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WiLrLiam S. JEwWELL, Berkeley

Credibility Prediction of First and Second Moments in the
Hierarchical Model

1 Introduction

The hierarchical model occupies an important place in Bayesian inference,
since it shows how collateral data from a portfolio (cohort) of exchangeable
risks can be used to improve predictions for any single risk in the portfolio.
Unfortunately, an exact Bayesian formulation is difficult to apply in the
general case, because analytic predictive distributions can only be obtained
for the normal-normal-normal model with fixed variances (Lindley/Smith,
1972) and a heteroscedastic generalization (Jewell, 1987). Thus, an important
step was the development of a one-dimensional credibility (linear least-
squares) approximation to the predictive mean (ZTaylor, 1974; Jewell, 1975 b).
In this paper, we use an idea of Jewell/Schnieper (1985) to find simultaneous
approximations to both the first- and second-order predictive moments
in the hierarchical model, by using multi-dimensional credibility theory.
Because the resulting covariance matrix has special structure, the size of
the necessary matrix inversions can be drastically reduced by introducing
prototype forecasting formulae. We validate the method with exact results for
variants of the normal-normal-normal model, then obtain approximate results
for other models, with special attention to limiting behavior.

2 The Hierarchical Model

Consider an individual risk (labelled # 1), characterized by an unknown risk
parameter, 51, from which n, 1id. observations, ¥, = {x,,} (t = 1,2,....n)),
are available; we wish to predict a future observation, say wy =X, , ., of this
risk. Given the model density, p(x,, | 0,), and the prior parameter density, p(0,),
finding the forecast density, p(w, | &), is then a simple exercise in Bayes law.
For a variety of simple likelihoods and priors (Jewell, 1974, 1975a), the
predictive mean is a linear function of the data:

P - AT ‘ X
E{W, |5?’1}=f1(~’6/1):(1—31)m+212” s (2.1)
1
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with a mixing coefhicient, called the credibility factor:

n,

zp = —L1 | (2.2)
n, + (e/d)
and three required marginal (prior knowledge) moments:
m=&8{%,10,}; e=6&¥{%,10): d=v¢&F,10}. (23

The credibility forecast, f,(Z,), 1s also a robust predictor for the true
&{w, | Z,} for any model or prior density, in the sense that it is also
the best linear least-squares approximation (Biithlmann, 1967).

In many applications, there may be additional data, say {x,} (i = 2,3,... .r)
(t=1,2,...,n,), available from (r — 1) “similar” related risks, characterized by
different risk parameters, (Fé[), but with the same model density, p(x | #). For
example, in insurance we may have a portfolio of risks, presumed similar, a
priori, as determined by some risk classification scheme. But, if the (?)1) were
1.1.d., then the collateral data would have no predictive value!

A convenient hypothesis that keeps the risks similar, yet introduces depen-
dency in a natural way, is to assume that 6 = [0,,0,,...,0,]" is composed of
exchangeable random variables, with a joint prior density:

PO, 05, .0,) = / T1 20(0: 1 $)p() . (2.4)
" i=1

where the common conditional density, py(-|-), assures that the marginal
densities, p(0,), have identical forms. The interpretation of this assumption
is that the individual risk parameters now depend upon one or more
unknown portfolio hyperparameters, ¢. Of course, we must be willing to
opine a hyperprior density, p(¢), over the set of all possible portfolios. In
the insurance setting, ¢ represents simply the variation in similar portfolios
between different insurance companies. The resulting three-level structure is
called a hierarchical model.

Our goal is still to predict a future vaiue of risk # 1, but now using the
total cohort data, & = {x,} (i= 1,2,...,r) (t = 1,2,...,n,). Jewell (1975b)
finds the credibility approximation for the hierarchical predictive mean as the
combination of two credibility-like forecasts:

Ew, | 2} =~ f(2) = ( —z2)fo(Z) + 21y,
fol2)
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The total cohort data is summarized in r + 1 linear sufficient statistics:

. inr . . Zzi}’i . N
¥ ==, Yo = ; (2.6)
iIi 2 _'j

and r + 1 credibility factors for each risk and for the whole portfolio:

- e | : . 2% (2.7)
Tom+ (/e Y Y+ e/ -
We will see that: f,(¥) is an approximation to the predictive mean at the
portfolio level, £{& (X, | (?5} | &}; mis the overall prior portfolio mean; and
f. g, and h are new central moments averaged over all possible portfolios.

In 1986, the authors investigated the use of credibility to find the second
moments of (w, | &) of the hierarchical model, using an idea due to
Jewell/Schnieper (1983) (for short, J&S); there, a rthree-dimensional model was
used to find simultaneous linear approximations to &{%,,, | Z}. §{x;,, | 7},
and &{X,,,X,,, | Z} for arbitrary model and prior densities, using the three
corresponding sample statistics. The methodology to carry out this program
was soon clear, but implementation immediately ran into complicated and
messy problems of definition, notation, and computational efficiency. It has
taken the intervening years and several articles (Biihlmann/Jewell, 1987 ; Jewell,
1987, 1988, 1989) to properly develop and test this approach.

