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Thomas Müller, Basel

Berechnung der Gesamtschadenverteilung nach dem
individuellen Modell

Einleitung

Zur Berechnung der Gesamtschadenverteilung eines Portefeuilles von n

Risiken nach dem individuellen Modell können verschiedene Verfahren
benutzt werden, z.B.:

direkte Ausführung der einzelnen Faltungen;
angenäherte Berechnung nach Kornya [3] für ein Leben-Portefeuille,
von Hipp [2] auf beliebige Portefeuilles verallgemeinert;

- exakte Berechnung nach de Pril [5] für ein Leben-Portefeuille;

- exakte und angenäherte Berechnung nach de Pril [6] für beliebige
Portefeuilles.

Die Näherungen können bei Erhöhung des Rechenaufwandes beliebig genau
durchgeführt werden. In dieser Arbeit wird ein Algorithmus zur exakten
Berechnung der Gesamtschadenverteilung hergeleitet, welcher demjenigen
von de Pril sehr ähnlich ist. Dadurch wird auch ein anderer Zugang zum
(exakten) Algorithmus von de Pril gewonnen und seine Verwandtschaft zur
angenäherten Berechnung von Kornya aufgezeigt. Darüber hinaus wird der

Algorithmus von de Pril auf allgemeinere Portefeuilles erweitert.

1 Die exakte Berechnung beim Leben-Portefeuille

Wir betrachten ein Portefeuille von n unabhängigen Lebensversicherungspolicen,

wobei die Versicherungssumme im Fall des Todes während einer bestimmten

Zeitperiode fällig werde. Die Risikosumme der J-ten Police, j 1, n,

sei ein ganzzahliges Vielfaches Tj eines geeignet gewählten Betrages und die

entsprechende Sterbewahrscheinlichkeit betrage qj. Die Wahrscheinlichkeitsverteilung

des 7'-ten Risikos habe demnach die Form:

1 — qj für k 0,

qi für k=Tj,
sonst.
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Verwendet man die Dirac-Funktion öt. bei der die Wahrscheinlichkeitsmasse
1 auf i 6 IR (bzw. £ oder N wie in den weiteren Betrachtungen) konzentriert
ist, so erlaubt g; die Darstellung:

Zur Vereinfachung der Notation wird 1 —qJ=pJ gesetzt. Die Wahrscheinlichkeitsverteilung

des Gesamtschadens des Portefeuilles im individuellen Modell
gmd ergibt sich als Faltung der n einzelnen Wahrscheinlichkeitsverteilungen g;,

j 1,...,«. Bevor wir weiter auf die Berechnung von gind eingehen, treffen
wir noch zwei Definitionen:

Sei M ein signiertes Mass auf einer diskreten Teilmenge von R und N ein
Mass auf einer diskreten Teilmenge A von R mit Xxe/i N(x) < 1' wobei mit
M(x) bzw. N(x) das auf x e R ausgewertete Mass bezeichnet wird, also die
Wahrscheinlichkeit von x. Dann werden die transformierten Masse Texp(M)
und Tlog(<50 + N) wie folgt definiert:

Mit diesen Definitionen lassen sich Analogien zu den aus der Analysis
bekannten Beziehungen beweisen, (siehe Anhang, <50 als neutrales Element

bezüglich Faltungen entspricht der 1 bei den entsprechenden Beziehungen
in der Analysis, in den Beweisen werden wesentlich die Analogien aus der

Analysis verwendet):

und

Texp(Tlog(ö0 + N))=ö0 + N

Texp(M, + M2) Texp(M,) * Texp(M2).

