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Arois GISLER, Winterthur

Credibility Theory Made Easy

1 Introduction

In classical statistics the following result is well known: Let X, i=1,2,... ,n,
be independent real random variables with E[X;,] = p and precision
0; = Var_’[Xi]. Then the minimal variance unbiased linear estimator of u
is given by

1
= (ZQ.-) 20X v ()

i.e. 1 is a weighted mean with the precisions as weights. The precision of 1 is

Var[a] ! = Z 0; (2)

In credibility theory one usually wants to estimate the pure risk premium, say
u(®), based on some statistical information represented by an observable
random vector X = (X, X,,...,X,) and some additional information
expressed by a random variable or a constant, say p, In contrast to the
above result in classical statistics we do not have to estimate a constant
term p but rather the random variable u(®). We will therefore use the terms
unbiasedness and precision in a Bayesian sense, i.e.

—  an estimator Y of Y is called unbiased if E[Y — Y] = 0;

- the precision of an estimator Y is defined by E[(Y — Y)?]™!, that is we
use quadratic loss;

— the precision of a random variable X with respect to Y is defined by
E[(X —Y)}]"

In section 2 we show that there exists a Bayesian equivalent to (1) and
(2). Denote by 1i(®) the best linear unbiased estimator based only on the
statistical information X. If X, X,,... , X, are conditionally independent with
conditional expectation u(®), given @, it turns out that u(®) is a weighted
mean of the X, with the precisions of the X; with respect to u(®) as weights.

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 1/1990
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It is also shown that under some basic assumptions the credibility estimator
based on both, the statistical information X and the additional information
Koy, 1s a weighted mean between [(®) and py,, the weights again being the
precisions with respect to u(®). Based on these two fundamental principles
and the fact, that credibility estimators are projections on linear subspaces of
the Hilbert space of the square integrable random variables, we then find the
credibility estimators and their precisions in different models.

In chapter 3 we introduce a basic model covering e.g. the Bihlmann & Straub
model. In chapter 4 a class of evolutionary models is considered, whereas

chapter 5 is devoted to semilinear credibility. Finally the hierarchical model is
dealt with in chapter 6.

The credibility estimators presented in this paper are not new and already
known in literature. But the author feels, that this way of looking at credibility
gives a deep intuitive insight into the formulae and into credibility theory.
The credibility estimators become intuitively plausible and they are derived

in a direct and elegant way. Moreover the precisions of the estimators are
obtained very easily.

2 Hiibert space technique and basic principles
2.1  Hilbert space technique and some notations

We will make an extensive use of the Hilbert space technique presented e.g.
in De Vylder (1976 a).

All random variables considered are assumed to belong to L?, which is the
Hilbert space of all random variables with finite second order moments.
The inner product between two points X and Y in L? is defined by
(X,Y)=E[XY].

P is a subspace of L?, if it is non void and contains all linear combinations
of its elements. @ is a translated subspace, if it can be written as @ = Z + P,
where Z is some element of L? and P is a subspace. Since we may have Z = 0,
it is seen that a subspace is a particular translated subspace. The point Q € Q
1s said to be the orthogonal projection of X on Q (pro(X | Q)) if X —Q L Q,
ie. (X—0Q,Y, —Y,)=0forall Y,Y,€Q.
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The following results are basic:
- Linearity

Let P be any subspace then

pro(aX +bY | P) =a-pro(X | P)+ b - pro(Y | P) (3)

- [terativity
Let P and Q be any (translated) subspaces with Q < P. Then

pro(X | Q) = pro(pro(X | P) | Q) (4)

- “Normed Linearity” in translated subspaces
Let P be a translated subspace and let Z = (a+ b)~'(aX + bY). Then

pro(Z | P) = (@a+b)"(apro(X | P)+ b -pro(Y | P)) (5)

Notation: Let X = (X,,...,X,) be a vector with X, € L? (i=1,2,... ,n).

We denote by
L(X) the subspace spanned by the variables X, X,,..., X, and by

Ly (X) the translated subspace Q= {Z:Z = > a,X,, E[Z — Y] =0}.

2.2 Three basic principles

Theorem 1 (Basic Principle 1) Credibility estimators are projections on
subspaces or translated subspaces, i.e. the following results hold true

1) The (inhomogeneous) credibility estimator of Y based on the statistic
X, ie. the best estimator of the form Y* = a, + > g, X, is

o~

Y = pro(Y | L(X,1)) (6)

11)  The homogeneous credibility estimator of Y based on the statistic X,
i.e. the best unbiased estimator of Y of the form Y* =) o, X,, is

Y = pro(Y | Ly(X) (7)
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Interpretation: By definition Y resp. Y belong to L(X,1) resp. Ly (X). By
definition Y resp. ¥ must be the points in L(X,1) resp. Ly (X) which are
closest (with respect to quadratic loss) to Y. It is intuitively clear that the
point in a (translated) subspace closest to Y is the orthogonal projection of
Y on that (translated) subspace.

