Zeitschrift: Mitteilungen / Schweizerische Vereinigung der

Versicherungsmathematiker = Bulletin / Association Suisse des

Actuaires = Bulletin / Swiss Association of Actuaries

Herausgeber: Schweizerische Vereinigung der Versicherungsmathematiker

Band: - (1990)

Heft: 1

Artikel: Berechnung der Gesamtschadenverteilung nach dem individuellen

Modell

Autor: Müller, Thomas

DOI: https://doi.org/10.5169/seals-967234

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

THOMAS MÜLLER, Basel

Berechnung der Gesamtschadenverteilung nach dem individuellen Modell

Einleitung

Zur Berechnung der Gesamtschadenverteilung eines Portefeuilles von *n* Risiken nach dem individuellen Modell können verschiedene Verfahren benutzt werden, z.B.:

- direkte Ausführung der einzelnen Faltungen;
- angenäherte Berechnung nach Kornya [3] für ein Leben-Portefeuille, von Hipp [2] auf beliebige Portefeuilles verallgemeinert;
- exakte Berechnung nach de Pril [5] für ein Leben-Portefeuille;
- exakte und angenäherte Berechnung nach de Pril [6] für beliebige
 Portefeuilles.

Die Näherungen können bei Erhöhung des Rechenaufwandes beliebig genau durchgeführt werden. In dieser Arbeit wird ein Algorithmus zur exakten Berechnung der Gesamtschadenverteilung hergeleitet, welcher demjenigen von de Pril sehr ähnlich ist. Dadurch wird auch ein anderer Zugang zum (exakten) Algorithmus von de Pril gewonnen und seine Verwandtschaft zur angenäherten Berechnung von Kornya aufgezeigt. Darüber hinaus wird der Algorithmus von de Pril auf allgemeinere Portefeuilles erweitert.

1 Die exakte Berechnung beim Leben-Portefeuille

Wir betrachten ein Portefeuille von n unabhängigen Lebensversicherungspolicen, wobei die Versicherungssumme im Fall des Todes während einer bestimmten Zeitperiode fällig werde. Die Risikosumme der j-ten Police, $j=1,\ldots,n$, sei ein ganzzahliges Vielfaches Tj eines geeignet gewählten Betrages und die entsprechende Sterbewahrscheinlichkeit betrage q_j . Die Wahrscheinlichkeitsverteilung des j-ten Risikos habe demnach die Form:

$$g_j(k) = \left\{ \begin{array}{ll} 1-q_j & \text{ für } \quad k=0, \\ q_j & \text{ für } \quad k=Tj, \\ 0 & \text{ sonst.} \end{array} \right.$$

Verwendet man die Dirac-Funktion δ_i , bei der die Wahrscheinlichkeitsmasse 1 auf $i \in \mathbb{R}$ (bzw. \mathbb{Z} oder \mathbb{N} wie in den weiteren Betrachtungen) konzentriert ist, so erlaubt g_i die Darstellung:

$$g_j = (1 - q_j)\delta_0 + q_j\delta_{Tj} = (1 - q_j)\left(\delta_0 + \frac{q_j}{1 - q_j}\delta_{Tj}\right)$$

Zur Vereinfachung der Notation wird $1-q_j=p_j$ gesetzt. Die Wahrscheinlichkeitsverteilung des Gesamtschadens des Portefeuilles im individuellen Modell g^{ind} ergibt sich als Faltung der n einzelnen Wahrscheinlichkeitsverteilungen g_j , $j=1,\ldots,n$. Bevor wir weiter auf die Berechnung von g^{ind} eingehen, treffen wir noch zwei Definitionen:

Sei M ein signiertes Mass auf einer diskreten Teilmenge von \mathbb{R} und N ein Mass auf einer diskreten Teilmenge A von \mathbb{R} mit $\sum_{x\in A} N(x) < 1$, wobei mit M(x) bzw. N(x) das auf $x\in \mathbb{R}$ ausgewertete Mass bezeichnet wird, also die Wahrscheinlichkeit von x. Dann werden die transformierten Masse $T_{\exp}(M)$ und $T_{\log}(\delta_0 + N)$ wie folgt definiert:

$$T_{\exp}(M) = \sum_{k=0}^{\infty} \frac{1}{k!} M^{*k}, \quad \text{mit} \quad M^{*0} = \delta_0$$

und

$$T_{\log}(\delta_0 + N) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} N^{*k}.$$

