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ALF1I0 MARAZzZI, Lausanne

Restricted Minimax Credibility: Two Special Cases

1 Introduction

The simplest credibility formula ¢(y) = ay + b, where y 1s the average claim
amount or loss ratio for a contract with risk parameter 6, can be derived within
a decision-theoretical framework. Indeed, using a quadratic loss function, 6 (y)
is the linear Bayes estimate of E(y | 0) (see Biihlmann [3]). Moreover, it is the
exact Bayes estimate of E(y | 6) when the density f(- | €) of y belongs to the
single parameter exponential family and the structure function U () is the
corresponding conjugate prior distribution (see Jewell [10]).

Within this framework, two sources of error can distort the performances
of the credibility estimate: (a) an inappropriate structure function; (b) an
unexpected high frequency of very large claims i.e. an inappropriate model
f (| 8). Minimax credibility was suggested by Biithimann [4] and Marazzi [11]
as a remedy for (a) and data trimming has been used by Gisler [6] in order
to deal with (b).

We are going to consider the very simple model y = # + e as an example
and will show how the restricted Bayes and minimax principles proposed by
Hodges/Lehmann [7] can be applied in order to obtain robust estimates of
0 when: (a) the “error” e follows a Gaussian distribution and the structure
function is not exactly known; (b) the structure function is Gaussian and the
specified error distribution is not accurate. The solutions of the corresponding
optimality problems provide a decision-theoretical justification for the welil-
known data trimming procedures.

The method has been described for the linear model in Marazzi [12]. This
paper focuses on two simple special cases and indicates possible extensions
where the Gaussian distribution is replaced by the exponential family.

1.1 The restricted Bayes and minimax principles

In a decision problem let the unknown parameter 6 be a random variable
with prior distribution U (structure function). Let R(#,6) denote the risk
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function of a decision procedure o, for example an estimator of E(y | #), and
let r(U,8) = [ R(0,5)dU (9) be the mean Bayes risk.

The Hodges & Lehmann approach to the problem of optimal decisions utilizes
the available prior information but, at the same time, provides a safeguard in
case this information is not correct. It is motivated as follows: the minimax
decision does not use the prior information at all and is associated with the
smallest possible value m for the maximum of the risk function; but we may
be willing to tolerate a somewhat bigger maximum m + ¢, > m if, in case the

guess at 6 has been a good one, this results in a substantial decrease in the
average risk.

This leads to the following problems:

P1: The restricted Bayes problem. Let ¢, > 0 be a given number and U, a
given prior distribution. Minimize r(U,, ) subject to

R(0,0) < m+ ¢, for all 6.

P II: The restricted minimax problem. Let ¢ € (0,1) be a given number, U, a
given prior distribution, and let

P ={U|U=(1-eU,+cH, Hex)

Find 9, such that supy, r(U,0,) = infg sup, r(U,9).

Here 5 is the set of all prior distributions and & is a given class of decision
functions. The elements of J# are sometimes called contaminations.

Under general conditions 6, is Bayes for a least favorable (Lf.) distribution
U, in 2, and (U,,6,) is a saddlepoint of the game (2,,%,r). Furthermore,
the two restricted problems are equivalent in the following sense: if o, is
restricted minimax, then 0, is a restricted Bayes solution with risk bounded
by sup, R(0,6,) and the converse also holds.

Our purpose is to apply the restricted Bayes and minimax principles to the
problem of estimating & when y = 0 + e using a quadratic loss L(0,9).

In Section 2 we assume that e has a normal distribution with a known
variance. The exact mathematical solution of the restricted Bayes problem in
this case is very messy. However, we show that

Minimum Bayes risk =1 — I(G)
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where I(G) denotes the Fisher information for location of the marginal
distribution G of y. As G depends on U it follows that the Lf. distribution in
P II minimizes I(G) over 2,. This result is used in order to:

- obtain an approximate analytical solution of the restricted optimal
problems;

— obtain accurate numerical approximations of the 1f. distribution and of
the corresponding optimal estimate.

In Section 3 we exchange the role of prior and error distribution, i.e. we
assume that U is Gaussian and that the error model i1s in a “neighborhood”
of a given distribution F,, and we modify the restricted Bayes and minimax
problems in order to provide a safeguard against deviations from F,. It turns
out that the approximate solution of the corresponding optimality problem is
based on data trimming.

