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B. Wissenschaftliche Mitteilungen

WiLLiam S. JEWELL, Berkeley

Up the Misty Staircase with Credibility Theory*

1 Introduction

Distinguished colleagues, grateful doctoral students and warm friends of
Professor Doctor Biihlmann, dear Hans! It 1s a great privilege to be here to
share with you in the celebration of the sixtieth birthday of this enthusiastic,
hard-working yet fun-loving, persuasive yet open-minded man of broad
interests and wide influence who means so much to us all.

In thinking about what remarks might be appropriate today, I could not help
but recall how I first came into Hans’ orbit; I hope you will permit me a
few reminiscences. In 1969, consuiting for an insurance company led me into
contact with that arcane applied statistician, the actuary. I immediately saw
the value of these models and methods, hidden away in obscure journals, to
my own field of operations research and I began to study and teach from
Seal’s book (1969), which had just appeared. In this way, I learned about the
ASTIN Section of the International Actuarial Association and their Colloquia
on insurance mathematics, and became familiar with the names of the giants
in the field. Because a U.C. colleague had met and exchanged ideas with
Erwin Straub, we were later visited in Berkeley by Jorg Hofmann, also of the
Swiss Reinsurance Company; from him I heard about the intensive actuarial
activity in Switzerland. A trip to Europe in 1972 gave me the opportunity
to visit Ziirich for the first time, and so I offered to give a talk — I believe
it was at the Swiss Life Insurance and Pension Company. Here I met Hans
and many others of you here today and made plans to attend the 10th
ASTIN Colloquium in Essex, England the next year, where my acquaintance
with Hans deepened. By then I was well aware of classical credibility theory
and began to present my own ideas at subsequent ASTIN Colloquia and to
participate in other European actuarial activities. In spite of the fact that I
am an engineer, [ was, as we say in English, “hooked” on actuarial science.
Since that time, my friendship with Hans Biihimann has grown immeasurably,
helped, no doubt, by the fact that we are of the same generation and have
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many of the same values but also because Hans studied at the University of
California, brought his new bride to the Bay Area, and because their daughter
was born there! In slightly altered circumstances, we might have met many
years earlier. But we have since made up for lost time through our reciprocal
visits to Ziirich and Berkeley.

What 1 would like to do today is to describe Hans™ great influence on the
subject of credibility theory and upon my own research, and to put this
influence into context in the broader realm statistical inference, both classical
and Bayesian. Although this particular topic may be of only passing interest
to many of you, I hope that it will serve as a paradigm for the many ways
in which Hans’ ideas have broken new ground in the fields of statistics,
insurance, and education. If it helps you in your own remembrances on this
happy occasion, so much the better.

2 The Misty Staircase of Traditional Statistics

The title of my talk is taken from Mosteller / Tukey (1968 /1977), whose analogy
(Fig. 1) is worth quoting at some length:

Before Student’s time, every analysis of data that considered “what might have been”
resembled a long staircase from the near foreground to the misty height. One began
by calculating a primary statistic, a number that indicated quite directly what the data
seemed to say about the point at issue. The primary statistic might, for instance, have
been a sample mean. Then one faced the question of “How much different might its value
have been?” and calculated a secondary statistic, a number that indicated quite directly
how variable (or perhaps how stable and invariable) the primary statistic seemed to be.
The secondary statistic might have been an estimate of the standard deviation of such
a sample mean. After this step one again needed to face the question of “How much
different?”, this time for the secondary statistic, which again and again turned out to be
less stable (of itself) than the primary statistic whose stability it indicated. In principle,
one should have gone on to a tertiary statistic, which indicated the variability or stability
of the secondary statistic, then to a quaternary statistic, ..., and so on up and up a
staircase which, since the tertiary was a poorer indicator than the secondary, and the
quaternary was even worse, could only be pictured as becoming mistier and mistier. In
practice, workers usually stopped with primary and secondary statistics.

They then go on to describe the contribution made by “Student™ (W.S. Gossett )
with the famous t-ratio which, under normality assumptions, describes the
standardized variability of the sample mean as a function only of the number
of samples.

This approach cuts off the misty staircase after the third step — indeed,
almost after the second step. For, in order to tell us about the population
mean, the data were asked to provide only:
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. the sample mean — a primary statistic,

2. the sample estimate of variance — a secondary statistic,

3. the sample size — a tertiary statistic, one that was easy to obtain and
remarkably stable, at least so long as one compared this sample with
other samples of the same size.

All else was provided by the assumption of exact normality.

Mosteller | Tukey then discuss the use of the t-ratio and other classical statistics
that led to the development of the “whole machinery of significance testing
and almost all the machinery used in practice to set confidence intervals”,
concluding with the observation that, in the 1930’s and 1940’s, people learned
to short-cut the staircase through *“non-parametric” or “distribution-free”

procedures.
/D/V\—ﬁ

MISTY HEIGHTS

4TH STATISTIC

3RD STATISTIC

2CD STATISTIC

—

/ 15T STATISTIC

Figure 1 The Misty Staircase of Traditional Statistics

By describing the misty staircase of classical statistics, I do not mean to imply
that the procedures of significance testing and confidence intervals have always
stood the test of time and the challenge of new schools of thought; my own
views on this issue are somewhat different and would only lead me into an
argument with those of you of the frequentist persuasion. But it is interesting
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and instructive to see how imaginative but empirically-based procedures lead
to increasingly esoteric argumentation that must eventually be supplanted by
new paradigms.

3 The Development of Credibility Theory

To describe the corresponding misty staircase of credibility theory we now need
to review briefly its historical development. The name credibility was given
by American casualty actuaries to heuristic formulae developed over 70 years
ago for insurance ratemaking with the original ideas developed especially by
A.W. Whitney and A.H. Mowbray (sometime professor at U.C., Berkeley!). If
we suppose that we have n years of experience data, 7 = {x,, x5, ..., x,}, for
a given individual risk (insurance contract), the basic problem of the actuary is
to rate the risk, that is, to find the fair premium (mean value) for the unknown
outcome for next year, x,,, (the x’s may refer to the number of claims during
one year, the total cost of such claims, the average cost per claim, etc.).
Under the assumption that the x’s are independent random samples from
some stationary distribution of outcomes for this risk with unknown mean g,
finding the fair premium is the same as estimating u from the data.