Proof: A rigorous proof can be found e.g. in De Vylder (1976 a).

Remarks:

~  As Y € L(X,1) it follows that (Y — Y1) =0 and hence E[Y] = E[Y].
Thus we have

Y = pro(Y | Ly (X, 1) (8)
— Since Ly (X) = Ly (X, 1), the following relation holds true:
Y = pro(Y | Ly (X)) ©)

~ From (6) it follows that Y is the (inhomogeneous) credibility estimator
if and only if it fulfills the normal equations

1) =0 ie. E[Y] = E[Y] (10)
X)=0 i=12...,n (11)

Analogously it follows from (7) that Y is the homogeneous credibility
estimator if and only if it fulfills the normal equations

E[Y]=E[Y] (12)
(Y-Y,X,—X;)=0 for ij=12...,n (13)

Theorem 2 (Basic Principle 2) Let © be a risk parameter (random variable)
and let X = (X, X,,...,X,)" be an observable vector fulfilling the assumptions

Al: X, X,,...,X, are conditionally independent, given ®
A2: E(X;| 0] =u®) =12 .. ..¢0
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Then

—1

) EO) = pro[u(®) | L,e,(X)] = (Z e,-) (Ze,-xi) (14)
where g, == E [(X, — n(©))?]

W o=E[@®) - uwe)] =g (15)

Remarks:

- Theorem 2 states that the homogeneous credibility estimator of u(®)
based on X is a weighted mean with the precisions of the X; with respect
to u(®) as weights. Compared with (1) it becomes obvious that (14) is
the Bayesian counterpart to (1).

- The estimator 7i(®) does not change if all precisions are multiplied by a
constant factor. Thus the precisions have to be known up to a constant
factor only.

Proof:
Proof of 1): We show that p(®) fulfills the normal equations (12) and (13).

E[u(®)] = E[u(O)] because of A2

(1(®) — ﬁ(@),Xj) = ConSt{ Z 0:(u(@) — X, Xj)}

= consto; ((®) — X, X;) (A1 A2)
= constg; (u(®) — X;, X; — u(®))
= const (A2)

and hence

(1(©) —F(©). X, — X;) =0 for i#]

Proof of 1)

-2 -1
E [(#(©) — n(®))*] = ( > o) D GE [(X, — u(©)] = ( > o)
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Theorem 3 (Basic principle 3) Once more let ® be a risk parameter and
X =(X.X,,...,X,) an observable vector with E[X; | ®] = u(®). Let 1(0)
be the homogeneous credibility estimator of u(®) based on X. Let u, be a
random variable or a constant fulfilling the conditions

Al: Efpy—m®)]=0 (unbiasedness)
A2 (u(®) — pg, uy) =0 (orthogonality)
A3: u,and X are conditionally independent given ©®
Then
) (©) = pro(u(©) | L(X, i, 1)) = (2o +2) ™' (2okto + TR(O)) (16)
where 0, = E (1 — 1(©))*]
o =E [(E©) —r©)] "
W o:=E[@®) - u®)’] " =g+ (17)
111) 1(®) itself fulfills the conditions A 1 and A 2,i.e.
E[u(©) —1(®)] =0, (1(©®) —1(O), u(®)) =0 (18)
Interpretation:

We want to estimate the pure risk premium p(®). On the one hand there
are available statistical observations X; which are conditionally unbiased
and on the other hand there is the quantity u, saying something about
w(®). By definition the best unbiased linear estimator based only on
the statistical information X is n(®). By theorem 3 the best linear
estimator taking into account both, the statistical information X and
the information p,, is a weighted mean between (®) and u, with the
precisions as weights.

Ko might be a manual premium, a previous credibility estimator, the
assessment of a technical expert etc. The orthogonal condition A2
means that p, = pro(u(®) | L(y,)) and hence that u, is in some sense a
credibility estimator, if the statistical information X were not available.

Further remark Note that it is not required that X, X,,... , X, are conditio-
nally independent given ©.
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Proof: To prove 1) we have to show that u(®) fulfills the normal equations
(10) and (11). Obviously E[i(®) — u(®)] = 0.