2 The case of inaccurate structure function

Let y = 0+e. Suppose that the density of e is ¢, (x) = (1/v/27 v) exp(—x?/(20?))
(v known) and that 6 is distributed according to a structure function U. Let
f(y | 6) denote the density of y for given € and let g(y) = f o U(y) be the
marginal density of y where f o U(y) = [ f{y | ) dU (). The corresponding
cumulative distributions are denoted by F(y | 6) and G(y) = F o U(y). Let

d 2
16) = f (Emg(y)) ¢() dy

be the Fisher information for location of G.

It is desired to estimate 6 by an estimate § using the loss L(#,8) = (8 — 6)°.
Without loss of generality, we restrict our attention to estimators of the form
0(y) = y + w(y) where p i1s an absolutely continuous function such that
Ey(lw'(y)]) < oo and Eg4(-) denotes the conditional expectation given 0.

Lemma 1.

) R(0,9) =v* + v Ep(p*(y) + 29’ () for &(y) = y +v*p(y).
1)  The Bayes estimator of 0 is 6, (y) = y + v*g'(¥)/g(»).

)  The minimum Bayes risk is (U, ;) = v*(1 — v*I(G)).
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Proof. Consider estimators of the form 6,(y) = y + ay(y) where a is an
arbitrary constant. We obtain:

R(8,6,) = E, (5, — 0)*
= 07 + @’ Ey(w?(y)) + 2aEy((y — 0)p(»)) .

By partial integration E,((y — 0)y(y)) = E,('(y))v* from which 1) follows.
Moreover:

rU,d,) = v* 4+ a*E(yp?) + 2aE ("),
We minimize first on a, the optimal value being

0 = 2 E®)
0 E(y?)

Then we minimize on p observing that:

E(y)? /(g’(y))2
< e )ydy = I1(G)
£y =) Uety ) 80 =11
by partial integration and Schwarz’s inequality. Hence the Bayes estimator of

6 is obtained with a = v*> and y = g’/g. The properties 11) and 111) follow
immediately.

2 ol 4E(1P')2
with r(U,éaO)—u v Ew?)

Remark. g can be estimated from available collateral data.

2.1  Approximate analytical solution of P I and P 11
In order to find a Lf. distribution in 2, one should minimize I(G) on the set
Z.={G|G=(1—-¢)G,+eK, G,=FolU,, K=FoH, HeJux}.

Denote by © the support of the 1.f. contamination H,; let ¢ be a Lagrange
multiplier for the condition [g(y)dy = 1 and let y = g'/g. By applying
variational methods (as in Huber [8], p. 82) one obtains the condition

¢c—Ey(w*(y) +2¢'(y)) =0 for €O
>0 for 6¢0.
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We remark, without surprise, that this coincides with the condition R(0,0) <
m + ¢, with ¢, = ¢ in P I because y is the minimax estimate with m = v*. If K
were arbitrary, one would obtain ¢ —2(g’/g)’ —(g2'/g)* = 0 and this differential
equation could be solved for g; unfortunately, the condition that K must be
a mixture of normal densities makes the problem much harder.

As the function E,(p? + 20?y’) is analytic in 6, the support © is a discrete
set. A rigorous proof can be found in Bickel/Collins [2]. However, we do not
know explicit formulae for the masses of H, nor for their abscissae. Therefore,
approximate solutions (of approximate optimality problems) are of interest.
We consider the following problem (see also Berger [1]):

PI': The approximate restricted Bayes problem. Minimize r(U,,d) for o (y) =
y 4+ v’y (y) subject to:

Py +29'(y) <¢,  forall y.

This condition is clearly motivated by 1) in Lemma 1 and is stronger than the
condition in P I. On the other hand, we define an extended game (#,,2,7)
where

—~

@L‘:{G‘G=(1_8)GG+8K, G0=FOU0,
K is an arbitrary contamination}
2=1{510(y) =y +v*p()}
7(G,p) = v* + v*E (p? + 2y)
and E(-) denotes expectation using the distribution G. We remark that 7(G, y)

coincides with r(U,d) for 6 € 2 and G = F o U with U € £,. Therefore, one
can formulate the following problem:

PII': The approximate restricted minimax problem. Let ¢ € (0,1) be a given
number. Find §, such that

sup7(G, P,) = inf sup7(G, ).