These early pioneers knew of course that the sample mean, X = > x,/n,
was an appropriate experience premium, i.e. a good estimator of u, but they
were worried about its variability, which they knew was large when n was
small (sound familiar?). On the other hand, insurance companies usually have
available a much larger historical data base for a portfolio of apparently
similar risks to which the individual risk belongs. They also were aware
that, no matter how hard they tried to group risks into porifoiios that were
similar from a statistical point of view, such a collection of contracts always
contains some residual heterogeneity; in other words (and to anticipate later
arguments), they already thought of the mean value of each risk as a kind
of random quantity, i, that varied over the portfolio. However, they believed
that the average of these values, call it m = &{i}, obtained from a grand
sample mean over a large amount of portfolio data, would be very stable;
this value, m, they called the manual premium, since it was the value quoted
in rate-making manuals circulated for the purpose of providing quotes on
new, similar risks for which no individual experience data was available.
Then, using a simple risk-pooling model, they argued for the adoption of an
experience-rated fair premium of the form:

E{X|12}=6{n|2}=(1—2)m+:zX; z=[ n ] (1)
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The factor z was called the credibility factor, since it gives the relative weights
to be attached to the manual premium and to the individual sample mean,
depending upon the number of samples in the experience; it is thus a kind
of learning curve that moves the estimate from the no-data estimate m to the
classical estimator X as n increases. In the limit, the sample mean is “fully
credible” and, by the law of large numbers, is almost surely equal to the
unknown fixed value, i = p. The credibility time constant, n,, was essentially
determined by trial-and-error for different lines of insurance. The formula
above was used successfully in American casualty rate-making for more than
50 years, with innumerable variation and elaboration, and remnants of it still
remain today. Surveys with references may be found in Longley-Cook (1962)
and Hickman (1975).

This period of development, the empirical phase, will form the first step for
our credibility staircase to the misty heights.

4 Early Bayesian Ideas

The modern development of credibility begins with the resurgence of interest
in Bayesian ideas, foreseen by Bruno de Finetti in the 1930’s, and continued
in the 1950’s by L. Jimmie Savage, Dennis V. Lindley, I.J. Good, and many
others. I have previously argued for this approach as the only complete
and logical framework for making statistical inferences and decisions in the
applied world (Jewell, 1980) and will not repeat myself here, except to point
you towards Lindley (1978), Barnett (1982), and an important new book by
Howson/Urbach (1989), all of whom make better arguments than I could.

The Bayesian view of the rate-making problem is that the unknown individual
risk mean, 1, is truly a random variable in the sense that, if we wish to find
the conditional mean, &{ji | Z}, already implied in (1), then we must use the
basic laws of conditional probability in the form p(u | 2) o p(Z | 1) - p(r). The
first term on the RHS is the usual data likelihood, ] p(x, | u), formed by
independent sampling from the model density, about which all statisticians are
used to thinking. However, controversy arises because conditional probability
requires knowledge of the second term, p(u), the prior density, which in turn
implies knowing about the possible values of u and their relative occurrence
before the data is observed. Thus, opining p(u) means that the analyst must
think carefully about the concrete meaning of the parameter in the problem
at hand, and either have extensive experience with such risks or be able to
live with a subjective judgement about the possible outcomes until relevant
data can be obtained. In other words, thinking carefully about a distribution
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replaces the frequentist thinking about possible procedures. This is hardly a
problem for actuaries, engineers, and other applied scientists, who routinely
have to make experiential and subjective judgements, but seems to be difficult
for classically — trained mathematical statisticians to accept, as they prefer to
“let the data speak for itself”” without physical interpretation, dimensions, or
previous experience; however, the ad hoc procedures that result may lead to
non-coherence with the laws of probability.

Bailey (1950) seems to be the first to have introduced Bayes’ law explicitly into
the rate-making model (although Hans cites an early book by Ove Lundberg)
and showed that the credibility formula of (1) was exactly the predictive
mean for the Binomial, Poisson, and Normal (with known variance) models,
provided that certain special prior densities are used. In spite of a lively
published discussion of Bailey’s paper, it had little immediate impact upon
the actuarial profession, perhaps because the Bayesian approach had not yet
found its way into the statistical literature. (Some early actuarial exceptions are
Dropkin (1950/1960), Longley-Cook (1962), Bichsel (1964), and Fiirst (1964)).
This prompted Mayerson (1964) to take up the theme again with a clear
expos¢ of the same examples in more modern terminology, pointing out,
for instance that the priors which give the credibility form are the so-called
natural conjugate priors. If one were to criticize these early works, it is that
they did not consider what might happen in models where parameters other
than the mean were a priori unknown, and did not explore the meaning of
the time constant n;, because in their results it is just a combination of the
(hyper)parameters from the priors.

This period will be referred to as the early Bayesian step on our credibility
staircase to the misty heights.

2 Linear Least-Squares Approximations

We now are ready to consider the contributions of Hans Biihlmann to
credibility. This is, as you can appreciate, a delicate task, since the statistician
of whom I speak is seated here in front of me. However, if he disagrees with
my attempt to reconstruct history and interpret his work, he should be the
first to speak when I have finished!

The 1963 ASTIN Colloquium in Trieste must have been quite stimulating, if
one can judge from the papers presented and the subsequent discussion. Here,
for the first time, Hans (1964a) describes the connection between the classical
collective theory of risk and the claims process (see Biihlmann (1975/1989)).
Hans’ analysis is of the total claims cost per risk, determining its mean and
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variance using conditional expectation under two main hypotheses, which he
first discusses and whose consequences he then explores. For the simpler
claims prediction problem of Section 3, these hypotheses translate as follows:

1 If one considers a portfolio of r distinct risks, their individual claims
€XPETriences OVET n years:
By =Xy Mogs 25 < 3%} (=2 1g 2y s 5 )
are statistically independent of each other, but are similar, because each

experience is chosen independently from a very large collective, a kind
of sample space of similar risks;

2 However, the experiences between any two risks are different because of
residual heterogeneity in the collective, and hence in the portfolio;

4. The experience of any single risk is homogeneous over time because the
claim amounts are chosen from the same distribution;

3. However, the claim amounts for a single risk cannot be independent of

each other over time, but must be exchangeable random variables.

Clearly, the concept of exchangeable random variables, due originally to Bruno
de Finetti, was on Hans’ mind, as he had just completed his thesis (1960) on
this topic. I also like to think that he already realized that one cannot predict
a future outcome from past data assumed to be ii.d. samples, because some
form of dependency over time for the individual risk must be assumed, the
simplest of which ist exchangeability. Perhaps Hans even realized that the
variability in g, described previously, was the key to this assumption, since de
Finetti’s Theorem on O—1 variables can be extended to give, in an obvious
notation, the desired prior dependence between outcomes from a single risk:

plxisa s x) = [ T] ot | wptud e o)

Note that the marginal densities of the x’s are dependent if we do not know the
value of the unknown parameter, but independent if we do! This distinction
is at the heart of Bayesian modelling, namely, that our attitude towards
independence and dependence depends upon the knowledge at our disposal
when we make the judgement!

Then, Hans’ (1964b) paper refers for the first time to the use of “sequential
estimation” to determine the “true premium rate”(the particular u for a given
risk?) and the need for a prior distribution on this premium rate, viewed
as a random parameter. Perhaps by this time the work of Bichsel (1964),
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de Finetti (1964), Fiirst (1964), or Mayerson (1964) had sent him to Bailey’s
pioneering paper (1950), or perhaps he was familiar with the relationship of
Jimmie Savage’s work to that of de Finetti’s. Hans: how did you discover
the Bayesian approach? It was certainly not in the Statistics Department at
Berkeley in the 1950’s!!

