Barwert einer asymptotischen Rente

1. Einleitung

In der klassischen finanzmathematischen Literatur (vgl. [1] oder [2]) werden
verschiedene Rentenarten behandelt. Renten mit analytischen Barwertformeln
sind zB. die konstante Rente, arithmetisch fallende oder arithmetisch
wachsende Renten sowie die geometrisch wachsende (bzw. fallende) Rente.
Meines Wissens wurde hingegen bisher keine asymptotisch wachsende Rente
betrachtet, obwohl eine solche Eigenschaften aufweist, welche in gewissen
Fillen gefragt sein konnten. Zwei Stichworte hierzu mogen geniigen. Als
erstes sei die Finanzierung von Projekten erwidhnt. Fiir ein Projekt wird
hiaufig ein Kredit aufgenommen, welcher im Laufe der Zeit aus dem
resultierenden Cashflow des Projektes amortisiert wird. Dieser Cashflow hat
oft die Eigenschaft, dass er zu Beginn, wenn die Kosten anfallen, klein ist,
dann stark ansteigt und sich schliesslich einer Sattigungsgrenze ndhert: er
bildet also eine asymptotische Rente. Als zweite, aus der Sicht von Kunden,
moglicherweise sinnvolle Anwendung sei eine Erbrente erwdhnt, die auf einem
Inflationshshepunkt zu laufen beginnt. Solange die Inflation noch hoch ist, soll
die Rente stark ansteigen. Spater soll sie sich einem Grenzcashflow ndhern.
Im Prinzip lassen sich asymptotische Renten auf einem PC berechnen. Da der
Barwert sich jedoch auf einfachste Weise durch bekannte aktuarielle Grossen
ausdriicken ldsst, soll die Formel den Lesern als Anregung nicht vorenthalten
bleiben.

2. Definition der asymptotischen Rente
Wir beschranken uns auf einen festen Fall, der durch die nachfolgenden

Annahmen beschrieben ist. Eine Erweiterung etwa auf logistische Zinssatze
(vgl. [1] S. 130) im Sinne von Stoodley ist denkbar.
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Annahmen

(1)  Vorschiissige jahrliche Rentenzahlungen. Die erste Zahlung habe den
Wert 1.

(2)  Die Rente habe eine Laufzeit von n Jahren (n ganz).
(3)  Nach unendlich langer Zeit wire die Auszahlung auf G angewachsen.
(4) Nach NH Jahren ist sie auf 1 + 9—2——1 angewachsen.

Nach 2- NH Jahren auf 1 + %(G — 1) usw.

(Die Auszahlung nihert sich also asymptotisch dem Wert G, mit einer
Halbwertszeit von NH).

(5)  Fir die Berechnung des Barwertes werde die geometrische Verzinsung
mit flacher Zinskurve vorausgesetzt.

Berechnung des Barwertes

Bezeichnungen

G = asymptotisches Grenzniveau fiir die Rentenzahiung.
NH = Halbwertszeit fiir Anstieg der Rentenzahlung.

NH
p = "V2

(G-Dp—-1

¢ %
Il

-—

Zinssatz fiir geometrische Diskontierung.
T_% (Abzinsungsfaktor).

Barwert der n Jahre laufenden, vorschiissig zahlbaren Einheitsrente.
Falls erforderlich, wird der Zinssatz beigefiigt, um Verwechslungen

vorzubeugen.

HE

Auszahlungen der Rente

X X % % K %
17 l+“—5 1+L—+‘_2, 1+——+'_,)+—-3—,'--
p p p p p p

Man verifiziert sofort, dass die Auszahlungen die Bedingungen fiir die
Halbwertszeit erfillen.
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Barwert

G0

v/p fassen wir als Abzinsungsfaktor zu einem unbekannten Zinssatz j auf:

|

i 1 1
H}:—.z—:—-——_
l+j p pl+i
somit gilt
1+ j=p1+4+i
oder
j=pl+i)—1

Mit diesem Hilfszinssatz j und der Tatsache, dass x/(p — 1) = G — 1 1st, ldsst
sich der Barwert der vorschiissig zahlbaren asymptotischen Rente schreiben

als:

)
BW =i+ (G — V){iiy— -}

Der Barwert ldasst sich somit auf einfachste Weise durch die klassischen
Einheitsrentenbarwerte darstellen.
Beispiel

N=10 NH=3 =2 i=0,1

Daraus erhdlt man p = 1,259921

j=0,385913
s = 6,759024

.U
Aoy = 3,453827
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Somit ist der Barwert:
BW = 10,0642