Mit diesen Definitionen lassen sich Analogien zu den aus der Analysis bekannten Beziehungen beweisen. (siehe Anhang, δ_0 als neutrales Element bezüglich Faltungen entspricht der 1 bei den entsprechenden Beziehungen in der Analysis, in den Beweisen werden wesentlich die Analogien aus der Analysis verwendet):

$$T_{\exp}(T_{\log}(\delta_0 + N)) = \delta_0 + N \tag{a}$$

$$T_{\text{exp}}(M_1 + M_2) = T_{\text{exp}}(M_1) * T_{\text{exp}}(M_2).$$
 (b)

Damit kann g^{ind} , die Wahrscheinlichkeitsverteilung im individuellen Modell, folgendermassen dargestellt werden:

$$g^{\text{ind}} = \prod_{j=1}^{n} g_j = \prod_{j=1}^{n} p_j \left(\delta_0 + \frac{q_j}{p_j} \delta_{Tj} \right)$$

$$= \prod_{j=1}^{n} p_j T_{\text{exp}} \left(T_{\text{log}} \left(\delta_0 + \frac{q_j}{p_j} \delta_{Tj} \right) \right)$$

$$= p T_{\text{exp}} \left(\sum_{j=1}^{n} T_{\text{log}} \left(\delta_0 + \frac{q_j}{p_j} \delta_{Tj} \right) \right)$$

$$= p T_{\text{exp}} \left(\sum_{j=1}^{n} \sum_{k=1}^{\infty} M_{j,k} \right)$$

$$= p T_{\text{exp}} (M)$$

mit

$$p = \prod_{j=1}^{n} p_j, \quad M_j = \sum_{k=1}^{\infty} M_{j,k}, \quad {}_k M = \sum_{j=1}^{n} M_{j,k}, \quad M = \sum_{j=1}^{n} M_j = \sum_{k=1}^{\infty} {}_k M_j$$

und

$$M_{j,k} = \frac{(-1)^{k+1}}{k} \left(\frac{q_j}{p_j} \delta_{Tj}\right)^{*k} = \frac{(-1)^{k+1}}{k} \left(\frac{q_j}{p_j}\right)^k \delta_{k+Tj}$$

Als hinreichende Bedingung für die Konvergenz der obigen Reihe des Logarithmus genügt $q_j/p_j < 1$, d.h. $q_j < 1/2$ $j = 1, \ldots, n$. Im folgenden wollen wir positive Risikosummen Tj > 0 voraussetzen. Die Konvergenzbedingung kann in diesem Fall wegggelassen werden, da bei der Berechnung von $g^{\text{ind}}(x)$ nur endlich viele Terme der obigen Reihen eingehen. Die Gesamtschadenverteilung lässt sich dann entsprechend dem Algorithmus von *Panjer* für das kollektive Modell rekursiv berechnen:

$$g^{\text{ind}}(0) = p;$$

$$g^{\text{ind}}(x) = \frac{1}{x} \sum_{k=1}^{x} k \cdot M(k) \cdot g^{\text{ind}}(x-k) \qquad \text{für } x > 0$$
(P)

Der Beweis kann entsprechend der Herleitung des *Panjer*-Algorithmus für das kollektive Modell nach [1] geführt werden. (Dort wird

$$\frac{1}{s}M^{*s}(x) = \frac{1}{x} \sum_{k=1}^{x} k \cdot M(k) \cdot M^{*(s-1)}(x-k)$$

nachgewiesen: indem man die Gleichung durch (s-1)! dividiert und dann über s summiert, erhält man (P).)