Many other pieces of the puzzle were in place by the time of the 1965 ASTIN
Collogium in Lucerne. Least-squares methods have been in the armorium of
every scientist since the time of Gauss, LaPlace, and Legendre. Thus, Bailey’s
neglected (1945) paper on estimating unknown population means for different
“characteristics” used linear regression to form classical precision-weighted
estimates and then related them to the credibility form, with an interpretation
of the time constant in terms of the underlying precisions. And Hans, who
wrote the Introductory Report on Subject I, Experience Rating in Credibility
for the Lucerne Colloquium, had already seen the paper of Bichsel (1967)
and other related works by Lundberg and Franckx. So it is almost as an
afterthought that Hans adds Sections 4 and 5 to his paper. In these, he clearly
states that:

1. Each risk in the portfolio can be thought of a having its own abstract
parameter 0 and the observed samples for a given risk are drawn from
the same conditional distribution with mean p(0) and variance o°(6), thus
giving “homogeneity in time, but not in mass [the portfolio]”. (Actually,
Hans slips up a bit and says this means i.i.d. samples, when he intends
exchangeable r.v.s., that is, independent samples, given 0);

2 The appropriate actuarial estimator for the unknown () is the a
posteriori mean, &{u(0) | 2}, justified under a postulate of equilibrium
that “each class of risks with equal observed risk performance should
pay its own way’’;

3 To calculate this conditional expectation one must average over the
“a priori distribution” p(0), which is described as the “structural function
of the portfolio”, i.e. the prior distribution over the collective;

4. “The credibility formula used by our American colleagues is nothing
but a linearization of the ... estimator function”, &{u(0) | Z}.
3 And finally, after some simple least squares, Hans expresses the estimator

in credibility form and determines that the time constant is just:

n, = &{ a2 (6) A u(0)}.

I At the Symposium, the honoree responded to the effect that, when shown the Bayesian
methodology at Berkeley, it was described as “the wrong approach”.
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Well, as Alexander Pope said about Sir Isaac Newton:
“Nature and Nature’s laws lay hid in night: God said, Let Newton be!
and all was light.”

Suddenly, after the publication of Hans’ paper in 1967, all the academically-
inclined actuaries of the world understood the rationale for credibility, doctoral
students at ETH and elsewhere had a new topic for theses, and working
actuaries had a new approach to rate-making with which to experiment. I
myself have benefitted from full employment and a great deal of pleasure
in following up on these ideas, in particular being able to find a class of
model densities and priors in which the credibility approximation is exact
(1974/1975a), thus tying Hans’ results to those of Section 4 and giving added
support to the robustness of credibility approximations. Biihimann’s insight
was an idea whose time had come.

The result has been a virtual explosion in “new-wave” credibility literature.
Jewell classifies the important models as of 1980; de Wit (1986) attempts to
survey the entire literature on credibility topics from 1855 through 1981; and
the end is not yet in sight — I could keep you here ali day describing the many
extensions and elaborations that have been developed. Of course, many of
these papers (including my own) are of the academic puzzle-solving variety.
But there is still much “normal science” waiting to be done in applying least
— squares Bayesian approximations to rate-making. It is a giant third step on
our credibility staircase.

6 Apostasy in Structural Parameter Estimation

In a Bayesian formulation, one must specify both the model density, p(x | 0),
and a prior density, p(f), based upon physical evidence, actual experience,
and informed judgement. On the other hand, a linear approximation to the
predictive mean in the basic model requires only the first two model moments,
m(0) and v(6), and three averages over the collective, m = &{m(0)},e = &{v(0)},
and d = ‘f/'{rn(@)}. Because 0 is now an abstract random parameter, m(f) and
u(@) can be: strongly dependent, as in the QVF-NEF family of Morris (see
Jewell/Schnieper (1985)); completely independent, as in the usual normal
model with unknown mean and variance; or with U(E) = v constant. The key
point is that credibility applied to the basic model requires our opinion about
only three moment hyperparameters, rather than about two distributions.

Immediately after Biihlmann’s 1967 result, actuaries began to think about
procedures to obtain m, e, and d from cohort data on other risks. Consider
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a portfolio of related risks (i = 1,2,...,r), each with its own abstract
parameter, 0,, drawn independently from the same collective structure density,
p(0); for convenience, we shall assume that each risk has the same data
record length, n, so that the total cohort data is the r x n collection
9D = {x;;(1,2,...,r)(t = 1,2,...,n)}. Attention now focusses on how to
use all of 2 to predict the next observation of one of the risks, say X, ;.
An immediate difficulty is that, if the components of 0 = [0,,6,,...,0]7
are truly iid., then the likelihood is p(Z | 0) = [[ [l p(x; | 0,)p(8;). so that
the data from risks i = 2, 3, ... r contain no predictive information for risk
#1! Nevertheless, actuaries still feel that there must be some use for this
information. Biihlmann/Straub (1970), in a paper notable for its introduction
of volume-weighted samples, propose forcing the inclusion of cohort data by
using a homogeneous linear predictor to obtain the new credibility formula:

E{X g1 1 2= (1 —2)X +2%; ;

X; X; X
= L s - ; t
% 0
' n a , r x nr
t I 1 L

but with the same credibility factor, z = H—J;'-ﬁa Ty = g In effect, the collective
mean hyperparameter, m, is replaced by the portfolio grand mean, X , over all
risks, including #1. They and other later authors then suggest that the natural
way to implement the original credibility formula (1) to rate any individual

risk is to use the classical estimates:

P ! =12/ .
m:x”, e:-'; [n_lz(xi[_xi')‘]’

(4)

This approach is justified on the basis of being (classically) unbiased, and
(asymptotically) “efficient”, etc. The subsequent literature is then full of
incredibly complex estimates of the hyperparameters needed for the increasing
elaborate models to which credibility is applied (Loimaranta (1977), De Vylder
(1978), Sundt (1979), Norberg (1980/1981), etc.). In fact many so-called papers
on credibility theory from this period are mostly about sampling-school
estimates for the necessary hyperparameters.

To my mind, this “new step” on the credibility staircase is a form of intellectual
backsliding, in which traditional large-sample techniques are married to an
approximation based upon Bayesian concepts. Not only does (3) not obey
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the likelihood principle, it gives a mean-square error greater than that of the
usual inhomogeneous form!

Further, there seems to be some confusion between the underlying concept
of the collective, with its structure function, p(6), and the portfolio of a finite
sample of risks, (i = 1, 2, ..., r), with its data set, &. (See inter alia, Straub
(1975), and the discussion to Jewell (1975¢c). As I remarked in 1980:

But, what about the possibility of using the empirically derived [(4) with (1)] for arbitrary
[n and r] — couldn’t this also have some nice, robust properties? Well, yes, I would have
to admit — but they haven’t been demonstrated yet! In other words, if you propose to “ad
hoc™ up a complicated formula involving both sums, squared sums, and sums of squares
of the data by appeal to two different schools of thought, then I can only be amazed by
your ingenuity. But I suspect that you will have a difficult time in proving these properties
analytically, and will have to resort to, say, simulation (that is, to experience).