(1(®) — 1(©), uy) = const{gy(u(®) — py, ko) + 2{u(®) — F(O), o) } -

The first term in { } equals O because of A2. From the conditional
unbiasedness of the r.v. X; follows that E[a(®) | ®] = u(®). Hence the
second term in { } equals O because of A 3.

(1(©) — 1(©), X;) = const{g,(u(®) — o, X;) + 0(u(®) — fi(®), X;)}

(u(®) — ) = ®) — ®) = o
{1(®) — 1y, X) ) (1(®) — g, 1(®)) (Az)eo

(u(©) — 1(0), X;) = (u(®) — @(0), X; — i(©) + u(O))
= (u(®) -~ (©),4(©®)) = —¢~

and hence
(W(©) — AO®), X,) = 0

which completes the proof of 1).

E [3(0) ~ u(OF] = (eo+ 2 (5E 1l — @)’

+ B Eu(®) ~ H©)1)

= (go + Z?')_l
which is identical to 11)

Finally 111) follows directly from the fact that

For the purposes of this paper it is convenient to state the following results.

Lemma 1 Let u, and X be as in theorem 3. Let Z = (Z,,Z,,...,Z,)" be
such that E[Z;] = E[u(®)], (1(®) — 1) L L(Z), (u(©) — X)) L L(Z) for
i=12,...,n

Then the credibility estimator of u(®) based on X, y, and Z does not depend
on Z, i.e.

pro (u(®) | L(u. X, Z,1)) = pro (u(©) | L(uy, X, 1)) (19)
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Proof: Let fi(®) = pro (u(®) | L(iy, X, 1)). We have to show that
(u(©) — (@) L L(Z).
A(®) = aguy + > a,X; with a; + > a; = 1 because of theorem 3. Hence
(1(©) = A©). Z;) = ap(u(®) — 1o, Z;) + D a;(u(®) — X, Z;) = 0
for j =1,2,...,m.
Lemma 2 Let Y € L* and {X, = (X;, X;5,...,X,,) i=12,...,I} be real
random vectors. Assume X, X,,..., X, are conditionally independent given

Y and E[X;; | Y] =7 forall i j. Let ?i =pro(Y | Ly (X)) fori=1,2,... 1.
Then

—1
Y = pro(Y | Ly (X, X5,..., X)) = (Zéi) z@?i (20)

where g, = E [(17l B Y)Z]_1
Proof: We will show that
Y =pro(Y | Ly (Y1, Ys,..., 1))
Then (20) is a consequence of theorem 2. Let
Y'i=pro(Y | Ly(Y,,Yy....Y))) = > ¥, with > a=1.
(Y — ?"Xij — Xy) = Za,(Y - i;z"Xij = Xy
¢

=a,(Y — ?i‘Xij —Xy) =0
(Y — ;;ﬂaij - sz) = (Y - i;‘a(ij - ?;) + (Y, - ?k) T (i;k "Xkl)>
= 0.

Hence

Y'=Y.
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Lemma 3 LetY,Z,X=(X,,X,,...,X,) be such that
E[Z —-Y] =0, (Z—Y,Xi—Xj)=O for i,j=12,...,n.

Let Y resp. Z be the homogeneous credibility estimator of Y resp. of Z based
on X. Then

Y=Z (21)

Proof-

(Z-Y.X,—X;)=(Z-Y)+(Y -Y),X,— X,)
= (] for i,j=12,...,n.

Hence Y = pro(Z | L, (X)).
Lemma 4 Let Y and X be points in L? and ty = E[Y], uy = E[X]. Then

- Cov (X, Y)

Y =pro(Y | L(X,1)) = py + Var[X] (X — uy) (22)

This result is well known. The proof is an easy exercise in applying the normal
equations and is left to the reader.

3 Credibility in a basic model
3.1  Basic Model

Consider a policy characterised by a hidden risk parameter ®. Suppose the

observable vector X = (X, X,,...,X,)" and y, satisfy

Al: E[X;]| O] = u(®)

A2: The random variables y,, X, X,,..., X, are conditionally independent,
given ©.

A3: Elgg—p(@)] =0
Ad: (u(©) — o, pty) =0

Of course we want to estimate the pure risk premium u(@).
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We denote by

0o = E [(tp — p(®))*] the precision of y, with respect to u(©);

0; =E [(X;— ;1((—3))2]—l the precision of X; with respect to u(®);
u = E[X|] = E[u(®)] the unconditional expectation.

We will see in section 3.3 that this basic model covers the Bithlmann & Straub
model as well as some other models encountered in literature.

3.2 Credibility estimators

Theorem 4

1) The credibility estimator based on X and g, is

AO) = (go +y gi)_l (eouo +> afxi) (23)
1)  The precision of (@) is

0 = E [[@(®) - u@)] " =0+ 0, (24)
ui)  1{®) fulfilis the conditions A3 and A4, i.c.