(a)

(b)
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Damit kann gind, die Wahrscheinlichkeitsverteilung im individuellen Modell,
folgendermassen dargestellt werden:

7md * g
r=i

V J=\ V 1
J

n co

PTexpf ZZMy,>
^ 7=1 Jt=l

P^M)
mit

und

T\Pj> M7 ZMM' kM ZMj,k> W Z^ ZtM
7=1 (fc=l y=l 7=1 1

Als hinreichende Bedingung für die Konvergenz der obigen Reihe des

Logarithmus genügt qj/Pj < 1, d.h. q < 1/2 j 1, n. Im folgenden wollen
wir positive Risikosummen Tj > 0 voraussetzen. Die Konvergenzbedingung
kann in diesem Fall wegggelassen werden, da bei der Berechnung von g'nd(x)

nur endlich viele Terme der obigen Reihen eingehen. Die Gesamtschadenverteilung

lässt sich dann entsprechend dem Algorithmus von Panjer für das

kollektive Modell rekursiv berechnen:

gind(0) p;

l
*v

fPl
gind(x) - )-gmd(x-k) für x>0 v;

x k=i

Der Beweis kann entsprechend der Herleitung des Pmy'er-Algorithmus für das

kollektive Modell nach [1] geführt werden. (Dort wird

1 1
x

-M's(x) - Y k M(k) M'i5~l){x - k)
X

k=1
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nachgewiesen: indem man die Gleichung durch (s — 1)! dividiert und dann
über s summiert, erhält man (P).)
Der oben gegebene Algorithmus (P) unterscheidet sich nicht wesentlich vom
Algorithmus von de Pril [5] zur exakten Berechnung der Gesamtschadenverteilung

bei einem Leben-Portefeuille mit positiven Risikosummen. Dies soll
kurz erläutert werden:
Im Algorithmus von de Pril werden Koeffizienten

AtjM Tj £(-l)"+1 k • Tj £ MjJc{k Tj)

definiert, wobei über alle Policen mit Risikosumme Tj summiert wird. Dann
ist

M(x) £ Mjk(k-Tj) -x £ AThk
T j k=x T j k=x

und damit

glnd(x) - M(s) • g,nd(x - s)

S= 1

^E I Aagind(*-s)
s=l n k=s

n=l k=\

Letztere Gleichung gibt den Algorithmus von de Pril. Dabei genügt es, die

erste Summation bis zur grössten im Portefeuille vorkommenden Risikosumme
durchzuführen.

Die exakte Berechnung bei allgemeineren Portefeuilles

Wir nehmen an, dass im Invaliditätsfall während der betrachteten Zeitperiode
ebenfalls eine Versicherungssumme fällig werde. Die Wahrscheinlichkeitsverteilung

des y-ten Risikos habe die Form:
1 — q —i =: p für k 0,

für k T j,
für k I j,

?j(k)

0 sonst.
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Damit ist

?7 Pj ö0 + jTöTj +
P

Entsprechend wie in 1. setzen wir q} + iy < Pj voraus und erhalten die analoge

Darstellung für gind:

?md pTexp(M)

mit

P Y\Pj, M YjkM YJMJ, kM YJMhk,
7=1 Jt=l 7=1 /=1 k=l

wie in 1. und

(q i yk

Bei positiven Risikosummen Tj, Ij > 0 kann der Algorithmus (P) aus 1.

zur Berechnung von gind angewendet werden. Allerdings kann die Berechnung
von Mj und damit auch von M - besonders bei kleinen Risikosummen - recht

aufwendig sein, so dass gegenüber der direkten Ausführung der Faltungen nur
wenig gewonnen wird. Bei zumindest teilweise nicht zu kleinen Risikosummen
stellt das vorgeschlagene Verfahren allerdings eine Verbesserung dar. Wir
empfehlen zur expliziten Berechnung von folgendes Vorgehen:
Zuerst wird (x) für x < Tj Ij berechnet:

(i) Mj(0) 0,

(ii) Für a 0, ,Tj, b 0,...,lj, {a,b) =£ (0,0):

x aTj + b • Ij,

MAX)=MAx)-t^(a + b\£±
}K ' 1 a + b \ a J pa+b

Für x > Tj Ij kann Af,(x) rekursiv berechnet werden:

M,(x) -((x - Tj) Mj(x— Tj) -qj + ix- Ij) M,(x - Ij) i}) (x^)"1 (*)
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Zum Beweis von (*) verwenden wir den Algorithmus (P) für g^:

X

0 x gj(x) Yj k ' MjW ' ~ k)

k= 1

x • Mj(x) pj + {x-Tj) Mj(x -Tj)- qj + (x -Ij)- M}{x - Ij) ij.