By standard arguments, P II’ leads to minimization of I(G) over 5?8 1.e. to the
minimum condition:

c—2(g'/g) —(g'/g)* = 0.



106

Therefore, P II' is equivalent to P I’. Moreover, assuming —logg, to be
convex, the result in Huber [8], p. 85 can be used: the Lf. density g, is:

2.(») =(1 — e)gy(y)eV 0 for y <y,
(1 —¢)gy(y) for y, <y <y
= S)go(yl)e_d(y_y’) for W<y

where d = /c is related to ¢ through the condition [g,(y)dy =1 and y, < y,
are the endpoints of the interval where |g;/g,| < d. Finally the approximate
restricted minimax estimate is

5,(») =y + 0, ()
with §, = §//8,. Clearly sup, R(0,5,) = v* + v*d>%.

Example. Let U, be the Gaussian distribution with mean p and variance ¢?;

then g, is the density of the Gaussian distribution with mean u and variance
1?2 = ¢* + v?. We obtain:

5,(y) = y + v’ max[—d, min[d, (u — y)/7°1]
or, more explicitly:

ga(y) =y +v’d for y<u—dt*
o’ v?
y— +ti3 for p—de?<y<p+de?
T T
y —vid for y> p+dr?
The constants ¢ and d are related through 2¢_ (dt?)/d + 2®, (dt?) =
(2 —¢)/(1 —¢) where ®_ denotes the Gaussian distribution with mean 0,
variance t2 and density ¢,. We observe that &, coincides with the limited

translation rule of Efron/Morris [5], which follows the Bayes rule as closely as
possible subject to the condition |5 (y) — y| < v?d.

2.2 Numerical approximation of the least favorable distribution

The discrete nature of ® suggests the possibility to approximate H,
numerically. Indeed, for the case uy(0) = ¢,(0) (the Gaussian density with
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mean 0 and variance ¢?) Marazzi [12] minimizes I(G) over the 2n + 2
parameters hy,... ,h,,0,...,0,,t b of the marginal density

g =0 —eo. (y) + e[z hja(y;0;) + hfa(y;: + 0)e"’9bd9]
j=1 0

where a(y;0) = ¢,(y +60) + ¢,(y —0), X h; +h =05 and 7° = v* + ¢°.
By choosing n sufficiently large, the least favorable marginal density g, =
(1—e)¢p, +e¢,0oH, may be approximated as precisely as desired by functions of
this form. Note that g has been constructed so that the asymptotic behaviours
for large arguments of g’/g and of the risk function of § = y+v%g’/g coincide
with the corresponding behaviours of the analytical approximation of Section
21.

In Figure 1 (taken from Marazzi [12]) the functions —g//g, and —g//g,
(obtained by minimizing I(G)) are drawn together with the corresponding
risk functions. The numerical approximation mimics the oscillatory behaviour
of the optimal rule for low values of y and replaces the oscillations by a simpler
curve for those values of y which do not appreciably affect the interesting
mean risks r(Uy,d,) and r(H,,$,).

Some of the numerical results are indicated in Table 1 where the value of
r(H,d,) is an approximation for sup, R(0,6,). Clearly

1G,) < min 1(G) < I1(G,)

and, as the lower bound is numerically close to the upper bound, it can be
concluded that the analytical (and the numerical) approximation is nearly
optimal.

3 The case of inaccurate error distribution

Let y = 6 4 e. Suppose that the structure function U is the Gaussian
distribution with mean pu and variance ¢ and note the distribution of e
by F with density f. We define the a priori mean squared loss function of an
estimator 6 of 6 as

l(e,d) = fL(6,5(9+e))dU(9)
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Table 1. Numerical results
P> 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(%, 0?) (1,0) (1,1)
I@E) 0671 0489 0354 0250 0.169 | 0.336 0244 0.177 0.125 0.084
r(UO,EE) 0.110 0.203 0.293 0.381 0472 | 0.555 0602 0646 0691 0.736
sup R(@,gs) 2230 1742 1469 1302 1.190 | 1.650 1371 1.234 1.151 1.095
1(g,) 0.697 0.520 0.385 0.279 0.193 | 0340 0.250 0.182 0.130 0.088
r(Uo,gﬁ) 0.092 0.176 0.257 0340 0425 | 0552 0597 0640 0.684 0728
r(ﬁg,gs) 2194 1698 1447 1294 1.190 | 1.633 1364 1231 1.149 1.095
n 3 3 4 4 4 4 5 5 5 5
B e
7 R(6,6,)
7 SR Bl S T -'__,.-«--""""' = -"_""‘_'__'
22 4 i = - Tm= R(G,ée)
1 ~3,(v)/de(v)
- ; - ;’I == S S
| ! NS - —3.(y)/3e(v)
6
T T T 1 1 T T 1 T 1 i ] ] 1 T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ¥
Figure 1. Minimax functions —g,/g,, —g./g, and corresponding risk func-