ASYMPTOTISCHE RENTE

2
15
3 v 87 57
! ::E/ : ode
M1
S B &Y
s ki
X X 854 54
o 1 2 3 4 6 7 8 9
ZEIT
BRI casHFLOW BARWERT DER ZAHLUNGEN
3 Verallgemeinerung

Da die Volkswirtschaften ldangerfristig stets einer Inflation unterlagen, sollte
das Modell derart verallgemeinert werden, dass wir den Cashflow mit den
Potenzen eines Wachstumsfaktors (1 4+ g) multiplizieren.
Unser neuer Cashflow lautet daher:

, +g)(1 +5), (1 +g)2(1 da g iz)

p p P
Wir berechnen nach dem bei geometrisch wachsenden Renten iiblichen
Verfahren zwei Hilfszinssdtze y und k:
AR
> = Tekg
k=p(l+y —1
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und erhalten fiir den Barwert dieses verallgemeinerten Cashflows wiederum:

BW =) + (G — n{al) -} (%)

Bemerkungen

1. Die Formel (*) eignet sich als Dividendendiskontierungsmodell fiir die
Bewertung von Aktien. Sie verallgemeinert die Formel von Gordon-—
Shapiro im Falle n = co.

2. In der finanztheoretischen Literatur werden haufig zwei verschiedene
Typen von Dividendendiskontierungsmodellen verwendet: Fiir theoreti-
sche Untersuchungen wird die Formel von Gordon—Shapiro (Barwert
der ewigen, geometrisch wachsenden Rente) benutzt, weil sie sehr ein-
fach ist, wiahrend bei praktischen Anwendungen Renten mit stiickweise
konstanten Wachstumsraten (vgl. [3], S. 416) bevorzugt werden, da
diese die Realitdt besser beschreiben. (*) vereinigt bis zu einem gewissen
Grade die Vorteile beider Typen: das Wachstum bleibt stetig, ohne dass

der Realitatsbezug allzusehr darunter leidet.

3. Die Verallgemeinerung (*) beschreibt auch ein Marktpotential (Barwert)
im Falle einer allmidhlichen Marktsdttigung in einer inflationdren
Umgebung.

Niklaus Bithlmann
Schweizer Riick
8022 Ziirich

Literaturverzeichnis

[1]  Mc Cutcheon, J.J./Scott, W.F.:; An Introduction to the Mathematics of
Finance. Heinemann, London.

[2]  Caprano, E./Gierl,A.: Finanzmathematik. Verlag Vahlen, Miinchen.

[3] Jacob, N.L./Pettit, R.R.: Investments. Irwin, Homewood, Illinois.






343

ErRHARD KREMER, Hamburg

Rating of a Special Stop Loss Cover

1 Introduction

During the past 35 years the problem of calculating the premium of a
stop loss reinsurance cover was one of the most frequently discussed topics
of the mathematical risk theory. Already the Swiss Ammeter (1955) gave
mathematical formulas for rating that treaty. Some years earlier Vajda (1951)
published an interesting mathematical study, which he continued in the year
1955 (see Vajda (1955)). Some years later several authors derived rating
methods by applying certain approximation formulas for the distribution
function of the total claims amount (see e.g. Bohman et al. (1963/64), Berger
(1972)). They got handy procedures since the stop loss premium can be
represented in a simple form as a function of the distribution function
of the total claims amount. This relationship was also used lateron for
deriving handy, recursive rating methods. The Canadian Panjer published
in 1980 such a recursive procedure (see Panjer (1980)), that was generalised
afterwords by several other researchers (see e.g. Sundt et al. (1982), Willmot
et al. (1987)). Certain modifications were derived e.g. for the special situation
of life insurance (see e.g. Kremer (1989)). As alternative to these recursive
methods one developed a method based on the well known Fast-Fourier
method for computing the distribution function of the total claims amount (see
e.g. Biihlmann (1984), Hiirlimann (1986)). All these methods have the aim to
calculate the stop loss premium as exact as possible. Since two centuries there
exists also a different type of procedures. This type of methods has the aim
of giving conservative premium estimates, 1.e. upper bounds to the unknown,
exact premium. Worth mentioning are especially the contributions of Bowers
(1969), Biihlmann et al. (1974), De Vylder et al. (1982a/1982b/1983), Taylor
(1977)). In these publications handy, as well as fairly general premium bounds
are derived by applying certain inequalities or results of the optimisation
theory. So far, a lot of different results and methods for calculating or
estimating the stop loss premiums exist. Many main problems seem to be
solved, the different approaches are fairly well developed. Nevertheless for
certain more special situations one still can give some new results. Such
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a more special set-up is investigated in the following notes. An until now
unknown premium formula is derived and discussed.