In short, I believe that such hybrid approaches are, like the two-legged stool,
doomed to failure because they rely on conflicting tenets, and can only lead
to inconsistencies in either frame of reference. After all, a pure frequentist
approach would select X, as the “best” point estimator for risk #1. We cannot
rely upon such ad-hoc approaches for a solid fourth step to our credibility
staircase.

7 The Hierarchical Model

In my view, if one wishes to include all of the data from a portfolio in a
prediction for one of its risks, the model and hence the likelihood must be
modified so that there is predictive information between risks. In other words,
the ii.d. assumption for the {.} must be incorrect.

Based upon a normal model of Lindley/Smith (1972) and an idea of Taylor
(1974), T suggested in 1975 that the compatible fourth-step extension of
the basic model is a hierarchical generalization, in which our collective,
the one from which our portfolio is drawn, is not necessarily the same as
other supposedly similar collectives, for example, those of other insurance
companies. This leads us to imagine that all such collectives are drawn from
some super-collective or universe of collectives, or, if you prefer, from an urn
of urns. Formally, this means that the individual risk parameters are drawn
from a conditional prior density, p(6 | ¢), labelled by some abstract unknown
hyperparameter, ¢, which characterizes our collective. We now must visualize
the manner in which the random ¢ varies over the universe of collectives
by specifying a hyperprior density, p(¢). In this way, the various {6,} in our
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portfolio will become exchangeable random variables, governed by a joint
density similar to (2). With this inter-risk dependence, the cohort data in &
will enable us to “learn” about our value of ¢ = ¢, and hence to improve any
individual risk prediction in our portfolio.

Stated another way, if an actuary has no extensive experience or strong opinion
relevant to the m, e, and d needed to rate an individual risk, he/she must treat
them as unknown random quantities, m = m(qb e = e(¢), d=d (]')) Jewell
(1975) then finds the optimal least-squares approximation from the data Z to
be the joint prediction:

""@‘lxlnq\—llg}"‘ (1—z)&{m@) |2} + 2%, ;
E{m(p) | 2} ~ I—zo)m+z0 (5)
where now: ’
n i rz, rn ©)
) = = — »
Yon+(f/e) Y rzp+(g/h) rn+n(g/h) + (f/g)

for which we now require four hyper-hyper-parameters:

m=&{m(d)}; f=©&led)}); g=2&WdW@PD)}); h=7{md), (7)

found by averaging over the universe of possible collectives.

The interpretation of (5) is straightforward: beginning with the universal
parameters, knowledge about our m(¢) is updated using the grand sample
mean for our collective, X ; the updated value replaces the (previous mean)
“m” in an individual risk credibility form that, of course, is the same for
any individual risk from our portfolio. Note, however, that the ratios of
the three a priori components of total variance, f, g, and h, are used in
the credibility factors, and there is no explicit learning about portfolio or
individual variability. The forecasts (5) are known to be exact Bayesian
predicitive means in the normal-normal-normal, fixed variance hierarchical
model of Lindley/Smith (1972), and for a heteroscedastic generalization in
Jewell (1987). Additional interpretations may be found in Jewell (1975), and
later generalizations in Tavlor (1979), Sundt (1979), Biihlmann/Jewell (1987),
and elsewhere.

This result provides further insight into the Biithlmann-Straub heuristic,
namely, that m = X can replace the previous assumed-constant collective

mean, “m”, in the original model only if z, =~ 1! But we see from (6) that this
can happen only if the product rn is large, and not if n alone is large. In other
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words, we require data from a large number of risks so that this portfolio will
be representative of our collective! If only n is large, it is true that X, will be
“fully credible” for predicting risk #1, but we will still be uncertain about our
m(¢).

The fact that the actuary must still provide the universal moments m, f, g,
and h will probably disappoint those hoping to eliminate prior experience and
opinion from credibility theory. However, even I would admit that we are now
on more solid ground for using large-sample estimation methods, since the
universe of collectives will be represented by a very large, perhaps nationwide
data bank of many different portfolios from many different insurance
companies. These higher-level statistics would then correctly initialize the
learning process at the corporate and individual risk level, thus, as Dennis
Lindley likes to say, “extending the conversation”. Since the Bayesian position
has perhaps been misunderstood, it should be made clear that no one proposes
eliminating classical estimators entirely, but merely restricting their application
to those portions of a model where the availability of large amounts of data
guarantees that the estimates are, almost surely, close to their true values.
After all, Bayesian point estimators also converge for large samples to the
same underlying values as the classical estimators, in general — it’s just that
the Bayesian approach gives an estimate with a probabilistic interpretation for
any sample size! In short, hierarchical models consistently use and show the
importance of cohort data, thus forming a solid fourth step in our credibility
staircase.

8 Decomposed Approximations to Credibility Prediction

Because many of my colleagues have remained unconvinced by the arguments
above, I have continued to think about ways in which one might be able to
get and use some approximate m, 3, and ¢ within the Bayesian framework. The
obvious obstacle is that the model must also be able to predict variances, not
just means, for the individual risk.

In 1985 René Schnieper and I considered the joint prediction of both the
first and second moments for a single risk using credibility approximations,
and were able to obtain useful (and sometimes exact Bayesian) results with
a three-dimensional formulation at a price, however, of requiring now eleven
first through fourth hyperparameters! This was not surprising, since the more
one requires of a model, the more one has to specify in advance, and we are
still better off than having to specify two distributional forms. So, when Hans
Biihlmann visited Berkeley in 1986, it was natural to discuss extending this
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model to the hierarchical case. The methodology to carry out this program was
soon apparent to us, and we were able to obtain some intermediate results in
a complicated and messy formulation. After three more years of development
and supporting results (Jewell (1987/1989a)) plus extended computational
testing, it was finally possible to shape these joint efforts into the article
that appears in the Jubilee issue of the Bulletin of the Association of Swiss
Actuaries.? You may see the results there, although, frankly, it is not light
reading, nor was it intended to be much more than academic puzzle-solving.
As the joke goes about the scientists who developed a dehydrated elephant:
“It is not very useful, but it is interesting to see what can be done™!

But there ist a constructive and enlightening way in which the results of
the paper might be used in a decomposition approximation to the credibility
approximation. Suppose that the super-actuary in an industry-wide rating
bureau had enough data to develop very good large-sample estimates for the
24 universal moments required by the model of the paper. These moments
would then be given to the chief actuary of our company, who could solve
the 8-dimensional credibility formula in Section 8 of the paper.