tions (fore =0.1, > =1, 6> =0, n = 3)
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and use L(0,5) = (6 — §)*. The mean (Bayes) risk is then

r(F,6) = /l(e,é)dF(e).

In this section it will be convenient to consider the mean risk as a function of
0 and F. As in Section 2 let g(y) = f o U(y) = [ f(y —0)dU(0) and I(G) be
the Fisher information for location of G.

Lemma 2.

D led) =0’ +0* [(p*(y) +2¢'(1) dU (0) for 0 (y) = u— o’y ().
1)  The Bayes estimator of 0 is 6. (y) = u— a?g'(y)/g(y).
) The minimum Bayes risk is (F,dp) = (1 — a?1(G)).

Proof. Similar to the proof of Lemma 1 in Section 2.

3.1  Modified restricted optimality principles

In Section 2 the cause of an “outlying” value of y was assigned to an
outlying value of 6 and it was appropriate to obtain robustness by bounding
R(0,0). It is clearly impossible to define a sensible robust procedure based
on the single observation y without assuming one of its two components,
0 or e, to be correct. Yet, it does not seem unreasonable to treat the two
components of y in a similar way. Therefore, if the cause of an outlying value
of y is now assigned to a bad value of e it may be appropriate to obtain
robustness by bounding /(e,d). The following approach simply paraphrases
the previous section by exchanging the roles of the structure function and the
error distribution.

Let F, be a given error distribution. The goal is to find an optimal estimator of
0 that utilizes the information contained in F,, but, at the same time, provide
a safeguard in case this information is incorrect. Consider §°(y) = p, the prior
mean of @; this estimator does not use F, at all and its maximum a priori
mean squared loss sup, l(e,5°) = I(e,8°) = o? is the smallest possible value
for the maximum of the a priori mean squared loss function. But we might
be willing to tolerate a somewhat larger maximum a priori mean loss if there
results a substantial decrease in the mean risk when F; is correct. This leads
to the following problem:
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Pi: The modified restricted Bayes problem. Minimize r(F;,, o) subject to the
condition

le,0) <o’ +c, forall e (c;>0).

The Hodges & Lehmann theory for P I and P Il can obviously be applied

by exchanging the prior and error distributions. In particular one needs to
consider the sets

P ={F|F=(1—¢Fy,+eH, HeH}
where # = {all distributions} and

2. ={G|G=(1—¢G,+¢K, Gy,=F,oU, K=HoU, HeJN}
where ¢ € (0,1). There is an equivalent minimax problem:

Pii: The modified restricted minimax problem. Minimize the maximum Bayes
risk over all error distributions F € 2.

From Lemma 2 it follows that the Lf. distribution H, in P ii minimizes [(G)
over #, and #,. With the aid of a Lagrange multiplier for [ g(y)dy =1 we
obtain the minimum condition

¢— j W0} + 2 O)f -0 dU®) =0  for yeT

where p = g'/g and I' is the support of H,. The equality sign is replaced by
>foryél.

A numerical procedure similar to the one described in Section 2.2 is applicable
to the determination of H, but we may be satisfied with the 1f. marginal
distribution G, in the extended class

)

. =161 G=(1—-¢G,+¢eK, G,=F,0oU, K arbitrary}.

The form of g, is the same as in Section 2.1 and the approximate restricted
minimax estimate is

8, = u—a’P,y)
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where §, = g//g,. Clearly sup, l(e,d,) = o> + o*d’.

4 Extensions and open problems
The method has been extended by Marazzi [12] to the linear model
y=X3+e

where y is an n-vector of observations, 3 a p-vector of parameters, X an
n X p matrix of constants and e an n-vector of errors. Two cases have been
considered: (a) the distribution of e is the n-variate Gaussian distribution
and the p-variate structure function is not exactly known; (b) the structure
function is a p-variate Gaussian distribution and the specified n-variate error
distribution F;, is affected by contamination.