E[@O) —u@®)]=0 and  (u(®)—§(®),u(®)) =0 (25)

Proof: Theorem 4 is a direct consequence of theorem 2 and theorem 3.

Corollary 1 (Recursive credibility formula)  Let 1i, be the credibility estimator
of u(®) based on (uy, X, X;,... . X;) and let g, be its precision. The following
recursion holds true:

O = (0p 4 +0) ' (0r By + 0. X)) k=12, (26)
o, = (0, +0,) (27)
ﬁo = Ky 96 =0Qp
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3.3 Examples

Example 1: The model of Biihlmann/Straub (1970)

Biihimann & Straub consider a portfolio of risks. Each risk i (i = 1,2,...,1)
is characterised by a hidden risk parameter ®,. To each risk i belongs an
observation vector X; = (X, Xjp,..., X;,)" where X;; may be interpreted as

an observation (e.g. claim amount) of risk i in period j.

Assumptions:

BS1: Conditionally, given ©;, the random variables X, ,X,,...,X,, are
independent with
E[Xij | 9] = w®)
3@,

P,

Var[X; | ©] =

where p;; are known constants (volume measures)

BS2: The pairs (0,,X)),(0,X,),...,(0,,X;) are independent and
©,,0,,...,0, are independent and identically distributed (i.1.d.).

From Lemma 1 it follows that the credibility estimator x(®,) depends only on
the data X; and not on X, for k # i. (u, X;) fulfill the conditions A 1-A4 of
theorem 4. Hence we immediately obtain the credibility formula, the recursive
formula and the formula for the precision.

If we denote by

Qij =E [(X;'j _}u(@j))z] =v 1P;‘j Je=1,2.... N

where v = E[c?(0,)]
—1 -
0 = E [(u—u®))’] =w!
P 3=2Pij o; :Zij
i J

we get

A(©)) = (29 + 0) " (g + 0,1" () (28)
where

1O = Qi—l ( ZQinij) = (Pi)_] ZPU'XU
j J

o, = E [((®,) — u(©®))’] ' =00+, (29)
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Of course (28) can also be written as
AO,) = afi’(©) + (1 — x)u (30)
where ao; = P,(P; + v/w)™".

If we denote by 7i,; the credibility estimator of u(®,) based on (X}, X;5,... , Xy)
and by o, its precision, we obtain from corollary 1 the recursive formula

Py = (ai.k—l + Qik)_l (Gi,k—lﬁk-l + 0 Xit) (31)
O = Oik—1 + Qi (32)
Hoi = K 0o = Qo

Example 2: The model used by Campbell (1986)

In addition to the observations X;; fulfilling the assumptions of the Bithimann
& Straub model, a technical expert makes an assessment u"(®;) for every risk
i. It is assumed that the technical assessment fulfills the following assumptions:
E(p(©) ] 0] = u®));
Conditionally, given ©,, u"(®,) is independent of the random variables
X,-j ji=1...,n,.
Hence for any risk i the assumptions A 1-A4 of theorem 4 are fulfilled. If
we denote by 1i(®,) the credibility estimator given by (26) and by /(®,) the
credibility estimator based on the observation vector X; and the technical
assessment u” (®;) we immediately get by the recursive formula

UO) = ofi(®,) + 1’ (©))
where
6= (t;,+0) o,
B=(t+ oi)_lti
17, = precision of u*(®))
o, = precision of 1(®,) (see (29))
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Example 3: Sundt (1987)

In the paper “Credibility and Old Estimates” Sundt discusses under what
conditions it is favourable to replace the constant term in the credibility
estimator by an old estimator. In the most simple case of the Bithlmann &
Straub model the question i1s under what conditions should the constant term
p in the credibility estimator be replaced by an old estimator j(®), which is
assumed to be conditionally independent of X given ®. From theorem 4 it
becomes obvious that replacement of p by i(®) will improve the credibility
estimator if and only if the precision of j(®) is greater than the precision of
u with respect to u(®).