Now suppose that our chief actuary (being a very busy person) decides to
compute only the corporate-level predictands in block 00, ie. to solve for
the 4 x 4 credibility matrix, Z% = R%(C%)~!, the last equation in (9.1)".
Using the portfolio-level statistics, [Vo, Yoo» Yoxo» Yosol T » this will give him a
forecast of [M,(d), M,($), M, (}), M2($)]T. No information has yet been
lost, because the staff actuary in charge of rating individual risks could obtain
individual-level results from the remainder of (9.1)".

Now imagine that even this part of the task was beyond the powers of
a journeyman actuary, who perhaps has just mastered the simple individual
credibility formula, and needs only good values of m, e, and d to rate each risk.
At the price of a great simplification, the chief actuary decides to decompose
the problem by furnishing his subordinate with his best corporate estimates
of (¢), e(¢) and d(¢), and letting the subordinate use the standard formula
with y, only, ignoring any predictive value in the seven other statistics,
os Yoos Yoxos Yos0 yll’ylxl’yl'O]T!

By examining the relationships between central moments and moments about
the origin, the chief actuary finds that:

m(¢) = M(¢); e(d) = My($) — My1(9); d(d) = My, (9) — Mi(¢), (8)

2 For the rest of this section we assume familiarity with the notation of Jewell (1989b), and
denote equations from it as, e.g. (9.1)".
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so that predictions of these values can be found using the original formulation.
But now suppose that the chief actuary decides to use only the three statistics
of (4), which can be rewritten:

m=y,; e= Yoo — Yoxos 4 = Yoxo — Yoso- ©)

As one of the predictands is dropped, there is a loss of portfolio-level
information, and the chief actuary now has a 3 x 3 set of linear equations to
solve that are a linear transformation of the original problem.

Using fraktur notation for the reduced problem, the chief actuary now predicts
D = [m(d),e(d),d(¢$)]” in terms of § = [, 2,d]7, using the 3-dimensional
credibility formula:

E(B| 7}~ —3m+3, (10)

with £{®} = &{9} = m = [M(1), M(2) — M{11), M(11) — M(1;1)]" and a
3 x 3 credibility matrix:

3= (KRPKT)KCPKT)! (11)

where K is the dimension-reducing transformation matrix:

10 0 0
K=|01 -1 0]. (12)
00 1 -1

Now, if the restriction to using only y, in the basic credibility formula and
the reduction of dimensionality in estimating © do not throw away significant
information, and if the size of r and n is such that 3 ~ 3 for this reduced
problem, then we could say that the sampling-empiristic-Bayesians have a
valid approach. Otherwise, the first equation of (9.2) would give a better
result because; (i) it is valid for any r and n; (i1) it includes the conjoint
variation between four individual statistics and four portfolio statistics.

Also, the only model known for which the decomposed approach is the
same as the credibility approximation and the exact Bayesian result is
the heteroscedastic normal-normal-normal model of Jewell (1987); with the
exception that all four portfolio statistics, not just v, are needed to find the
predictions of e(¢) and d(¢), which turn out to have a constant ratio, ny!
Figure 2 shows the misty staircase of credibility theory that we have
constructed thus far. There are many steps that could be added, but it
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is increasingly easy to go astray in the misty heights, as more and more
hyperparameters are required.

radidie

MISTY HEIGHTS

M o = e e
= —_— = = — = e ©
s 2D MOMENT PREDICTION,
"ESTIMATION" : :
S HIERARCHICAL MODELSJ

e

[LINEAR APPROXIMATION

EARLY BAYESIAN

ﬂ EMPIRICAL

Figure 2 The Misty Staircase of Credibility Theory

9 The Bayesian Escalator

By now, the basic theme of this paper should be apparent. By following
the logical progression of traditional statistics, we are led up a staircase
of progressively shakier steps to misty heights that are far from reality. In
credibility theory, too, although we start with a firm footing, we quickly
reach esoteric models that require a knowledge of a large number of
hyperparameters. Further, as we have seen in Section 6, it is easy to go
off the track by trying to combine traditional estimation procedures with
Bayesian approximations. The reason for this is, I think, because credibility
theory has somehow been classified as an “empirical Bayes” approach, and the
word “empirical” suggests that one can try anything that seems reasonable.
It is only human to try to get something for nothing, so that, rather than
thinking hard about the problem itself and admitting informed judgement on
an equal footing with analysis, it seems easier to “cook up” procedures based
only upon data.
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Personally, I prefer to rely upon what might be called the Bayesian escalator
to reach new heights of understanding (Fig. 3). This staircase begins with
two giant fixed steps. The first is the acceptance of the laws of conditional
probability in toto, examining all of my assumptions to see if any of them
violate the basic axioms and trying to eliminate any that might lead to non-
coherence. The next big step is to realize that this approach always means
that I must posit some prior information or attitude about the problem before
I begin the analysis. This prior information may be quite imprecise, but this
simply means that, without many new observations, my opinion will not be
sharpened very much. This admittance of experience, expert opinion, “know-
how” etc. can use supporting large-sample methods when they are accurate,
but cannot be entirely analytic — the analyst is part of the modelling process
and must take responsibility for and make explicit all of his assumptions
and judgements. Remember that, etymologically speaking, experience and
experiment are closely related.

TN

MISTY HEIGHTS

- _/

EXPERIENCE

CONDITIONAL PROBABILITY /

Figure 3 The Bayesian Escalator
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From this point on, we have a Bayesian moving staircase whose logic will
automatically help us to mount to the desired heights. More elaborate
models at higher elevations are more difficult, to be sure, but these are
mostly difficulties with dimensionality and computation of integrals, not in
probabilistic interpretation. If the computational labor becomes too costly, we
can then step off the Bayesian escalator and follow empirical simplifications
and approximations without getting lost in the misty heights.

10  Forecasting Excess Losses using Credibility Theory

To illustrate in concrete terms the way in which the Bayesian paradigm
interacts with and supports credibility theory, let us consider an important
problem in reinsurance modelling — the forecasting of excess-of-loss claims.
This problem has previously been analyzed using credibility by Straub (1971)
and Patrik/Mashitz (1989); Jung (1964) and Biihlmann (1975) have underlined
the dangers of using only extreme value data; and Fiirst (1964) studied a
simplified Bayesian model.

10.1 Basic Claims Model and Notation

The basic model of claims generation assumes that a variable number, n, of
claims occurs during some fixed exposure interval, say T years, in amounts
{X{, X3, ..., x,}. The total cost of these claims, w = > x,, is the quantity of
interest. In the usual model, both the number of claims (the frequency) and
the sizes of the claims (the severities) are assumed to be random variables,
mutually independent, given the parameters. Specifically, we assume:

— the random number of claims, n = 0, 1, 2, ..., has a discrete counting
density, p,(4, T), that depends upon a frequency parameter, A. In the
sequel we shall use the Poisson (AT) for simplicity;

- Each random claim amount, X; > 0 (i = 1, 2, ...,1), has the same
common density, p(x | ¢), that depends upon (one or more) severity
parameters(s), ¢;

- the X; are independent, given ¢ and n, and the X; and 7 are statistically
independent of each other, given 4 and .