For simplicity, we assume equal data lengths, n; = n, for each risk i, and begin
with a brief summary of credibility theory in several dimensions.

3 Summary of Multi-Dimensional Credibility Theory

Suppose we have one sample, Z = |y}, of a random vector, y, with which to
predict another random vector, w, through a linear form:

Eiw| 9y = f()=a+ Zy. (3.1)

adjusted to give the best least-squares fit. It can be shown (see Jewell, 1989)
that the matrix Z is given by the normal system of equations:

Z-C=R: C=%{F:5: R=%{w7. (3.2)
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a is then adjusted to make the forecast unbiased, a = &{w} — Z - &y}
In credibility prediction, w and y are usually of the same dimensionality and
depend upon one or more unknown risk parameters y so that:

E Iyl =&F vl =my);  EW Fly}=0. (33)

[f this occurs, we say w and y are mean-exchangeable random variables.
Defining the marginal moments:

m=&{m(p)) D =%{my); my)};
Cly)=€: ¥y v): B=¢&Cy);, (3.4)

mean-exchangeability then implies:

Ew} =& =m; Ew; 3 =D; €\ y;¥j=B+D. (3.5)
The linear predictor (3.1) becomes the credibility forecast:

fl@y=UI—2Zym+ Zy, (3.6)
with a square credibility matrix Z given by:

ZB+D)=D or Z=DB+D) . (3.7)
For the hierarchical model, p = (8; ¢j, with model and prior densities having
the special form (2.4). We take w to be a vector of first and second powers
of future observations, and y as the corresponding first- and second-order
statistics; this will retain mean-exchangeability. After defining w and y further,

we will find m, B, and D in terms of underlying moments of ¥, and then
consider the problem of inverting (3.7).

4 Predictands and Predictors for the Basic Model

As 1n J&S, the use of moments about the origin provides the easiest way to
develop the parameters (3.5). However, we will need to generalize the notation
somewhat for the hierarchical case.

! 'We are using the vector and matrix expectation operator, &, and the vector covariance-matrix
operator, € {it; v} = E{@v" ) — &t} - &(P" ). where @t and ¥ need not have the same dimensions.
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The first- and second-order predictands of interest are:

-

i

o~

X

ixi XX

W, =X

e Wi W i Whei = XX (4.1)

u # t! This is because the special structure of the (stationary) hierarchical
model gives different conditional second-order moments for the same risk
when considering squares of observations (same time period) than when
considering cross-products (different time periods); however, when considering
different risks, the expected cross-product of observations is independent of
the particular epochs chosen. This is reflected in the subscript notation, with
double subscripts (ii) used for the square of observations from any time period,
(i x i) denoting the product of observations from a single risk from different
time periods, and (h * i) denoting the product from two different risks at any
future time period(s). From symmetry, only the s = %r(r — 1) cases with h < i
need to be considered. Forming the predictands into a vector:

where h # i, and s, t, and u are arbitrary time indices > n + 1, except that

_ o~ T ‘
W= [wi | We | Wi, | wh,{] , (h <) (4.2)
we see that there are R = 3r + s = %r(r -+ 5) total distinct predictands, with
the special indexing scheme:

s
—

@) @)1= (h=iy.  (h<i)

I

We shall refer to the four different index types as groups a, b, ¢, and d.
For predictors in y, we assume that n > 2 and use the corresponding “natural”
sample moments:

n

1 1
Y= D % yi = 3 E (4.3 A&B)
=1 t=1
W *_”l—ii“\ :—Z——iix-x ; 4.3C)
< IXl1 ”(n . l) — - n(n _ 1) = o
t#u <u
1 n n '
Yiei = Viep = ;;i Z Z XpXiy = Vuli - (h 74: i). (43 D)

=1 u=1

(One could also use y,,; = y7 in place of either y, or y, ).
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Assume r > 2. The number of predictors is also R, so that the same indexing
scheme # can be used to define the vector y. Note that, since w and y have
the same conditional mean vector. m(f), and involve x, from different time
intervals, they are mean-exchangeable random variables. Finally, since the

RHS of (3.7) is D, we could define w = m(0) and get the same result. Thus, a
credibility formula can be thought of either as predicting a future value of an
observable, or as providing a linear fit to its unknown mean value.