2 The stop loss treaty

Everything is based on the probability space (Q, A, P). Consider a collective
of insurance risks, producing claims each year. The number of claims per year
let be described by the random variable N, the corresponding claims sizes by
the random variables

X{, Xz, X}, e e

With this notation the total claims amount of the collective is given by the
random variable:

N
S=>Y X,
j=1

with the corresponding distribution function G defined as
G(s) = P(S < s).

The stop loss treaty with priority L is defined by the claims amount R, taken
by the reinsurer:

R = max(S — L,0).

The reinsurer takes that part of the total claims amount S, that exceeds the

priority L. The net premium v of that treaty is defined as the expectation of
R, 1e.

v = E(R).

This quantity can in general be calculated with the formula:

vy = f (s — L)G(d5s). (2.1)
[L,0)



345

The risk premium is defined as the net premium plus a security loading o.
The security loading o can be calculated according to the standard deviation
principle (see e.g. Reich (1989)), 1.e.:

o = /- (Var(R))'?,

where 4 is a given coefficient and Var(R) the variance of the random variable
R. Having given the coefficient 4 the calculation of the security loading reduces
to the calculation of the variance Var(R). One has the formula:

o 2_ o e
(5) = [ o-vres - o

A short and embracing introduction into the mathematics of the stop loss net
premiums can be found e.g. in the new booklet Kremer (1988).

3 The special set-up

More special assumptions are taken in the present investigation. Suppose that:

(a)  The claims number distribution satisfies with certain constants a > 0,
b < 1 the linear recursion

k+1)-P(N=k+1)=(a+b-k)-P(N =k (3.1)

for k=0, 1, 2, ..., starting with p, = P(N = 0).
(b) The claims sizes are almost surely equal to a given, known amount Xx,
LB

Xj = x almost surely forall j=1,23,....

One should note that the recursion (3.1) gives the

1. Poisson distribution for the choice a+b-k = A,

2. binomial distribution for the choice
atb-k=(q/p) (r—k),g=1-p
3. negative binomial distribution for the choice

a+b-(k—1)=q- - (r+k)
(see e.g. Johnson et al. (1969)).



346

A similar recursion also was used by Panjer (1981), for deriving his well
known results. Obviously the recursion (3.1) allows the recursive calculation
of the probabilities P(N < k) for k =0, 1, 2, ... . More concretely one has

(@a+b-k

P(N<k+1)=P(N<k+ T

. P(N = k), (3.2)

starting with P(N < 0) = P(N = 0) = p,. Furthermore one has the following
results:

a
(1—b)

a

(1—1b)?

E(N) = (3.3)

Var(N) = (3.4)

which lateron become important for calculating or estimating the unknown
parameters a and b.

According to the assumption (b) the total claims amount S is almost surely
nothing else but:

S=N" x.

The assumption (a) is already fairly general, since it covers at least three
claims number distributions of great practical and theoretical importance. The
assumption (b) clearly is quite restrictive, compared with the more general
conditions of the former papers (see e.g. Panjer (1980), Hiirlimann (1986),
Bowers (1969)). Howbit, the set-up fits to the very practical situation, that
the collective consists of policies insuring a lot of (identical) objects, each
defining a possible claims size of the amount x. The reinsurer does not know
the number of objects, but only gets information on the claims number per
year. Such situations sometimes are given in practice.

4 The premium formula

For stating the main result, some additional notation is needed. According to
the condition (b) the priority of the stop loss treaty will be fixed as a multiple
of the possible claims size x, i.e. one has with an integer m that:

L=m-x.
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Denote with f the value:

E(N) - x
[

B =

implying with (3.3) that:

- () (2)

Like mentioned suppose that the coefficient 4 is given. Then the calculation
of the risk premium (v + ) is nothing else but the calculation of the moments
E(R) and Var(R), given by the formulas (2.1), (2.2). One has the following
result:

Theorem
Suppose the conditions of the section 3 and take the above notations. One
gets as formulas for the net premium and the security loading of the stop loss

cover with priority L:

v=L~*K_(a,b)

(%) = L-[J,(ab) — K, (ab)'"?,

with the functions K, (.,.), J,,(.,.) defined according

K, (ab)=0-P(N=m)—(1—8)-(1—P(N<m—1)) (4.2)
J(a,b) = [ﬁ- (1+§)—1] o P(N =m)

Y [([3-(1+$)+2>-ﬁ+1} (1 —P(N<m-—1)), (43)
\

where:
a=(1—b""
Proof

(a) The assumption (3.1) implies for positive integer m:

S (k+1)P(N=k+1)=a P(N>m)+b- > k-P(N=Kk).

k=m k=m
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Adding m - P(N = m) on both sides and rearranging yields:

Sk-P(N=k=(1-b"(a-P(N=m)+m:P(N=m) (4.4)

k=m

and this at once:

D (x-k—L)-P(N=k)

k=m

'y X my a _ . M
-e () (i ) vz m = 55550
=L-(x-P(N=m)+(B—1)-P(N >m)),

because of (4.1) and the definitions of m and «.
(b) Again the assumption (3.1) implies for positive integer m:

o0

D (k+1)° P(N=k+1)

k=m

:a-2(k+1)-P(N:k)+b-2k-(k+l.)-P(N:k).

k=m k=m

Adding m? - P(N = m) on both sides and rearranging gives with (4.4):

> K- P(N =k
k=m
=(1=b2 @ @+1)-PN=m+m-(a+b+m-(1—=0) PN =m)).