Der oben gegebene Algorithmus (P) unterscheidet sich nicht wesentlich vom Algorithmus von de Pril [5] zur exakten Berechnung der Gesamtschadenverteilung bei einem Leben-Portefeuille mit positiven Risikosummen. Dies soll kurz erläutert werden:

Im Algorithmus von de Pril werden Koeffizienten

$$A_{Tj,k} = Tj \sum_{i} (-1)^{k+1} \left(\frac{q_j}{p_j}\right)^k = k \cdot Tj \sum_{i} M_{j,k} (k \cdot Tj)$$

definiert, wobei über alle Policen mit Risikosumme Tj summiert wird. Dann ist

$$M(x) = \sum_{Tj \cdot k = x} M_{j,k}(k \cdot Tj) = \frac{1}{x} \sum_{Tj \cdot k = x} A_{Tj,k}$$

und damit

$$g^{\text{ind}}(x) = \frac{1}{x} \sum_{s=1}^{x} s \cdot M(s) \cdot g^{\text{ind}}(x-s)$$

$$= \frac{1}{x} \sum_{s=1}^{x} \sum_{n \cdot k = s} A_{n,k} g^{\text{ind}}(x-s)$$

$$= \frac{1}{x} \sum_{n=1}^{x} \sum_{k=1}^{x/n} A_{n,k} g^{\text{ind}}(x-nk).$$

Letztere Gleichung gibt den Algorithmus von de Pril. Dabei genügt es, die erste Summation bis zur grössten im Portefeuille vorkommenden Risikosumme durchzuführen.

2 Die exakte Berechnung bei allgemeineren Portefeuilles

Wir nehmen an, dass im Invaliditätsfall während der betrachteten Zeitperiode ebenfalls eine Versicherungssumme fällig werde. Die Wahrscheinlichkeitsverteilung des *j*-ten Risikos habe die Form:

$$g_j(k) = \left\{ \begin{array}{ll} 1-q_j-i_j =: p_j & \text{ für } k=0, \\ q_j & \text{ für } k=Tj, \\ i_j & \text{ für } k=Ij, \\ 0 & \text{ sonst.} \end{array} \right.$$

Damit ist

$$g_j = p_j \left(\delta_0 + \frac{q_j}{p_j} \delta_{Tj} + \frac{i_j}{p_j} \delta_{Ij} \right).$$

Entsprechend wie in 1. setzen wir $q_j + i_j < p_j$ voraus und erhalten die analoge Darstellung für g^{ind} :

$$g^{\rm ind} = pT_{\rm exp}(M)$$

mit

$$p = \prod_{j=1}^{n} p_j$$
, $M = \sum_{k=1}^{\infty} {}_k M = \sum_{j=1}^{n} M_j$, ${}_k M = \sum_{j=1}^{n} M_{j,k}$, $M_j = \sum_{k=1}^{\infty} M_{j,k}$

wie in 1. und

$$M_{j,k} = \frac{(-1)^{k+1}}{k} \left(\frac{q_j}{p_j} \delta_{Tj} + \frac{i_j}{p_j} \delta_{Ij} \right)^{*k}.$$

Bei positiven Risikosummen Tj, Ij > 0 kann der Algorithmus (P) aus 1. zur Berechnung von $g^{\rm ind}$ angewendet werden. Allerdings kann die Berechnung von M_j und damit auch von M – besonders bei kleinen Risikosummen – recht aufwendig sein, so dass gegenüber der direkten Ausführung der Faltungen nur wenig gewonnen wird. Bei zumindest teilweise nicht zu kleinen Risikosummen stellt das vorgeschlagene Verfahren allerdings eine Verbesserung dar. Wir empfehlen zur expliziten Berechnung von M_j folgendes Vorgehen:

Zuerst wird $M_j(x)$ für $x \le Tj \cdot Ij$ berechnet:

- (i) $M_i(0) = 0$,
- (ii) Für $a = 0, ..., Tj, b = 0, ..., Ij, (a,b) \neq (0,0)$:

$$\begin{split} x &= aTj + b \cdot Ij, \\ M_j(x) &= M_j(x) - \frac{(-1)^{a+b}}{a+b} \left(\begin{array}{c} a+b \\ a \end{array} \right) \frac{q_j^a \cdot i_j^b}{p_j^{a+b}} \end{split}$$

Für $x > Tj \cdot Ij$ kann $M_i(x)$ rekursiv berechnet werden:

$$M_j(x) = -((x-Tj)\cdot M_j(x-Tj)\cdot q_j + (x-Ij)\cdot M_j(x-Ij)\cdot i_j) \, (xp_j)^{-1}(*)$$

Zum Beweis von (*) verwenden wir den Algorithmus (P) für g_i :

$$\begin{split} 0 &= x \cdot g_j(x) = \sum_{k=1}^x k \cdot M_j(k) \cdot g_j(x-k) \\ &= x \cdot M_j(x) \cdot p_j + (x-Tj) \cdot M_j(x-Tj) \cdot q_j + (x-Ij) \cdot M_j(x-Ij) \cdot i_j. \end{split}$$