5 Conditional and Unconditional Moments

The next step is to define the various conditional moments that will appear
in m(0) and C(0):; as in J&S, we will need to find conditional moments up to
order four from p(x | 0), which we define as

my (0) = &{%: | 6} ; k=1,....4) (=1,....,r (5.1)

any cross-risk or cross-temporal conditional moments factor into products of
these functions (subscripts on moments refer to powers, not indices). In this
notation, the conditional mcan vector of both w and y is:

T

m(0) = [inl(()‘-) | my(0,) | '"%(01) } nz](Oh)nh(()i)] ) (5.2)

From the assumptions, the {m, (0.)} are exchangeable r.v.s over the risk indices
for each value of k. Given ¢, we form eleven new conditional moments:

M () = &{m (0) | ¢} ; (5.3)
My(d) = & my(0) | 6} 5 My () = Emi0) | &) ;

My(d) = E(my(0) | ) ;. My () = Ema(0)m (0) | b} My (@) = Emi0) | §)

My(p) =6 {1!14(5r—) Lo} My () = Elmy(0)ym, (0) | §)

My(d) = Em30) | ¢} : Moy (d) = Eimy(0m3(0) | 6} My, () = E(mi0) | §)

where i can be any index. Cross-risk moments conditional on ¢ factor, i.e.,

cf{ln](b’i)rnl(éj) | ¢} =M($p) forany i+ ;.
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In this new notation, the classical credibility model can be considered as one
in which ¢ 1s fixed, with parameters (2.3) that are:

m=M,(¢):
e =M,(¢) —M,,(¢) =0; (5.4)
d=M, (¢) —‘Mlz((/)) > 0.

In the second-moment J&S extension, all 11 moments (5.3) are used.

However, in the hierarchical model, the portfolio hyperparameter is an
unknown quantity. So, by taking averages over (7) of all possible combinations
of the conditional moments, we finally obtain the 24 unconditional moments:

(a) First order: M(l);

(b) Second order: M(2), M(11), M(L;1);

(¢) Third order: M@3), M2, M(1L1), M2:; 1), M(1L; 1), M(1;1:1);

(d) Fourth order: M (4), M(31 , M(22), M(211), M(1111), M(3;1),
MQL; 1), M(111;1), M(2;2), M(2:11), M(11:11),
M(2,l, ), M(L1;1;1), M(1;1;1;1). (35.5)

Here the semicolons in the arguments separate products and powers of the
eleven conditional moments, that is, terms arising from different risks. This
makes the notation easy to read in terms of the basic r.v.s,, (5.1), or (5.3); for
example, for any three distinct risk indices h, i, and j:

g{fhf}hux iv \/n }
(5{mz(()h)ml\'éj)ml(Ej)} = {M,\.,s )M} qwgm =MQ:1:1) )
B & {m3(0,)my(0)m(0,)} = &M (PIME()} Hll)r#u}

for all values of the time indices v and w. So the general hierarchical portfolio
model requires only 24 hyper-hyperparameters, for any r > 2!
For the predictive means (2.5), we need only four of these moments:

m=M{(l); f=M2)—M@{1)>0;
g=MI1)=M(1:1)>0; h=M(;)=M(1)>=0. (5.6)



6 Calculation of Model Hyperparameters

We now calculate m, D, and B in terms of the moments (5.5).

6.1 Mean Vector

From (5.2), the R-dimensional mean vector 1s:
m=[M(1) | M@2) [ M(11) | M(1; D], (6.1)

where the values are extended as appropriate within each block.

6.2  Predictand - Predictor Covariance Matrix

Since both w and y are partitioned by #, we subdivide the R x R
covariance matrices into 16 submatrices, as shown in Figure 1, using subscripts
aa,ab, ... ,etc., to refer to the different blocks.

Because every covariance matrix 1s symmetric, the diagonal blocks are
symmetric, and there are obvious transposes between the rectangular blocks.
For the hierarchical model, it turns out that all square submatrices are
symmetrical; in fact there are many structural simplifications, which we now
describe. Rather than give specific formulae for each block, we shall express
our results in terms of the patterns shown in Figure 2.

For the matrix D = &{m(0)m(0)" ) —mm”, we use (5.2) to find that the values
for each of the nine r x r square submatrices are constant over the pattern
shown in Figure 2 (a), with one value, call it &, in the unshaded cells, and a
larger value, call it g + h, on the diagonal. In terms of the marginal moments,
we find for the different blocks:

Block g h

aa M(ll)y—M(1:1) M(1;1) —M?*(1)

ab, ba M(21) —M(2:1) M(2;1) —M2)M (1)

ac,ca M(lll)—M(ll;l) M(1;1) —=M((11)M(1)

bb M (22 (2:2) M(2;2) —M?%(2)

be, ch (2]1 M(2 11) M2;11) —M@2)M(11)

ce M1y —M(11;11) M(11:11) — M?(11) (6.2)
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Figure 1.
Partitioning and indexing of covariance matrices.

(3) (33) (Gx3) (3*k)
(1) aa | ab | ac ad

(ii) | ba | bb | be | bd

(ixi) | ca | ¢b | cc cd

(h+i) | da | db | de | dd

Figure 2.
Special structures of covariance submatrices (r = 3, s = 10).
(a) » x r submatrices aa, ab, ac, ba, bb, bc, ca, cb, and cc.