3.4 The homogeneous credibility estimator in the Biihlmann | Straub model

Let us go back to example 1 of section 3.3 and assume that the overall mean
w is unknown. The following result holds true:

1) The homogeneous credibility estimator of u(®,) based on X, X,,... , X,
1s

(®)) = (o + )~ (et + 0ifi"(©)) (33)

where

=1
i = (Z Q;) (Z Q?ﬁ'(G).-)) (34)
o) = E [(u—T"(©))7] " = goeilee + )"

1)  The precision of f(®,) is

2:=E [(@(®,— u®)?] "

9 Q0 )_1 (35)
o+t 2.0

== (QO+QE)(1 . s

Remarks

- Note that the homogeneous credibility estimator is obtained by replacing
the unknown u in (28) by u which is the homogeneous credibility
estimator of u.
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- i is a weighted mean of the 71" (®,) with the precisions of the 11 (®,) with
respect to u as weights. Hence the homogeneous credibility estimator of
w 1s found by a two stage procedure:

1) Fori=1,2,...,I calculate the homogeneous credibility estimator
of u(®,) based on X, which is a weighted mean of the X,
(J = L2,...,n) and the weights being the precisions of the X;;
with respect to u(®,).

1)  Calculate i by taking a weighted mean of the estimators found in
step 1), the weights being the precisions with respect to u.

~  Denote by o; = g,(¢, + ¢)" the credibility weight given to % (®)) in
(28). Since g} = w;0,, we can replace the ¢} in (34) by o, which is the
formula usually encountered in literature.

Proof: From (4) and (5) it follows that z(®),) is obtained by replacing u in
(28) by

oL = pro (p | Ly (X5 X5« ,Xk)) )
Lemma 3 and Lemma 2 yield

ﬁ.‘ = pro (ru l L“(X[)) = ﬁ.(@).)

n= Q:‘ﬁ.(gi)
where

’ ~= -1
¢ =E [ (©),) — u)?]
= E [["(®) — u(®) + u(©) — ] "

=(¢i' +¢o)"
which is equivalent to (34).

To prove (35) note that

w®) — O, = (n(®) —A®)) + (A(©) — ()
= (1(©) —7(©)) +goleo + ) ' (u— 1)

From (9) we get

(n(©) —1(®), p— 1) =0.
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Hence from (29) and theorem 2 we obtain

=
E [(1(®) — 1(©®))] = (2o + ¢)™" + 0500 + 0)77 ( > Q?)

_ Qo Qp
= (0o + 0;) ‘(1+—-—, )
0 0 +0; >0

At this stage it is worthwhile to recall two facts found in the Biihlmann &
Straub model:

- Given y, the credibility estimator of u(®;) depends only on the data X;
and not on X, for k # i.

- The homogeneous estimators ;" (®;) and 1 are found by a recursive
procedure from bottom up.

Exactly the same arguments as above can be applied to the hierarchical model.
This will be shown in section 6.

4 The credibility formula in a class of evolutionary models

Let ® be a random risk parameter and let (X, X,,...) be a sequence of
observable random variables where X; might be interpreted as an observation
(e.g. total claim amount) of a particular policy in period i. It is assumed that
X, X,,... are conditionally independent given ®. We further assume that the
risk characteristic may change in time. Hence ® is not a single risk parameter,
but rather a sequence (®,,0,,...) where ®, describes the risk characteristic
in year i. We will use the notation u,(®) for E[X; | ®] (of course we could use
as well p,(©,) or u(©,)).

Gerber/Jones (1975) were among the first to consider such models. Later on,
evolutionary models have been discussed in a number of papers (e.g. Sundt
(1981), Kremer (1982), Sundt (1982)).

We will derive the credibility formula in the case where the process
{11,(©); i=1,2,...} fulfills the assumptions

Al: E[(@)] =p<ow Var[u,(@)] =4 < o0

A2y (O) — p=a;(11;(O) — ) + ¢, i==1.20
where a,,a,,... are constants and where u, (0), ¢, &;,... are uncorrelated
with E[g] =0 Var[g] = ¢? <
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Remarks:

If ¢, = 1 and ¢? = ¢? for i = 1,2,... then the process {,(®); i =
1,2,...} is a random walk. This case has been discussed in Gerber/Jones
(1975).

If @, = a with |a] < 1, ¢ = 6%, 4 = (1 —a’)e? then the process
{1,(®); i =1,2,...} is a stationary autoregressive process of order 1
(AR(1)-process). The credibility formula for this case can be found e.g.

in Kremer (1982).
Cov (1;11(©), p;(®) = a; Cov (1;(®), p;(®)) for i > j, which is the
general assumption in Sundt (1981). Hence the general case has already

been covered by Sundt. Below we give an alternative and very simple
derivation of the credibility formula.

Given the observations up to time n, we want to estimate the pure risk
premium g, ,(®) of the next period.
From (3) and A2 we get

p11(©) = a,1i,(©) + (1 — a,)u

where

1,(©) = pro (1,(©) | L(X, Xp,..., X, 1) 3
E [(041(©) — 1,41(©))"] = E [a3(,(©) — 11,(©))*] + Ele,].

which together with theorem 2 yields the following recursion.