3 Angenäherte Berechnungen

In der Praxis genügt im allgemeinen eine Näherung gmd der Gesamtschadenverteilung:

K

gmd pTexp(Mang),
k=\

Bei kleinen q • (bzw. qj+ij) konvergiert die Reihe Yjk=i kM sehr schnell, so dass

der Abbruch der Reihe nach dem K-ten Summand (mit beispielsweise K 3,4
oder 5) zu einer völlig genügenden Genauigkeit führt. Diese Näherung wurde
im wesentlichen von Kornya eingeführt. Allerdings wird beim Algorithmus
von Kornya eine andere Normierung vorgenommen, so dass sich die -
bei der Näherung eventuell auch negativen - "Wahrscheinlichkeiten" zu
1 aufsummieren. Dazu wird das oben definierte p beim Lebenportefeuille
modifiziert:

Es gilt

jlimP(X) nexp(1°g(, + ^)) =n(^) =U.Pj P-

Die Näherung wird um so besser, je kleiner bzw. q • + i- ist. Um den

Rechenaufwand zu reduzieren oder eine bessere Näherung zu erhalten, kann
eine vom Risiko j abhängige Anzahl Kj von Termen als Näherung von M
benutzt werden, d.h. Mang Y!j=i Hk= l Mjk< wobei Kj um so grösser gewählt
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werden muss, je grösser q} bzw. q} + iJ ist (z.B. umgekehrt proportional zu

logqjl bzw. zu log(qj + i'7)~'). Für den Fehler bei der Abschätzung soll eine

Grenze hergeleitet werden:
n

Mrest Z Z ' M + Mrest'
7=1 k>K j

gind PTexp (Man®) PTexp (M - Mrest)

PTe%p {M) * Texp(—Mrest)

gmd-g,nd gind*(rexp(-Mrest)-50)
und schliesslich kann der Fehler abgeschätzt werden:

OC

I (g
md - gind)W I < max{g'nd(y)} • Z I (Texp(-Mrest) - <50))(£) |

t=—co

(c)

< max{g (j>)} • (exp (m) - 1)

mit

y 1 Pj 1j\Kj+1
JKj+lPj-q\Pj)

im Fall eines Lebensportefeuilles bzw. dem entsprechenden Ausdruck nach
Ersetzen von q; durch q} + i beim allgemeineren Portefeuille. Zum Beweis

von (c) verweisen wir auf den Anhang. Für die kumulative Wahrscheinlichkeitsverteilung

kann der Fehler ebenfalls abgeschätzt werden:

G'nd(x) : Z gmd (f),
t<X

G'nd(x) : ZgmdW,
t<X

R(x) : £(Texp(-Mrest)-<50)(£)
t<X

Mit diesen Bezeichnungen gilt:
co

I (G ind
— Gmd)(x) I =1 Z m-gmd(x-t) I

t=—CC

CO

<max{| R(y) |} - Z «"'W
t=—X

(c)

< exp (m) — 1
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(siehe wieder im Anhang (c)). Die Begrenzung des Näherungsfehlers durch

exp (m) — 1 wird in [6] ebenfalls untersucht.
Zur expliziten Berechnung von gmd pTexp(Mang) kann bei positiven
Risikosummen der Pan/er-Algorithmus (P) oder bei beliebigen Risikosummen
die Fast-Fourier-Transformation verwendet werden. Wir bezeichnen mit
FT(g) die Fourier-Transformierte einer Funktion g. Es gilt:

wobei exp(/t) für eine Funktion h durch exp(/i)(x) exp(h(x)) definiert sei.