(b) r x s submatrices ad, bd, and cd (and transposes da, db, and dc).

7007,
%,/, W// 7
7

N 777 7

%, W 7Y
/ A
% Y %
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(c) s x s submatrix dd.

For the six r x s rectangular submatrices in D there are no diagonals, but now
a pattern of constant values like that shown in Figure 2 (b) emerges where a
row index coincides with one of the column indices. Let us call the common
value in each unshaded cell h, and the common value in each shaded cell by
7 + h. The new central moments are:

Block Yy, h

ad,da M1 1) —M(1;1:1) M(1;1:1) —M(1; )M (1)

bd, db M(@21;1)—M(2;1;1) M2;1;1)—M@2M(1;1)

cd, de M1 1) —M(115151) M(1;1;1) —M(11)M(1;1) (6.3)

The pattern of common vaiues for the s x s block dd is shown in Figure 2 (c).
As before, we call the unshaded cell values h and the diagonal values g + h.
However, we now have shaded cells where one row index coincides with one
of the column indices, with a new common value we will call y + h. We find:

gaa =M(11;11) — M (1;1;1;1) 5
Yaa =ML L) =M(151:151) 5 (6.4)
hy=M(1;1;1;1) —M*(1:1).
In summary, there are 21 distinct central moments, g, h, and y, needed to
compute D, independent of either r or n!
Notice that D appears twice in (3.7): once as part of the total covariance

matrix, and once as the RHS. If a different predictand w than (4.1) is sought,
then a different RHS must be used in:

Z(B+ D) =%{w;¥) =R, (6.5)
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say, where a non-square R would induce a similarly-shaped Z. For instance,
suppose we wish to predict first and second moments at the portfolio level.
Then:

w=M(p) = [M,(d) | Ms(¢p) | M, () | M} ()] (6.6)

and we find that the 4 x s matrix R consists only of the 10 central moments
h, arranged in a constant-by-blocks pattern. We will later interpret this result,
and show how it fits into the general solution to our model.

6.3  Predictor Covariance Matrix

Calculation of B is simplified because C(0) = (f{jff’T | 0! —m(0)m(0)" depends
directly upon the individual risk parameters, which are independent, given ¢.
Thus B = &{6{C(0) | ¢}} is zero whenever the row indices are distinct from
the column indices, that is, in the unshaded cells of Figure 2. As B depends
upon n, we set B = %E(n_), where E(n) is a weak function of n, independent of
it except in blocks cc and dd.

For the eight r x r square submatrices, excluding cc, only the diagonal cells
have a non-zero common value, call it f. Then:

Block f

aa M (2) — M(11)

ab, ba M(3) —M(21) (6.7)
ac, ca 2IM(21) — M (111)]

bb M (4) — M (22)

be,eb | 2[M(31) — M (211)]

In block ce, the common value on the diagonal varies with n:

foo(n) = {f“. 4 ! r“] ;
n—1
foo =4MQ211) =M((1111)];
T, =2[M(22) —2M (211) + M(1111)].

(6.8)

A similar result was found previously in J&S.
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For the six r x s rectangular blocks, non-zero values are obtained only in the
non-shaded cells of Figure 2 (b), with a common value we shall call ¢ (not to
be confused with the portfolio parameter ¢). The values by block are:

Block 0]

ad, da M@2:1)—=M(11;1) (6.9)
bd, db M@3;1)—M(Q21;1)

cd, dc 2IM(21;1) — M (111;1)]

Finally, as might be expected, the common diagonal value in £%(n) is also a
weak function of n:

|
faa(n) = [fdd + ” Rm] ;

faa =2MQ2:11) —M(11;11)] ; (6.10)
T =M(2;2) =2M(2; 1) + M(11;11).

and the shaded cells in Figure 2 (c) have common value:
Q. =M2;1;1)=M(11;1;1). (6.11)

The variation with n of the transient term in block dd is somewhat different
than that in block cc because of the different number of samples involved.
In summary, the calculation of £(n) requires 13 central moments, which, when
combined with those in D and m, means that 28 values need to be computed
from the 24 moments in (5.5); most of them are, in fact, non-negative. Rather
than finding Z through the inversion of the R x R matrix C, we now develop
methods that will exploit the special structure just found.

7 Diagonal Block Solutions

In our original paper, we showed how tc use the spccial structure in Figure
2 to rederive the basic hierarchical formula (2.5), by predicting w° from just
7", using only the diagonal square submatrices B* and D“. In the interest of
brevity, we omit discussion of this and similar independent block solutions.
Full details are available from the author.
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8 The Reduced Prediction Problem
8.1  Some Matrix Results

We now gloss over several years labor to simplify solutions and take an
intuitive leap that will greatly simplify our problem. Consider the identical
and complete patterns of constant values in the R x R matrices B and D,
as formed from Figure 2. Surprisingly, this overall pattern is invariant under
multiplication and inversion! Further details can be found in Jewell (1988).