Theorem 5
1 (©) = a, { (0, + @) (0,0 + ¢, X,) } + (1 —a,)u (36)
n=12....
where
0, = E [(1,(®) — 1,(©))] '
¢, = E [(X, — 1,(©))*] "
Ons1 = {@(en+ o) + 02} (37)

7,(0) = p 0, ="
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5 Semilinear Credibility

Semilinear credibility has been introduced by De Vylder (1976 b). The starting
point is the homogeneous credibility model defined by a random risk
characteristic ® and an observation vector X = (X, X,,...,X,)’, whereby the
random variables X, X,,..., X, are conditionally independent and identically
distributed given @. Let now f be a real function of one real variable and
Y= (Y, Y,,...,Y,) the vector of the transformed variables Y; = f(X).

We will further use the notation

1y (©) = E[X, | ©] iy = Eluy(©)]
1y (©) = E[Y, | ©] uy = Eluy (©)]
0=E[y©®) —puy)?]"  t=E[y(© 1)

k = Cov [ﬂX(®)sﬂY(®)]

The best estimator of u, (®) of the form a;, + > .Y, is called the semilinear
credibility estimator, which we will denote by Zi)f((@).

From Lemma 4 we get

1y (©) = pro(uy(®) | L(uy(®), 1)) = py + ko(uy (©) — py)
Since

(ux(©) — U (©),Y) = (1y (®) — ty (®), uy (©)) =0
it follows that

14 (©) = pro(isy (@) | L(Y, 1ty (©), 1)).
Hence from (4) we obtain

% (©) =y + ro(iy (©) — y),
where 7iy (®) is the credibility estimator of u, (®) based on Y.
From theorem 4 it follows that

iy (®) = uy -i—(g-f—m')_'nr(?—,uy), where ¥ = n™! Z )
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and hence
Hy(®) = uy + (0 + "T)_]m' Ko(Y — Hy) (38)

which is equivalent to formula (26) in De Vylder (1976 b).

6 Hierarchical credibility

Models with a hierarchical structure have been treated in a number of papers
(e.g. Taylor (1976), Norberg (1986), Biihimann/Jewell (1987)). Hereafter we will
strongly rely on the presentation in Biihimann/Jewell (1987). The main result,
i.e. the recursive procedure for calculating the credibility estimator, is already
well known. But we feel that the following derivation gives a good intuitive
insight. Moreover the precisions of the estimators will be given.

For didactical reasons we will consider a model of order 3. The generalization
to a hierarchical model of higher order is straightforward.

6.1 Model
The structure of the model is visualized by the following figure:

set of all variables

top level U
level 3 b 4
level 2 o
level 1 ®

level O
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We will use the notation

X4 ®(¥,) := set of all ®-variables deriving from ¥,

2(®,) := set of all data (X-variables) deriving from ®,

The probability structure is obtained by drawing the variables from “top
down” which generates the probability distribution over the whole tree.

Top level:

Level 3:

Level 2:

Level 1:

Level O:

There we have one degenerate random variable, namely the
constant u, which is the overall mean.

The random variables ¥, /¢ = 1,2,...,L are iid. with
probability distribution r;(y)

All random variables ®, € ®(¥,) are conditionally i.i.d. with
probability distribution r,(¢ | \¥,)

All random variables ®; € ®(®,) are conditionally iid. with
probability distribution r,(6 | @)

Given ©,, the random variables X; j = 1,2,...n; are
independent with

E[X; | ©] = u®)
0'2(@1-)

P,

Var[X,-j | ©] =

where P;; are known volume measures.

Our aim is to estimate the pure risk premium p(®,) of risk i. We want to find

a) the (inhomogeneous) credibility estimator

A(®,) = pro (u(®,) | L(2, 1)

b)  the homogeneous credibility estimator

7(©) = pro (u(®) | L,(2))

Furthermore we are interested in the precisions of the estimators 1(®;) and

i(©,).
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6.2  Relevant quantities and notations

We will need the following quantities and use the following notations.
Conditional expectations:

n®;) = E[X;; | ©]

p(@,) = E[u(®,) | ¢] where ©, € ©(®,)

pu(\,) = E[u(®@,) | ¥,] where @, € ®(¥,)

Structural parameters:

overall mean: u:= E[X,.j]
precisions of two neighbouring conditional expectations with respect to each
other

level 1 ¢ :=E [(u(®) — u(@®))*)] " where ©, € O(®,)
level 2 o :=E [(u(®) — u(¥,))?]”  where @, € O(¥,)
level 3 7 :=E [(u(¥,) —p?]"