Der Beweis von (d) wird im Anhang gegeben.

4 Die Gesamtschadenverteilung im kollektiven Modell

Wir beschränken uns im folgenden auf das in 1. beschriebene Leben-
Portefeuille. Beim Übergang vom individuellen zum kollektiven Modell wird
die Wahrscheinlichkeitsverteilung des Risikos j, g7 (1 — qj)ö0 + qfijj, durch
die folgende Verteilung ersetzt:

Die Gesamtschadenverteilung im kollektiven Modell erlaubt dann die
Darstellung :

glnd
p pt~1FT Fexp(Mang) pFT-'exp(FT(Mang)),

a
gfl := exp (~qj) £ ^6% exp(-^)Fexp(q/rj).

k=0

mit 1 £"=i ij-

Thomas Müller
Basler Lebens-Versicherungs-
Gesellschaft

Aeschengraben 21

4002 Basel
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Anhang

Beweis von (a)

/ 00 (_n^+t \
^p(^,og(^o + N))(x) Texp X L^—

^ fc=l '
00

1 / 00 \ ^
ZK^L^n"w)
j=0 7 V/c=l 7

CO

^<50 + £aiN"(x) <50 + N(x)
1=1

(*) wegen der absoluten Konvergenz kann die Reihenfolge der Summation
vertauscht werden.

Beweis von (b)

CO

Texp (M, + M2)(x) £ -(M, + M2) **(x)
k=0 '

£n£ ()«'"' -M2')W
k=0 '

7=0

co
1

fc CO

Z^Z Z ()M;k-j(t)-M,y(X-t)
k=0 7=0 t=—co '

- if=—co ^ s=0 7 ^ k=0 7

Texp (Mj) * Texp (Af2)

Beweis von (c)

CO CO CO

X I (Texp(-Mrest) -<50)« | < Z Z I {Miest)*k(t) |

r=—oo A.= l r=—oo

< exp (m) — 1
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wegen

oo n oo

X |MresI(t)| £ Y, \M]M{k-Tj)\
/=-cc 7=1 k>K J

<-±^T(sro-?:r-=-
Beweis von (d)

Für eine Potenzreihe P,

00

Xa'x'
i=0

werde die Transformation Tp(M) eines Masses M durch

CO

Tp(M) ^>,M*'
(=0

definiert. Dann gilt:

FT Tp(M) FT(Y a,M*')
^ 1=0 '

CO

1=0

CO

2>, (FT(M))'
1=0

P(FT(M)).
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Zusammenfassung

Die Arbeit zeigt Zusammenhange zwischen verschiedenen Algorithmen zur Berechnung der
Gesamtschadenverteilung im individuellen und im kollektiven Modell auf (Panjer, Korn\a, de

Prü) Damit eröffnet sich ein im wesentlichen auf Potenzreihenentwicklungen der Exponential-
und der Logarithmusfunktion beruhender Zugang zu den Algorithmen fur die angenäherte
und exakte Berechnung im individuellen Modell. Fur die angenäherte Berechnung wird eine
Fehlerabschatzung gegeben

Resume

L'article presente des connexions entre differents algonthmes (Panjer, Kornya, de Prü) pour le

calcul de la repartition de la charge des smistres dans le modele individuel et collectif Une
autre approche s'ouvre done pour les calculs approximatif et exact dans le modele individuel
Cette approche depend essentiellement du developpement en series de puissance des fonctions
exponentielles et logarithmiques. Pour le calcul approximatif, une estimation de l'erreur est
deduite

Summary

The present work shows connections between different algorithms (Panjer, Kornya, de Prü) for
the calculation of the aggregate claims distribution in the individual and collective model This
is a new approach to the approximate and exact calculation m the individual model, one which
depends essentiatly on power series expansions of the exponential and logarithmic functions For
approximate calculation an error estimation is derived
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