For our problem, this means that:

(a) (B+D)! will have the same pattern as B and D: and
(b) Z=R(B+ D) will also have the same pattern if R does!

Thus, our computational problem reduces to finding the constant values
associated with each pattern, that is, to solving a small linear system whose
dimension does not vary with the number of risks, r!

8.2 Sufficient Statistics and Prototype Formulae

Assume for the moment that we are not interested in cross-moment predictions
of X, 1 X, OT M [(0,)m,(0,) (h # i). Considering the patterns in Z and in the
product Zy, one can show that only eight summary predictands are needed!
For each risk i, we can use the previously defined statistics y;, y;;, and y,,;, and,
for the portfolio, we obtain y,, yy9, and y,,,. Two new statistics are needed:

Yisg = - <
{ (8.1)
Yoso = P Z Z Viei = : 1) Z Z Yhei
h < h#i

which, to be distinct, now require r > 3. (The asterisks in y.., and y,., do not
have the same meaning as in y;,;). It follows that any f; or f, or f,. ., will be
a linear combination of only eight statistics:

5 =[5> i Foxi Fio | T Fo0 Foxor Foval " (82)
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For symmetry, we select the eight-vector of predictands:
W= [’”1(5,') .mz(’()".),nzf(ai),rn,(ai);\/!,(;ﬁ) |
. (8.3)

- N - 1
M () My (). M, (6) M)

Although this new w has the same prior mean as y, they are not mean-
exchangeable r.v.s, so that the general form (6.8), Z = R(B+ D) !, must be
used in the reduced problem after finding the appropriate 8 x 8 RHS matrix,
R.

So the original R x R problem now reduces to one in which: B, D, the new R,
and Z will all be 8 x 8 matrices, whatever the value of r; the new m will be
an 8-vector; and the values of Z and m will not depend in any way upon the
index i! In other words, the 8 x 8 version of (3.6) for the reduced formulation
will be a prototype prediction formula suitable for any individual risk i!! This
being the case, let us henceforth, for simplicity, set i = 1.

Our task i1s now to express the new moments, m, B, D, and R, in terms of the
central moments found in Section 6. In place of the partitioning of Figure
1, the two groups of four variables in (8.2) (8.3) will be labelled 1 and O,
respectively, and. within each group, the variables will be labelled by a, b, ¢,
and d, corresponding to the original block labels. This leads to the partitioning
of the reduced matrices, B, D, R, and Z, shown in Figure 3.

Figure 3.
Block structure for reduced 8 x & matrices.
abecdabdeced

a
b
2 11 10
d
a
bl gy 00
C
d
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8.3  Reduced Model Hyperparameters

The eight-vector of prior means is similar to (6.1):

= {M(I)M(z)M(ll)M(l;l)!M(I)M(Z)M(II)M(I;I)] " 84

The 8 x 8 total covariance matrix, C = B+ D, has only two different forms in
the four blocks of Figure 3. In block 11, position aa:

1
C“ = ;fau ad Eaa ;s haa > (85)
/e

aa

and similarly for subscripts ab, ac, ba, bb, be, ca, cb, and cc; in position
cc, f..(n) must be used. In the six border locations corresponding to the
rectangular blocks in Figure 1:

1
Cad = 5Pt TVt T hat (8.6)
and similarly for bd, cd, da, db, and dc. (Note that all 15 of these values are

invariant with r). The 16" position, corresponding to the old s x s block, is
the most complicated, with:

1 | r—2 1
Ct}t; = I:;‘—::WT:I [nf(ifl(’l) +g(il]:l + I:r _ 1:| [E(Pcld + ’}'cM:I + hdd (87)

The remaining three blocks are identical, C'° = C”' = €%, with:

CIO_:C-OI :COO_ 1

aa aa ada -
r

1
[;f(m + guu" + haa 2 (88)

and similarly for the eight other NW-corner locations in each block, as in
(8.5) above (remember to use f_.(n) 1 cell cc). For the six border locations
corresponding to (8.6), we have the form:

211
Cad = [;wad + m] + haa (8.9)

ad —

noting especially the factor of 2. Finally, for the SE-corner location dd, we
have the complex form:

1{1 r—2 1 _
Cyl = 5 [;f(m(”) + gdd] + 2[ S ] [ Paa T+ ‘r‘dd] + hyy - (8.10)

h
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Turning to the RHS matrix, R'' has the simple form:

Ris = Zua + Nag - (8.11)

and similarly in the eight other NW-corner locations. Then:

R{lull = Vad + hud > (812)
and likewise in the five other border cells, and also for R} !