3 Angenäherte Berechnungen

In der Praxis genügt im allgemeinen eine Näherung \tilde{g}^{ind} der Gesamtschadenverteilung:

$$\widetilde{g}^{\text{ind}} = pT_{\exp}(M^{\arg}), \qquad M^{\arg} = \sum_{k=1}^{K} {}_k M$$

Bei kleinen q_j (bzw. $q_j + i_j$) konvergiert die Reihe $\sum_{k=1}^{\infty} {}_k M$ sehr schnell, so dass der Abbruch der Reihe nach dem K-ten Summand (mit beispielsweise K=3,4 oder 5) zu einer völlig genügenden Genauigkeit führt. Diese Näherung wurde im wesentlichen von Kornya eingeführt. Allerdings wird beim Algorithmus von Kornya eine andere Normierung vorgenommen, so dass sich die – bei der Näherung eventuell auch negativen – "Wahrscheinlichkeiten" zu 1 aufsummieren. Dazu wird das oben definierte p beim Lebenportefeuille modifiziert:

$$p \sim p(K) = \exp\left(-\sum_{k=1}^{K} \sum_{j=1}^{n} \frac{(-1)^{k+1}}{k} \left(\frac{q_j}{p_j}\right)^k\right)$$

Es gilt

$$\lim_{K \to \infty} p(K) = \prod_{j=1}^{n} \exp \left(\log \left(1 + \frac{q_j}{p_j} \right) \right)^{-1} = \prod_{j=1}^{n} \left(\frac{p_j + q_j}{p_j} \right)^{-1} = \prod_{j=1}^{n} p_j = p.$$

Die Näherung wird um so besser, je kleiner q_j bzw. $q_j + i_j$ ist. Um den Rechenaufwand zu reduzieren oder eine bessere Näherung zu erhalten, kann eine vom Risiko j abhängige Anzahl Kj von Termen als Näherung von M benutzt werden, d.h. $M^{\rm ang} = \sum_{j=1}^n \sum_{k=1}^{Kj} M_{j,k}$, wobei K_j um so grösser gewählt

werden muss, je grösser q_j bzw. $q_j + i_j$ ist (z.B. umgekehrt proportional zu $\log q_j^{-1}$ bzw. zu $\log (q_j + i_j)^{-1}$). Für den Fehler bei der Abschätzung soll eine Grenze hergeleitet werden:

$$\begin{split} M^{\text{rest}} &= \sum_{j=1}^{n} \sum_{k>Kj} M_{j,k}, \qquad M = M^{\text{ang}} + M^{\text{rest}}, \\ \widetilde{g}^{\text{ind}} &= p T_{\text{exp}} \left(M^{\text{ang}} \right) = p T_{\text{exp}} \left(M - M^{\text{rest}} \right) \\ &= p T_{\text{exp}} \left(M \right) * T_{\text{exp}} \left(-M^{\text{rest}} \right) \\ \widetilde{g}^{\text{ind}} &- g^{\text{ind}} = g^{\text{ind}} * \left(T_{\text{exp}} \left(-M^{\text{rest}} \right) - \delta_0 \right) \end{split}$$

und schliesslich kann der Fehler abgeschätzt werden:

$$|(\widetilde{g}^{\text{ind}} - g^{\text{ind}})(x)| \le \max\{g^{\text{ind}}(y)\} \cdot \sum_{t=-\infty}^{\infty} |(T_{\exp}(-M^{\text{rest}}) - \delta_0))(t)|$$

 $\le \max\{g^{\text{ind}}(y)\} \cdot (\exp(m) - 1)$

mit

$$m = \sum_{j=1}^{n} \frac{1}{Kj+1} \frac{p_j}{p_j - q_j} \left(\frac{q_j}{p_j}\right)^{Kj+1}$$

im Fall eines Lebensportefeuilles bzw. dem entsprechenden Ausdruck nach Ersetzen von q_j durch $q_j + i_j$ beim allgemeineren Portefeuille. Zum Beweis von (c) verweisen wir auf den Anhang. Für die kumulative Wahrscheinlichkeitsverteilung kann der Fehler ebenfalls abgeschätzt werden:

$$\begin{split} G^{\text{ind}}(x) &:= \sum_{t \le x} g^{\text{ind}}(t), \\ \widetilde{G}^{\text{ind}}(x) &:= \sum_{t \le x} \widetilde{g}^{\text{ind}}(t), \\ R(x) &:= \sum_{t \le x} (T_{\text{exp}}(-M^{\text{rest}}) - \delta_0)(t) \end{split}$$