299

For later convenience, we define the following:

Pix| @) =2{X<x|0}; Qx|@)=P{X>x]|0};

cC

R(X|¢)=/Q(u|(p)du; S(xrcp):/R(um)du; (13)

X

mp) = (X9} =RO|¢); vip)=7{X|e}=250]¢)—m)

P and Q are the usual cumulative and tail distribution functions; R is
&{x — x)* | @}, the so-called stop-loss fair premium, whose second moment
is 25; m and v are the usual conditional mean and variance for the claim
severity.

Suppose that we wish to predict the mean total claim amount (the total
severity ) during some future interval of U years, using the well-known result:

Ew| e}t =8{R|AU} m(p) =AU m(p). (14

If the frequency and severity parameters were known, the result would be
immediate; however, in the usual case, we are uncertain about the parameters,
but can provide a prior opinion about their possible values, based upon our
previous experience, industry-wide studies, etc. Making the usual assumption
that 4 and ¢, now treated like random quantities, are a priori independent,
then our opinion will be summarized in the form of two prior densities, p(4)
and p(p). But without further information it is clear that the prediction of
mean severity is given simply by the product of the a priori average mean
frequency times the a priori average mean severity.

Now, suppose that we can gather all the claim values from the contract(s)
of interest during some previous observation interval of, say, T years during
which the parameters had the same (unknown) values. This then provides
data in the form 2 = {n; x;,x,, ..., x,} from which one can “learn” more
about the parameters and thence make a better prediction of a future w. To
do this, we find first the likelihood of the data:

p(Z | 4 9) = p, (% prrgo) (15)

and then use Bayes’ Law to form the posterior-to-data parameter density:
Pt | Z) o p(Z | 4 @)p(4 @)

{pn(/ T)p } []—[p(x | ©)p(e) ] o p(A| nple | D). (16)

i=1
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In other words, because of the assumption of independent priors and the
factorization of the likelihood, the posterior-to-data random parameters will
still be independent! Thus our updated prediction using (14) and (16) will
also be the product of two estimates:

E(W| 2 =6&0U |n}-&{m@) | 2), (17)
1 L J i

but now with posterior-to-data estimates of the mean frequency and mean
severity. (There is also tacit use of the fact that past and future counts are
independent, given 4).

Much is known about finding exact Bayesian and approximate credibility
values for the predictive means in (17), see, e.g. Hewitt (1970), Jewell
(1971)(1980), and Biihlmann (1974). So, in the case where we want to predict
mean total claims in some future interval based on data from all claims during
some past interval, the methodology is simple and straightforward.

10.2 Excess-of-Losses Model

In many forms of reinsurance treaties, on the other hand, attention focuses on
the number and total amount of claims that are in excess of some retention
layer value, L $. In other words, the reinsurer pays only for the truncated
random severity: '

y={X—L|%>L). (18)

In terms of the underlying “ground-up” claims just studied, this new random
variable has density and conditional moments:

plL+y| o)
| L) = So=—
p(y | L, o) A
_R(L|o).
my (@) = Ak (19)
S(L
1) =20z gy ~ o)

Also, only a fraction Q(L | ¢) of the original claims will exceed level L, so
that 7, the random number of excess claims, will usually be substantially less
than 7 and will have a counting distribution:

pr(;l'a (pa UaL) = *J}‘Z{FF =T | )va @, U:L}

= na ()P oo o 20
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so that:

E{F| Ao ULY=6{R| LU} QL | ¢);
V{7 Ao, UL}=68{i| LU} P(L|p) QL] @)
+¥{a| LU} [QL] @)™ (21)

Given the Poisson assumption for the original claim count distribution, this
leads not only to the obvious result that p,(4, ¢, U, L) is Poisson (AU -Q(L | ¢)),
but also to the well-known factorization result that the number of primary
(uncovered) claims in the same interval, say, u = n — 7, is independent of 7,
given the parameters, and has a Poisson (AU - P(L | ¢)) distribution! This will
greatly simplify the arguments below.

The objective of the reinsurer is to forecast the total dollar amount of covered
claims in a future exposure interval of U years, that is, to predict the random
compound sum, w, of the excess of all claims larger than L. Since this is the
same as predicting the mean total severity using (19), we seek:

E(W D} =68{7U-QL|®) m ()| 2}=8E{iU -R(L|p)|Z}. (22)

In other words, the objective is identical to predicting the product of the basic
underlying claim frequency with the stop-less premium.

We now consider the use of credibility theory to approximate (22) for different
types of claim data that might be available. The dilemma of the reinsurer
(and the agony of his actuary) is that complete “ground-up” claims data are
usually unavailable, or are too expensive to process. Naturally, some secondary
claims data must be supplied before a treaty can be rated, but this data is
quite sparse relative to the underlying experience as L is usually far out in
the tail of any possible severity distribution. In terms of (22), this means that,
while m, (¢) may be adequately estimated, A and Q(L | ¢) are unfortunately
not. A new analytic problem is that, with only secondary claim data available,
the factorization of (17) no longer occurs, giving more complex prediction
formulae.

To introduce more generality into the model, we shall henceforth suppose that
it is possible to observe claims that exceed some capture level, K$(0 < K < L),
during the observation interval of T years. If K = 0, we observe all claims
of any size, or if K = L, we observe only those excess claims similar to those
to be covered by the reinsurance treaty; a typical contractual arrangement
might be to require reporting of all claims with capture level K = 0.5L. Since
K is fixed in any case, an observed value ¥ = y in excess of K implies an
underlying claim of X = K + y.
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10.3  Counts Only Observed

First let us consider the case in which only the number of claims in excess of
K during interval T are given, 2 = {r}. It is clear that with such limited data,
we cannot hope to predict the total severity, so we shall settle for a forecast of
the number of claims under the treaty, that is, those in excess of L during the
forecast interval U; thus the objective in this section only will be to estimate
just £{ZU - Q(L | §)}.

The data likelihood contains all of the information about the parameters
obtained from the observations:

A T - O(K | o)]Te—iT @(Klo)
plr | Ay = L T2 . 23)

We see that the interaction between A and ¢ is inseparable, given only
secondary data, and that there are no unique separate maximum-likelihood
estimates of the parameters, only the joint estimate, 7 QK| o) = (%). So, we
have the paradoxical result that, if we collect data at some capture level K
not equal to the retention level L, classical M LEs cannot provide the estimate
U - O(L | $) needed to rate the treaty!