The submatrix R'® is the only asymmetric 4 x 4 block, with:

1
Rclu? = ~8ua + hua ’ (81 3)
r

and similarly in the eight other NW-corner cells. Then:

2
Rctl(i) = ;}’ad + had > (8.14)

and likewise 1n bd, ¢d, and the SE corner location dd. However:

R]O —

da

Yad + hud > (8 1 5)

~ | -

and similarly in the other lower border locations db and dc. Note the different
coeflicients 2 and 1 in (8.14) and (8.15)! These are not misprints, but reflect
an underlying asymmetry in the reduced predictors and predictands. The
unchanged subscripts on the central moments y and h remind us that they
are still symmetric w.r.t. their subscripts.

The remaining two blocks, R°' and ROO, are easy to describe:

R, = Rop =Ty, (8.16)
and similarly for all 15 remaining cells in both blocks!

Figure 4 summarizes the final block structure of € and R. Only R'" is
asymmetric.
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Figure 4.
Final block structure in reduced matrices.
11 00 11 10
c - L¢lc cop oo [RCIR
COO C00 ROO ROO

9 Final Simplification of Credibility Prediction

We can further simplify the 8 x 8 formulation by using the special structure
just found. Partitioning Z as in Figure 3, we find:

Zl] — (Rll . RlO)(Cll _ C()O)*] .
Z!O — RIO(COO)—I o le : (91)
=0, 7% = RO,

which reduces the original 8 x 8 inversion to just two 4 x 4 inversions!
Furthermore, by partitioning y into ' | »°]7, and similarly with f = [f' | f97
and m = [m’ | m"]”, we obtain the final two prototype first- and second-
moment prediction formulae at the individual and collective levels:

fl(g)_:([_Zl()_le)’n0+Zlo}’0+le—vl’ (92)
2(2) = (1— Z%m°® + 2°°)° . '

Comparing with the first-moment hierarchical prediction (2.5), we see that
%(2) is in the correct form, but that f'(Z) does not quite have the same
simple form. Further investigation shows that this could only be true if
Z'"Y = (I—Z'"Z"; in fact, the numerical match is never close unless r is very
large, or one throws away d-type terms that use y,., and y,., in the prediction.
We think (9.2) is simple enough!

10 Cross-Moment Prediction

To forecast cross-moments, say W., = X, X,,,, Of ml(b’,)m,(éz), we must
expand (8.2) and (8.3) to contain predictors and predictands of both risks # 1
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and # 2 (as prototypes). The dimension of the problem now jumps from 8§ to
13, with, for instance:

Y= [»‘y’l’ Vits Yixts Yis0s V2o Y220 Yax2s V203 Vix2 |
. (10.1)
Yos Yoos Yoxo» ."n-o] >

and similarly for w. Many of the coeflicients in the 13 x 13 covariance matrices
duplicate those already found, but there are new cross-risk moments to be
found, which we leave to the reader. The final credibility formulae are similar
to (9.2), and require one 9 x 9 and one 4 x 4 inversion.

11 General Asymptotic Results

In contrast to (2.5), it is difficult to say much about asymptotic results for
the general hierarchical model as the number of samples, n, gets very large.
Terms in f and ¢ drop out of C, but otherwise no simplification occurs in the
structure of Z. In other words, neither y; nor y, achieves “full credibility” for
the mean forecasts, f; and f, in the general case. We shall see below, however,
that this can occur in special cases.

As r, the number of risks, increases, C%, R'®, and R™ approach the same
4 x 4 matrix of h coefficients, call it H. Assuming H ! exists, then:

@)=,
fl(fz):U-Z“)yO—i-Z“yl : (L1.1)
ZH — (Rll _H)(Cll _ H)Al i

giving full credibility at the portfolio level for the four statistics in ), a
satisfying result. However, in the examples below, |H| = 0, and (11.1) is not
true for all components.

12 Numerical Examples

The first two numerical examples are for models in which all of the first
and second moment forecasts are exact; the third example is similar, but
i1s known to be analytically intractable, even for the predictive mean. Other
computational experience is then summarized.
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12.1 Example A — Homoscedastic Normal-Normal-Normal Model

In this model, developed by Lindley/Smith (1972) in a slightly more general
setting, the densities at all levels are normal with known variances:

(X, | 0,) ~ N ovmal (0,f);
0.1 §) ~ N crmal (¢, g) ; (12.1)
Z}g = N ovimal (M, h).

In this case, Jewell (1975 b) showed that the linear mean hierarchical forecasts
(2.5) for f,(Z) and f,(Z) are exact, using the same m, f, g, h. However, it
is easy to see that the second moment forecasts are homoscedastic, that is,
all updated variances and covariances depend only upon the sampling design
parameters, (n, r), and not upon the sample values in &. This means that our
second-moment forecasts are basically uninteresting, for example:

Mm@ =5f+01—-z)g+ 10 —z)(1 —2)°h+ (D) ; 122)
fwo@) =f+g+ (1 —z)h+f5(2),

and with similar data dependence for f,, . fy.. and fo.o; fi.o 18 @ hybrid,
and depends linearly on y, f, and fZ.