Remark: In literature it is more customary to use the inverse of p, o, 7

as structural parameters. Note that e.g. o' = E [Var[u(®,) | ¥,]]. In the

context of our presentation however, it is more convenient to use the above
parametrization.

Statistics:

f7(®) = pro (u(®) | L,(2()))
1@y | L(2(Dy)))

(
(

E°(¥,) = pro (u(¥,) | L (2(¥,))
(

Note that e.g. 1" (®,) is the homogeneous credibility estimator of u(®,) based
on the observations X;; deriving from @,.

Precisions of 117 (.):
= E[@(©) - n©)] "
= E [(1" (@) — n(@))"]
— E[@"(¥,)) Y, SN
=E[@ -]

—1
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The notations and relevant quantities can be summarized by the following
scheme:

level 4 3 2 1 0
variables 7 ® ®
index-variables 4 k i ij
statistics i (¥, no(d,) T(CH)]
precisions of u"(.) 4 1, oy o;

6.3  Credibility Estimators

The next theorem shows that the 1°(.) can be calculated recursively from
bottom up by taking at each level a weighted mean of the z°(.) of the next
lower level, the weights being the precisions with respect to the quantity to be
estimated. For instance fi*(¥,) is a weighted mean of {i*(®,) : ®, € O(V¥,)}
and the weights are the precisions of the 1" (®,) with respect to u(¥,). In view
of the hierarchical structure this result is intuitively very plausible.

Theorem 6

1°(©)=P)" ) P;X, where P, = Y P, (39.1)
J J
p; = P~ where v = E[6?(©))] (39.2)

=
(D) = ( > QE) QET(®)  where ¢f =00 (e +¢)”"  (40.1)

o =D ¢ (40.2)

oif
BT = (Z GL) ol (D) where o, = oo, (0 + ;)" (41.1)

i =), (41.2)
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The sum in (41.1) and (41.2) is taken over {k: ®, € ®(¥,)}

-1
f= (Zr}) " (¥,) wheret, =1tt/(t +1,)" (42.1)

=Y (42.2)

Proof:  Consider any two neighbouring points in the tree, e.g. ¥, and
®, € ®(¥,). From Lemma 3 it follows that the homogeneous credibility
estimator of u(¥,) based only on the data 2(®,) is equal to " (®,). Theorem
2 then yields, that 1i*(¥,) is a weighted mean of {i*(®,); ®, € ®(¥,)} with
the precisions of the 71" (®,) with respect to u('¥,) as weights. Since

E [(u(¥,) — 5" (®))°] = E [{u(¥,) — (@) + u(®,) — " (D,)}°]

and

E[E [{u(¥,) — p(@)Hu(@) — 7" (@)} | ¥, 0,]] =0

we obtain

E[u¥,) -1 @)] ="'+ )" =0,

which completes the proof of (41.1) and (41.2).
Of course the other formulae in theorem 8 can be proved analogously.

To derive the credibility estimators z(.) = pro(u(.)|L(Z, 1)) we first introduce
the auxiliary random variables

#(®) = pro(u(®,) | L(2,u(¥)),1)) @, € D(Y,))

.l‘,(@j) = pro(u(®,) | L(Z, u(®)), 1)) 0, €0(2)

Remark: If the conditional expectations at the next higher level were known,
then the random variables y'(.) would be the credibility estimators.

Consider again two neiothLring points in the tree, e.g. @, and O, € O(®,).
Let X;; € 2(0), X,, ¢ 2(0,). By conditioning on the ®-variables we get
(u(®;) — u(ka)) L X
(®);) — X;;) L X,
(1(®)) — u(@y)) L p(®y).
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Thus it follows from Lemma 1 that x'(®,) depends only on the data belonging
to Z(©;). Analogously u'(®,) resp. 1(¥,) depend only on the data belonging
to Z(®,) resp. to Z(¥,). Hence from theorem 3 we get

AY,) = (3 + 1) @R () + 1) (43.1)
W(®) = (0 + o) (0[F" (@) + ou(¥,) @ € D(¥,) (43.2)
H(©) = (o +0) ' @F"(©) +ou(®)  ©, €0, (43.3)

Remark: Denote by «,, B, and y, the credibility weights given to z”(.) in the
formula (43), e.g. B, = 0;(0; + 0)~'. Note that the weights o/, o}, 7, in (40.1),
(41.1) and (42.1) are up to a constant factor the same as these credibility
weights, e.g. 0, = of,. Hence they may be replaced by the credibility weights
on that level (e.g. f, instead of o), which are the formulae in Biihlmann &
Jewell (1987).