Straub’s model (1971) avoids this problem by assuming that the severity
distribution is known, and hence that @, = Q(L | ¢) and Qx = Q(K | ¢)
are fixed. He also considers more than one risk to be under observation
(and apparently the same number to be covered under the treaty), but this
is the same as using different T and U in our model because of the Poisson
assumption. We find for our generalization that:

ahwgumzuhquMﬂﬂQJ+wn%ﬂLﬂ}(m

where the credibility factor is:

_ T . _ 5{7}]
dﬂ—[T+%} %_[VamK' )

Notice how the experience claims rate, r/T, during interval T is deflated
using the known ratio Q; /Qx to obtain the frequency estimate at the treaty
retention level. Otherwise, (24) is identical with Straub’s result if K = L and
T = U = number of risks exposed in one year. In particular, the credibility
factor approaches unity with increasing T, so that the deflated experience
estimate times U is ultimately “fully credible” for the mean number of excess
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claims to be observed under the treaty. Of course, (24) is an exact Bayesian
prediction if 4 has a Gamma density.

Patrik /Mashitz’s contribution (1989) is to introduce the uncertainty about the
severity parameter, ¢, into the credibility estimation of the mean count. This
means we must now treat Q; = Q(L | ¢) and QK = Q(K | @) as (strongly
dependent) random variables, with prior p(¢). Following their development
under the generalized observational protocol, we find easily the forecast:

E{iU -0, |2}

~ U [[1 —2(T))(€{4} - 6{0,}) +z(T)(§%§i—}}) (%)] (26)

where the credibility factor ist:

(o) (et s eaey ) (rw)

T, = ( - Afg){z}‘g’{éi} — ) (27)
A0k} + [E{A11777{ 0k}

Patrik /Mashitz (1989) analyze the model K = L, in which case it can be
seen that the first two terms in (27) are unity, giving an ordinary credibility
factor in T" with time constant T,;,. Notice that we now require both the first
and second moments of the frequency parameter. In their results they also
assume that p(4) is Gamma (a,b), but this is not at all necessary in a linear
approximation. Of course, (26) can never be an exact Bayesian prediction,
whatever the priors, due to the complexity of (23).

In our generalization, the experience frequency is deflated as in (24), but now
using the a priori average probabilities of exceedance. But perhaps the most
surprising result in (27) is the fact that the credibility factor does not approach
unity for large T when K # L, so the experience data is not, in the limit,
“fully credible™ for predicting the treaty claim frequency! In other words, a
certain amount of the prior estimate, &{4} - £{Q;}, will always be present
in the prediction! To understand this result, we must consider what happens
from a Bayesian point of view.

Using Bayes’ Law in the form p(Le|2) a p(Z| 4, ¢)- p(A)p(e), with
the likelihood (23), we first find the posterior-to-data distribution of the
parameters, from which &{AU - Q, | &} follows by integration. But we see
immediately from the likelihood that /1 and @ will now be dependent random
variables after the observation. In fact if we assume that ¢ represents a single

z(T
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positive parameter, we see that the likelihood, viewed as a function of 4
and ¢ in the positive quadrant, has a ridge of constant height along the line
- Q(K | @) = r/T, no matter how large r and T become. In the limit, r/T
converges almost surely to the true capture level claim rate, and the ridge
becomes a degenerate “wall”, with vanishing values elsewhere in the plane. In
short, if r were larger (or smaller) than expected for some large but finite T,
we could never be sure whether this means that A is larger (or smaller) than
expected, whether Q(K | @) is, or whether they both are. Now, for the case
K = L, estimating mean future counts is done solely in the subspace along the
ridge, so that the prior is, in the limit, “overcome” by the limiting likelihood.
However, in the general case K # L, the forecast involves 4- Q(L | ¢), whose
constant values cross the ridge; thus, a better estimate can be obtained by
always including some of the prior information!

10.4 K-Excess Counts and Severities Observed

Since so little information is provided by excess counts alone, let us consider
the more usual case in which both the counts and claim severities are captured
during the observation interval, that is, Z = {r;y}, where y = [y, ¥2, ... > ¥,17
The data likelihood 1s then

(AT) AT -2(Klo)
ho) = - [Tk +y;10. (28)
j=1

Note that the factor Q(K | ¢), which was present in both terms in (23), now
appears only in the exponential; however, the presence of this coupling term
still means that the parameters are dependent, a posteriori, and makes a full
Bayesian analysis difficult. A ridge is still present in the likelihood, but now
it drops off from the (usually unique) maximum likelihood point because it
s “shaped” in the ¢ direction by the last term, which contains information
from the observed excess claims. If the priors are both unimodal then the
joint posterior is also likely to be unimodal, giving more stable predictions.

Now let us return to the problem of predicting the mean total severity
through the approximation of &{Ww | r.y} = &{AU - R, | r.y}, where we set
RL = R(L | ¢) for convenience. In many severity models of general interest,
the sum of the observables, Y =}y, is a sufficient statistic for non-truncated
variables and is, of course, also sufficient for truncated exponential variables;
the statistic Y, appropriately deflated, would also be considered by many as
the natural experience predictor for total severity. Thus it seems reasonable
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to approximate instead the simpler mean (5‘{7U - ﬁL | r, Y }. But what shall we
do about r? One possibility would be to use a two-dimensional formulation
to approximate the predictive mean as a linear function of both r and Y.
But in ordinary credibility the number of samples enters in a distinctly
nonlinear fashion, and this will certainly be true here. Fortunately, Jewell
(1975) reminds us that we can also use conditional credibility theory, that is,
we need only linearize on as many statistics as are necessary, retaining the
others as conditioning parameters.

In our model this means that we will linearize on Y, but leave r as a
conditioning variable in the moments, for which we will need p(4, ¢ | r) =
p(A | r,e) - ple | r), which is found using (23):

p(A|r @) o [AT] e T 2KIO p(),
ple | r) a [Q(K | 9)]" p(e). (29)

(Note that dependency upon K and T is suppressed). It turns out that we
only need the mean conditional frequency rate from the first density, call it
Alr,p) = (9@{)' | 7, QO}

The next step involves unconditioning arguments, whose details will be
presented elsewhere. The final forecast turns out to be:

s 10,7} = Ul eheoR, 1420 |(T) - £0nc@ 1] | 00

with a credibility factor:

i) = (%”{A(r,@)ﬁL;mK(@) | r})( - )
V{mg(@)|r} r+ry(r) )’
_( é"{vk(rﬁ)lr}) )

This result should be compared with the count predictions (24) and (26). Note
that the dimensions are: [Y] = [R] = [mg] = $, [vx] = $% [A] = year!, so
that r, is dimensionless, [z] = year™!, and the expression inside braces in (30)
predicts the covered claim loss rate ($/year).

If we make the usual assumption that p(4) is Gamma (a, b), then the updated
density will be Gamma (a+r, b+ T - Q(K | @)), so that:

ro(r)

A(r,qo)———é"{zlr,fp}:(b+Tcz.g(rI(|(p))' -
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With a general prior, one could find a credibility approximation to A that was
linear in r; the main point is that Q(K | ¢) is going to enter into the forecast
in a way that complicates an exact analysis.