For the calculations, we took m = 1, f =4, g = 0.4, and h = 0.04, reflecting
increasing certainty about higher-level values (which we believe is the usual
case in insurance). This gives time constants of ny; = ry, = 10 in the usual
credibility factors z; and z;,. The resulting central moments are shown in Table
I (a). Note the large number of values that are duplicate or stand in constant
ratio.
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Table I.

Central moments for three numerical examples

(a) Example A

aa
ab
ac
bb
be
ce
ad
bd
cd
dd

(b) Example B

aa
ab
ac
bb
be
ce
ad
bd
cd
dd

(c) Example C

aa
ab

ac
bb
be
ce
ad
bd

cd
dd

Table II shows the credibility matrix, Z, for selected values of n and r. For

instance, with n = 10, r = 5, rows # 1 and # 5 show that f, and f; are just
(2.5), with z; = 0.5 and z;, = 0.2.

f iy h 9 v T
4.0 0.4 0.04 --- - -
8.0 0.8 0.08 -- -- --
8.0 0.8 0.08 --- — ---

55.04 1.984 0.1632 --- --- ---
23.04 1.984 0.1632 e --- ---
23.04 1.984 0.1632 --- --- 32.0
--- --- 0.08 4.0 0.4 -
--- .- 0.1632 8.32 0.832 ---

- --- 0.1632 8.32 0.832 N
11.52 0.992 0.1632 4.16 0.416 16.0

f g h P 1 T
4.0 0.4 0.04 --- - ---
8.0 0.8 0.08 --- --- ==
8.0 0.8 0.08 -- -

74.56 2.176 0.0216 --- -- -

26.56 2.176 1.1416 --- --- ---
26.56 2.176 0.2616 --- --- 48.0
--- --- 0.08 4.0 0.4 ---
--- --- 0.2536 8.48 0.848 ---
--- --- 0.1736 3.48 0.848 ---
13.28 1.088 0.1656 4.24 0.424 24 .0

f g h ) 7 T
4.0 0.4 0.04 --- --- --
8.0 0.8 0.08 --- --- -
8.0 0.8 0.08 --- --- -

55.04 2.144 0.2432 --- --- -
23.04 2.144 0.2432 - --- ---
23.04 2.144 0.2432 --- --- 32.0
--- --- 0.08 4.0 0.4 ---
-- - - 0.1632 8.32 0.832 --

--- --- 0.1632 8.32 0.832 -
11.52 1.072 0.1632 4.16 0.416 16.0
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Table 11.

Numerical values of Z for example A
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Now, it is always true that:

5 (1] n— 1
Yi=|=Z|VYit Vixi s
n n

r—1

5

Yo =

Yoo + [ ])’0:0 : and (12.3)

r
¥+ | Yo

So, if f, and f, obey (2.5) exactly, we can then expand f{(%), f§(Z), and
v fo(2) solely in terms of the eight statistics in y! This leads to the duplicate
coefficients in the remaining rows of Z, as explained above.

As n — oo, the exact nature of the forecasts leads to f, = | - y,, as expected,
and to z, = (r/(r + ry)); the other limits, such as f,, = f,., = y,;, can be
explained in terms of the limiting behavior described in J&S. As r — o0, the
limiting Z is not I, because |H| = 0.

YiYo =

S
i#
%
3

12.2 Example B — Jewell's Heteroscedastic Model

We now consider ways to make model A heteroscedastic, that 1s, to have
predictive (co-)variances that depend upon the data values; in the normal-
normal-normal model, this clearly requires that one or more of the basic
variances in (12.1) be considered as unknown, a priori. Jewell (1987) showed
that if the densities in (12.1) are taken as conditional on (f, g, h), with p(f, g, h)
a given joint prior, then the key to retaining analytic solvability was to fix
the credibility factors z; and z, by linking all three variances through the
relations:

f =n,g = 1101'0%, (12.4)
thus fixing the time constants n, and r,. The essential work is then to find
&{f | @}, etc. now needed in the generalized forecasts like (12.2).

If we choose a Yawma (a, B) prior for (f)“, we obtain credibility-type
formulae for the updated (co-)variance(s)! The main result is:

&7 12} = (1 —2)6{]) +2.B@);
B
=1 (12.5)
nr

617} -
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with a linked-variance statistic that, in its most pleasing form, can be written:
B(Z) = (1 — zp)(1 — z\)(ypo — M)~

1 1
+ l:l__|:gl+;(1—3):|:|[J!()0_y0x0] (]26)

n
1
+ (1 —z,)(l = ;)[yOxO — Yoeol -

Other forms are given in Jewell (1987). Note that the “volume™ of effective
data in the learning-curve z, is (nr), and that, with fixed 5{?}, the effective
time constant, 2(x — 1), is larger, the more certain we are about f, a priori.
The forecasts of (12.2) are easily generalized to this model by setting g = f/n,
and h = f /nyr, and using (12.5) to uncondition on f. So the only change in
fiis f1x1» and f,, will be in the coefficients from y°.