With this equality and (4.4) one can easily derive:

o0

S (x-k—L? P(N=k =L [(ﬁ-(1+g)—1)-a-P(N=m)

(- (3)2) wer) rove

using the definitions of m, o, f and (4.1).
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(c) Under the given special model assumptions one has that:

oc

D (xk—=L) P(N=k =/ (s — L)G(ds)

k=m (L)
Z(x k—L)* P(N=k) = f (s — L)*G(ds).
(L)

k=m

This implies together with parts (a) and (b) and (2.1), (2.2) the statement of
the theorem. O

Remark 1: Take the special situation that (a + b - k) = 4, i.e. the claims
number is Poisson-distributed. Under these very special model assumptions,
the specialized results of the theorem are clearly well known since a long time.
Choose in addition m = E(N). Then the formula (4.2) reduces to:

K (a,b) = P(N = m).

mx

One gets a result in Benktander (1977, page 34) as special case.

Remark 2: For the assumption (a) and some weaker conditions than (b) (see
section 3) one can give recursions for the net premium v, which are similar
to those given by Panjer (1980). Clearly one can apply these recursions to the
present more special set-up. However the result of the above theorem is more
elegant for the present set-up, since it gives a nonrecursive, direct premium
formula.

Remark 3: The functions K, (a,b), J,(a,b) do not directly depend on x,
but only on a,b,m and . For practical application one can tabulate these
functions for different values of a, b and m. Note that m is nothing else but
the ratio of the priority and the claims size. Furthermore f is nothing else but
ratio of the mean total claims amount and the priority.

The practical importance of the result of the theorem relies on the fact that
one does not need to restrict on one of the special model assumptions, i.e. on
the Poisson-, negative binomial- and binomial claims number distributions.
One can directly apply the general premium formula to premium rating.
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5 The rating procedure
Suppose one has the claims numbers

Ny Nog N s s 5. Ny
of some past years. These random variables are assumed to be stochastically
independent and each to be distributed according to the model defined in the
condition (a). Based on this claims experience one likes to calculate the risk
premium of the stop-loss treaty. How can one proceed?

One simply has to estimate the unknown parameters a, b, p, from the given
claims experience, leading to he corresponding estimators a,b, Po- With these
one can calculate an estimator ﬁ for f by simply inserting @b into the
right hand side of (4.1). With (3.1), (3.2) one can calculate recursively the
probabilities P(N = m) and P(N < m— 1) with the estimators @, b, Do inserted
for a, b, p,. Inserting all these quantities into the right hand side of (4.2),
(4.3), gives the Km(’d,g), Lm(a,/b\) and finally the calculated risk premium:

L-[K,(@b) + i-(J,@b) — K, (@b,

where the coefficient 4 1s given.

All these steps define the proposed procedure for rating the risk premium of
the stop loss cover. The only point that should be clarified, is how to calculate
suitable estimators @, b, Po- The simplest approach for giving @, b is taking
the so called moment estimators (see e.g. Lehmann (1983)). These are based on
the equations (3.3), (3.4). One estimates the moments E(N) and Var(N) by:

mn_( ) ZN,,

T (nil) 2 (N —mn),

i=1

inserts them into the left hand side of (3.3), (3.4) and calculates the solutions
a =d, b = b of the resulting system. This results in the simple estimators:

~ ~ 1 —mn
a=—, b= +
sn sn
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A more refined procedure for estimating a, b is given in Ord (1967). Finally
the p, has to be estimated with a suitable estimator p,. In case one has a
long sequence of past claims numbers, such that some N, take on the value
zero, one can take:

ﬁo=(%)'l{iiN.-=0}l-

Anyway, the probabilities P(N = k) with k =0, 1, 2, ... have to sum up to
one. This side condition can be used to determine the estimator p, with an
iterative numerical procedure, when already having the estimators @, b.

Prof. Erhard Kremer

Verein zur Forderung der Angewandten Mathematischen
Statistik und Risikotheorie, e.V.

Heidberg 39

D-2000 Hamburg 60
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