Note that all moments needed for the forecast will use p(¢ | r), thus
introducing a complicated dependency upon r, even in the time “constant”,
ro(r)! Computing these factors will also be a little difficult, since powers of
Q(K | @) are introduced into each expectation, including the normalizing
factor. Thus, to find the mean severity of an observed excess claim, we must
calculate:

E{RK | §)-[QK | @] "}
E{[0K | 9)]} ’

where the & operator on the RHS means unconditional expectation using
only p(¢); similar results hold for the other terms. But this program is not
too difficult for severity distributions of interest in reinsurance; details will be
given elsewhere.

Thus an increase in r affects the forecast in three different ways: the accuracy
of A(r, @) improves; more weight is attached to the statistic Y /r; and the
moments, computed with p(¢ | r), change. The first change, if T > m
and (32) applies, brings a term r/T outside the terms in (30) and (31), and
leaves (T@K)‘1 behind. The second change, if r > ry(r) (ry i1s usually a weak
function of r), increases the credibility factor to its largest value, the first
term in brackets in (31). Unless K = L, this term can never be unity, so “full
credibility” is never attained with this model either. Finally, the third effect
of increasing r is to attach more weight to smaller values of ¢, in the usual
case that Q(K | ¢) 1s decreasing in the parameter(s). If ¢ is a single scale
parameter, the estimate shifts towards larger possible severities.

E{mg(@) | r} =

10.5 A New Recipe for the Mincing Machine

Jan Jung (1964) made a noteworthy statement about the role of information
in insurance ratemaking:

There is a natural law which states that you can never get more out of a mincing machine
than what you have put into it. That is: If the reinsurance people want actuarially sound
premiums, they must get a decent information about claims distributions.

We have seen that is also true for Bayesian predictions and their credibility
approximations; although our prior opinion will always give us some kind of
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a result, we cannot hope to move from the collective means towards the true
individual means unless more useful data is provided. The question then is:
how can we improve excess-of-loss predictions? We could, of course, lower the
data capture level K and require more claims data from the primary carrier; a
study of prediction improvement along these lines would be most interesting.
But, as we have already remarked, the gathering and analysis of more claims
data is an increasingly difficult and costly undertaking.

A new recipe for the mincing machine that I believe hold promise is to collect
also the total number of all claims, n, during the interval T. As before, the
correct way to evaluate this proposal is through the Bayesian approach. With
% = {n,r;y}, the likelihood is now:

.-T n _/'T r
p(@ o) = L P [ o [T pK + ;1 0). (33)

j=1

We see immediately that the information provided about the two parameters
separates, so that, with independent priors, the prediction of total severity
factors as it did for ground-up claims in (17), giving the exact result:

E{AU R, |nr,y}=&{IU |n} &R, | nr,y}. (34)

This 1s already a great improvement, as the first term is easily calculated or
approximated in the usual way, and we can concentrate on the prediction of
the mean stop-loss premium, which we know will be a very small quantity.

If we take the conditional credibility approach to estimating &{R; | n,r, Y} as
a linear function of Y, we must first find the conditional density of ¢, which
iS:

p(o | nr) o [P(K | @)]""[Q(K | 9)]'p(e). (35)
This is the best we can hope for with n and r given, since the likelihood part

already has a unique MLE, Q(K | ¢) = r/n, which becomes sharper with
increased r and n, that is, with increased T or decreased K.

We omit the details of calculation, and give the final credibility formula:

E{R, | nr, Y}
~ U{éa{ R, | nr}+z(nr) [(%) — &{mg (@) | n,r}} } (36)
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with a credibility factor:

Z(.’l,)‘)= [%{EL”"K(EDH"J}]( r >’

V{mg (@) | nr} r+ry(n,r)

~ E{lvg(@) | nr}
W) = (o) .

Many of the remarks made in the last section for (31) apply here also,
such as the implicit dependency upon n and r from (35), and there are many
interesting computational and practical questions still unanswered about these
models. However, my goal in this development of the excess-of-losses model
was to convince you that actuarial mathematics has a great deal to learn from
the Bayesian approach, even when dealing with simple approximations like
credibility theory.

11  Conclusion

I hope that my remarks today have shown how Hans Biihlmann’s early
insights led to far-reaching advances in actuarial science and, in particular,
how his work gave me a “jump start” in my own research. [ am sure that all
of you can add your own examples of ways in which his wisdom, help, and
guidance have greatly influenced your own careers. In concluding my remarks
in honor of our remarkable colleague, I can only think to add the wonderful
paraphrase of Lucan made by Sir Isaac Newton:

If T have seen further it is by standing on the shoulders of Giants.

Thank your for your attention.

William S. Jewell

Engineering Systems Research Center
University of California, Berkeley
Berkeley, CA 94720

USA
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Summary

A brief survey of statistical thought on estimation and prediction is given, with emphasis on
the historical development of credibility theory and Hans Biithlmann’s important role in the
evolution of this area. The analogy of the misty staircase is from Mosteller and Tukey, who use
it to describe the approach and limitations of the traditional statistical approach; the author
continues by describing first the credibility staircase, and then the most recent contender, the
Bayesian escalator. The importance of the Bayesian paradigm and its interaction with credibility

theory is illustrated using an important problem in reinsurance — the forecasting of excess-of-loss
claims.

Zusammenfassung

Im vorliegenden Festreferat wird ein kurzer Abriss der statistischen Denkprinzipien bei Schitz-
und Vorhersageproblemen gegeben, unter besonderer Beachtung der historischen Entwicklung der
Kredibilitatstheorie und der wichtigen Rolle, die Hans Bihlmann auf diesem Gebiet gespielt hat.
Das Bild einer «nebelhaften Treppe» wurde von Mosteller und Tukey verwendet, um den Zugang
zur traditionellen Statistik und ihre Schranken zu illustrieren. Der Autor fithrt dieses Bild fort und
beschreibt die Kredibilitits-Treppe und — als jlingsten Mitbewerber — die «Bayesianische Roll-
treppe». Die Wichtigkeit der Bayesianischen Hypothese und ihre Wechselwirkung zur Kredibilitéts-
theorie wird an einem wichtigen Beispiel aus der Rickversicherung erlautert: der Vorhersage von
Excess-off-loss-Schaden.

Résume

Lauteur présente un rapide survol des principes statistiques sur lesquels reposent les opérations
d’estimation et de prévision, en appuyant spécialement sur le développement historique de la
théorie de la crédibilité et le role important joué par Hans Biihlmann dans I'évolution de ce
domaine. U'image de I'“escalier dans les brumes™ a été proposée par Mosteller et Tukey pour
illustrer I'approche statistique traditionnelle et ses limitations. L'auteur développe cette image
en decrivant tout d’abord l'escalier de la crédibilité puis son plus récent assaillant: I'escalier
roulant bayesien. L'importance de 'hypotheése bayesienne el son interaction avec la théorie de
la credibilite sont illustrées au moyen d’une question de poids en réassurance: la prévision des
sinistres en “excess-of-loss”.



	Up the misty staircase with credibility theory