Mit diesen Bezeichnungen gilt:

$$|(\widetilde{G}^{\text{ind}} - G^{\text{ind}})(x)| = |\sum_{t=-\infty}^{\infty} R(t) \cdot g^{\text{ind}}(x - t)|$$

$$\leq \max\{|R(y)|\} \cdot \sum_{t=-\infty}^{\infty} g^{\text{ind}}(t)$$

$$\stackrel{(c)}{\leq} \exp(m) - 1$$

(siehe wieder im Anhang (c)). Die Begrenzung des Näherungsfehlers durch $\exp(m) - 1$ wird in [6] ebenfalls untersucht.

Zur expliziten Berechnung von $\tilde{g}^{\text{ind}} = pT_{\text{exp}}(M^{\text{ang}})$ kann bei positiven Risikosummen der *Panjer*-Algorithmus (P) oder bei beliebigen Risikosummen die Fast-Fourier-Transformation verwendet werden. Wir bezeichnen mit FT(g) die Fourier-Transformierte einer Funktion g. Es gilt:

$$\widetilde{g}^{\text{ind}} = p F T^{-1} F T T_{\text{exp}} (M^{\text{ang}}) \stackrel{(d)}{=} p F T^{-1} \exp (F T (M^{\text{ang}})),$$

wobei $\exp(h)$ für eine Funktion h durch $\exp(h)(x) = \exp(h(x))$ definiert sei. Der Beweis von (d) wird im Anhang gegeben.

4 Die Gesamtschadenverteilung im kollektiven Modell

Wir beschränken uns im folgenden auf das in 1. beschriebene Leben-Portefeuille. Beim Übergang vom individuellen zum kollektiven Modell wird die Wahrscheinlichkeitsverteilung des Risikos j, $g_j = (1-q_j)\delta_0 + q_j\delta_{Tj}$, durch die folgende Verteilung ersetzt:

$$g_j^{\text{coll}} := \exp\left(-q_j\right) \sum_{k=0}^{\infty} \frac{q_j^k}{k!} \delta_{Tj}^{*k} = \exp(-q_j) T_{\exp}(q_j \delta_{Tj}).$$

Die Gesamtschadenverteilung im kollektiven Modell erlaubt dann die Darstellung:

$$g^{\text{coll}} = \prod_{j=1}^{n} g_j^{\text{coll}} = \prod_{j=1}^{n} \exp(-q_j) T_{\exp}(q_j \delta_{Tj})$$
$$= \exp(-\lambda) T_{\exp}\left(\sum_{j=1}^{n} q_j \delta_{Tj}\right)$$

mit
$$\lambda = \sum_{j=1}^{n} q_j$$
.

Thomas Müller Basler Lebens-Versicherungs-Gesellschaft Aeschengraben 21 4002 Basel

Literatur

- [1] Bowers, N.L./Gerber, H.U./Hickman, J.C./Jones, D.A./Nesbitt, C.J. (1986): Actuarial Mathematics. Society of Acutaries, Itasca, IL.
- [2] Hipp, C. (1986): Improved approximations for the aggregate claims distribution in the individual model. Astin Bulletin 16, 89-100.
- [3] Kornya, P.S. (1983): Distribution of the aggregate claims in the individual risk theory model. Society of Actuaries: Transactions 35, 823-858.
- [4] Kuon, S., Reich, A., Reimers, L. (1987): Panjer vs Kornya vs de Pril, A comparison from a practical point of view. Astin Bulletin 17, 183-191.
- [5] de Pril, N. (1986): On the exact computation of the aggregate claims distribution in the individual life model. Astin Bulletin 16, 109-112.
- [6] de Pril, N. (1989): The aggregate claims distribution in the individual model with arbitrary positive claims. Astin Bulletin 19, 9-24.