For example, in case (b) with p=1and X = (1,..., )T, if F, is the n-variate
Gaussian distribution with mean vecior O and covariance matrix v> one
obtains an approximate restricted minimax estimate of the form

gs(y) =pu—g’ max[—d,, min[d,, (u—¥)/T =)

where ¥ is the arithmetic mean of the components of y, d, is an appropriate
constant, u = E(9), 6% = Var (9) and 1% = a2 + v?/n.

The estimate Se(y) is based on the assumption that the components of e are
independent and identically distributed with probability (1 — ¢); however, e
comes from an arbitrary multivariate contamination with probability & A
different model assumes that the distribution of e = (e,,...,e,)” is of the
form

F(e) = F(e;) - Fy(e;) - --- -F,(e,)

where each factor F; is a mixture of a given univariate distribution and an
arbitrary univariate contamination. The application of the restricted Bayes
and minimax principles to this situation is still an open problem.

The crucial identity of Section 2 allowing to relate the minimum Bayes risk
to the Fisher information is E,((y —0)y(y)) = v?E(y’(y)). This identity can be

generalized to the continuous exponential family

f10)=exp(@y—y(0)B()
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with support R = (—o0, o). If the support i1s a bounded interval we need a

supplementary condition (see Hudson [9]). Indeed, with s(y) = —p'(y)/B(y),
we obtain

Ey((s(y) — O)p(») = Eq(w'(y))

for any absolutely continuous function yp on R such that E,(|y'(y)]) < co.
The Bayes estimator of 6 with respect to a prior distribution U is é,(y) =
s(y) + g'(y)/g(y) and the minimum Bayes risk is r(dy, U) = E;(5'(y)) — 1(G).
A similar extension of the results of Section 3 is also possible.

Therefore, in order to find a Lf. distribution in a (weakly compact and
convex) set of prior distributions # one has to minimize the functional
J(G) =1(G)—Ey(s) on Z={G | G(y) = [F(y | 0)dU(0), U € 2}. Again
we may consider 2 = 2, in which case we note # by Z%,. Moreover, if we
allow G to belong to the extended set @S, we obtain the condition

c—s —2(g'/g) —(g'/g)* =0

on the set of y-values where g can be freely varied. Writing z(y) = /g(y) the
equation becomes

1
2'() + 7[5 0) = clz() = 0.

Beyond this point the problem remains open.

Alfio Marazzi

Institut universitaire de médecine sociale et préventive
Bugnon 17,

1004 Lausanne
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Summary

The restricted Bayes and minimax principles are used in order to derive robust credibility estimates
of a risk parameter 0 in the very simple case where the claim is the sum of 6 and an “error term”.
Two examples are considered: (a) the error distribution i1s Gaussian and the structure function
is not exactly known; (b) the structure function is Gaussian and the error model is not precise.
Approximate analytical and numerical solutions as well as possible extensions are discussed.

Zusammenfassung

Eingeschrinkte Bayes- und Minimaxprinzipien werden angewandt, um robuste Credibility
Schitzungen eines Risikoparameters 0 abzuleiten, dies im ganz einfachen Falle, wo der
Schadenbetrag der Summe von 6 und einem “Fehlerwert” gleich gesetzt ist. Zwei Beispicle
werden betrachtet: (a) die Fehlerverteilung ist nach Gauss und die Strukturfunktion nicht genau
bekannt; (b) die Strukturfunktion ist nach Gauss und das Fehlermodell ungenau. Anndhernde
analytische und numerische Losungen sowie mogliche Erweiterungen werden beschrieben.

Résumeé

Les critéres restreints de Bayes et minimax sont utilisés pour développer des estimateurs de
credibilité robustes d’'un paramétre de risque 0 dans le cas simple ou le sinistre est la somme de
0 et d’'une “erreur”. Deux exemples sont considérés: (a) la distribution de I'erreur est gaussienne
et la fonction de structure n’est connue qu'approximativement; {b) la fonction de structure
est gaussienne et le modele d'erreur est imprecis. Des solutions approximatives analytiques et
numeriques ainsi que des extensions possibles sont décrites.
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