Since 7i(.) = pro(¢'(.) | L(2,1)) the following recursion for computing the
credibility estimators from “top down” results:

Theorem 7
A, = 1/ + 1) (B (¥) + 1) (44.1)
A®)) = (o; +0) (a1" (D) + oRi(F,) B, € D(F)) (44.2)
(O, = (o] +0) (o] "(©,) + ofi(Dy)) 0, € O(D,) (44.3)

At this point it is worthwhile to summarize the procedure:
~ In a first step the statistics i (.) and the corresponding precisions are
calculated from “bottom up” according to theorem 6.

- In a second step the credibility estimators at the different levels are
obtained by proceeding from “top down” according to theorem 7.

We will denote the precisions of the credibility estimators 7i(.) at the different
levels by 1,. 0}, ¢; (€.8. 0, = E [((®,) — u(®}))?] ~!). The next theorem shows,
that they can also be calculated recursively from “top down”.

Theorem 8
T, = (1, + 1) (45.1)
o o\
== (g 1 — 45.2
O (0k+0)( +a;+a T{) O, € ©(Y)) (45.2)

—1
0. = (0] +0) (1 Y 3) ®, € O(®,) (45.3)
0; o @ iy
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Proof: (45.1) is a direct consequence of theorem 2. The proof of (45.2) is
analogous to the proof of (35). First note that

(@) — (D)) = (u(®,) — 1 (D)) + o (o} + 0) ™ (W(¥,) — A(¥,))
Since

(n(®) — 1 () L L(Z, u(¥)), 1)
it follows that

((®) — @ (@), p(¥,) — B(¥,) =0
Hence we get from theorem 2

E [(@(®)) — p(@)’] = (o; + o) + 0’ (0} + o)1,

which is identical to (45.2).
Of course (45.3) is proved in exactly the same way.

As to the homogeneous credibility estimators (.) = pro(u(.} | £,(2)), we get
from (3), (9) and theorem 7 the recursion

A, = (t, + )7 ' (T (Y,) + ) (46.1)
(D) = (0, + o) (opi" (@) + oB(¥,) D € B(¥)) (46.2)
A(©) = (o] +0) ' (o] F"(©)) + of(®))) 0, € B(D,) (46.3)

Finally using the same arguments as used in the proof of theorem & we obtain
the formulae for the precisions

—1
%’(=(z;+r)(1+1;t+r TE) (47.1)
5 — g © o\ g cow 472
ak=(6k+o)(1+az+gg) € O(¥,) (47.2)
—1
§f=(Q;+Q)(1+ ,Q .,g) 0, € O, (47.3)
0; +0 o,
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Summary

It will be shown that under some basic assumptions the credibility estimator is a weighted
mean, the weights being the precisions with respect to the quantity to be estimated. Based on
this principle and the fact, that credibility estimators are projections on linear subspaces of
the Hilbert space of square integrable random variables, we will derive in an elegant way the
credibility estimators in a fundamental model as well as in a class of evolutionary models, in the
semilinear case and in the hierarchical model. Moreover the precisions of the estimators will be
obtained very easily.

Zusammenfassung

Es wird gezeigt, dass unter gewissen Grundvoraussetzungen der Credibility-Schitzer ein
gewichtetes Mittel ist, wobei die Gewichte nichts anderes sind als die Prizisionen der
Komponenten in Bezug auf die zu schitzende Grosse. Basierend auf diesem intuitiv leicht
zugénglichen Grundresultat und unter Zuhilfenahme der Tatsache, dass Credibility-Schitzer
Projektionen auf lineare Unterrdume des Hilbertraums der quadratintegrierbaren Zufallsgréssen
sind, werden auf elegante und konsistente Weise die Credibility-Schitzer hergeleitet in einem
Basis-Modell wie auch in einer Klasse von evolutiondren Modellen, im semilinearen Fall und

im hierarchischen Modell. Zudem erhdlt man praktisch als Nebenprodukt der Herleitung die
Prizisionen der zugehorigen Schitzer.

Résumé

Larticle montre que sous certaines hypotheses de base I'estimateur de credibilite est une moyenne
pondeéree et les poids les precisions des quantites a estimer. Sur cette base et vu le fait que les
estimateurs de credibilité sont des projections sur des sous-espaces lineaires de I'espace de Hilbert
des variables aleatoires intégrables au carre, article dérive les estimateurs dans le cas de modéles
de base aussi bien que de certains modeles évolutifs et dans le cas des modéles semilinéaire et
hierarchique. De plus il est possible d’obtenir facilement les précisions des estimateurs.
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