Anhang

Beweis von (a)

$$\begin{split} T_{\text{exp}}(T_{\log}(\delta_0 + N))(x) &= T_{\text{exp}}\left(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} N^{*k}(x)\right) \\ &= \sum_{j=0}^{\infty} \frac{1}{j!} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} N^{*k}(x)\right)^{*j} \\ &\stackrel{(*)}{=} \delta_0 + \sum_{i=1}^{\infty} a_i N^{*i}(x) = \delta_0 + N(x) \end{split}$$

(*) wegen der absoluten Konvergenz kann die Reihenfolge der Summation vertauscht werden.

Beweis von (b)

$$\begin{split} T_{\text{exp}}(M_1 + M_2)(x) &= \sum_{k=0}^{\infty} \frac{1}{k!} (M_1 + M_2)^{*k}(x) \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^{k} \binom{k}{j} (M_1^{*k-j} * M_2^{*j})(x) \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^{k} \sum_{t=-\infty}^{\infty} \binom{k}{j} M_1^{*k-j}(t) \cdot M_2^{*j}(x-t) \\ &= \sum_{t=-\infty}^{\infty} \left(\sum_{s=0}^{\infty} \frac{1}{s!} M_1^{*s}(t) \right) \cdot \left(\sum_{k=0}^{\infty} \frac{1}{k!} M_2^{*k}(x-t) \right) \\ &= T_{\text{exp}}(M_1) * T_{\text{exp}}(M_2) \end{split}$$

Beweis von (c)

$$\begin{split} \sum_{t=-\infty}^{\infty} \mid (T_{\text{exp}}(-M^{\text{rest}}) - \delta_0)(t) \mid & \leq \sum_{k=1}^{\infty} \sum_{t=-\infty}^{\infty} \frac{1}{k!} \mid (M^{\text{rest}})^{*k}(t) \mid \\ & \leq \exp\left(m\right) - 1 \end{split}$$

wegen

$$\begin{split} \sum_{t=-\infty}^{\infty} \mid M^{\text{rest}}(t) \mid &= \sum_{j=1}^{n} \sum_{k>Kj}^{\infty} \mid M_{j,k}(k \cdot Tj) \mid \\ &\leq \sum_{j=1}^{n} \frac{1}{Kj+1} \left(\frac{q_{j}}{p_{j}} \right)^{Kj+1} \left(1 - \frac{q_{j}}{p_{j}} \right)^{-1} =: m \end{split}$$

Beweis von (d)

Für eine Potenzreihe P,

$$P(x) = \sum_{i=0}^{\infty} a_i x^i$$

werde die Transformation $T_p(M)$ eines Masses M durch

$$T_p(M) = \sum_{i=0}^{\infty} a_i M^{*i}$$

definiert. Dann gilt:

$$FT T_p(M) = FT \left(\sum_{i=0}^{\infty} a_i M^{*i} \right)$$

$$= \sum_{i=0}^{\infty} a_i FT(M^{*i})$$

$$= \sum_{i=0}^{\infty} a_i (FT(M))^i$$

$$= P(FT(M)).$$

Zusammenfassung

Die Arbeit zeigt Zusammenhänge zwischen verschiedenen Algorithmen zur Berechnung der Gesamtschadenverteilung im individuellen und im kollektiven Modell auf (Panjer, Kornya, de Pril). Damit eröffnet sich ein im wesentlichen auf Potenzreihenentwicklungen der Exponentialund der Logarithmusfunktion beruhender Zugang zu den Algorithmen für die angenäherte und exakte Berechnung im individuellen Modell. Für die angenäherte Berechnung wird eine Fehlerabschätzung gegeben.

Résumé

L'article présente des connexions entre différents algorithmes (*Panjer*, *Kornya*, *de Pril*) pour le calcul de la répartition de la charge des sinistres dans le modèle individuel et collectif. Une autre approche s'ouvre donc pour les calculs approximatif et exact dans le modèle individuel. Cette approche dépend essentiellement du développement en séries de puissance des fonctions exponentielles et logarithmiques. Pour le calcul approximatif, une estimation de l'erreur est déduite.

Summary

The present work shows connections between different algorithms (Panjer, Kornya, de Pril) for the calculation of the aggregate claims distribution in the individual and collective model. This is a new approach to the approximate and exact calculation in the individual model, one which depends essentially on power series expansions of the exponential and logarithmic functions. For approximate calculation an error estimation is derived.