For the numerical calculations, we have set m = 1, é‘){f} = 4.0, and
ny = ro = 10, so that the mean values of the variances are comparable
with example A. Heteroscedasity is introduced by setting 1{)7} = 8.0, giving
¥7{g} = 0.08 and ¥ {h} = 0.0008, and similarly for the covariances. The
resulting central moments are shown in Table [ (b). The credibility matrices
in Table I1I, calculated for the same values of n and r as Table II, show the
same results for f, and f,,, as well as the same coefficients in the rest of Z'!, as
expected. However, negative and/or larger-than-unity coefficients now appear
because of the complexity of the the statistic B(%). Of particular interest is
the fact that, as n — oo, f;; — ¥y, + (Voo — Yoxo)> With fi.; — v, as before.
|H| = 0 for this model, too, but here, as r — 0, f,, and f,. ., both use all the
second-moment statistics from »” in their exact, linked predictions.

12.3 Example C — Berger's Heteroscedastic Model

Berger (1985: Section 4.6) analyzes a normal-normal-normal hierarchical
model that, in our notation, has f and h fixed, but with g having an
arbitrary prior. He essentially develops (2.5) and the covariance form of
(12.2), conditional on g, gives the likelihood p(Z | g), and then proposes using
several one-dimensional numerical integrations to uncondition on g. Because
of the complexity of p( | g), and the way in which g enters z,(g) and z,(g),
we see that not even the predictive means can be linear functions of our
statistics. Nevertheless, because Berger’s model is “close™ to those analyzed
above, we feel intuitively that the credibility approximation should be “good
enough™ for most purposes.
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Table 111.

Numerical values of Z for example B
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Numerical values of Z for example C

Table 1V.
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To maintain similarity, our numerical trials set m = 1, f = 4, and h = 0.04,
as in example A, and 7 {g} = 0.08, as in example B: all covariances and the
other variances are zero. Table I (¢) shows that the central moments are closer
to those of A than those of B; in fact, only seven moments in the g and h
columns differ from those of A!

Table IV shows the numerical results for Z, for the same values of n and r
used previously. The first surprise is that the approximations f,(Z) and f(2)
for (5{5 | 2} and é{q?) | &}, respectively, are still the simple formulae of
(2.5)! (discussion below). On the other hand, the other coefficients of Z'! are
different than those of either example A or B. The other coefficients for "
have negative signs in different locations than those of example B, and are
generally smaller in magnitude, closer to those of A.

Asymptotically, there are few surprises, although, as r — oo, both f,, and
fi<have the fixed term 0.9[M (2) — M(11)], so that neither estimate is ever
fully credible. On the other hand, if both n and r are large, Z — I, probably
because of the underlying non-linearity of the exact predictions.

Overall, the fact the credibility coefficients of example C are “between” those
of A and B, for the most part, gives us additional confidence that they are
robust approximations to the true predictive formulae.

12.4 Other Computational Experience

Is the behavior of examples A, B, and C typical of general normal-normal-
normal models with arbitrary priors, p (f, g, h)? (Note that credibility
approximations only use the means and covariances of these r.v.s). Based
upon computational experience with a variety of cases, we can say empirically
that f, always uses only y, and y,, and that f; only depends upon y,. A proof
of this approximation simplicity seems difficult, but it must be related to the
assumption of normality at all levels.

On the other hand, it is easy to construct normal models with |H| # 0, so that,
asr — oo, fo =" and f' = (I—Z'")y° + Z''y!. We leave the exact conditions
for the reader to discover, but if, for instance: &{h} = 0; or ¥ {f} = 0; or
¥7{g} = 0; or all correlations among (f, g, 75) are unity, as in example B, then
|H| = 0 and we obtain different limiting results. But setting only #"{g} =0 or
making (f, g, ) independent will lead to full credibility at the portfolio level
as the number of risks becomes very large.

To obtain approximation formulae where f, depends upon more than y, and
Vo, One must turn to non-normal model densities. From J&S we know that the
non-hierarchical Gamma-Exponential gives exact forecasts for f, in terms of
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v, and f,; and f,,, in terms of y,, y,;, and y, ;. Now let us make the scale
parameter of the Gamma a random variable, with its own Gamma hyperprior
density (thus giving a Gamma-Gamma-Exponential hierarchical model). The
exact predictive formulae are already analytically intractable, so our f, and f
can only be linear approximations. Yet we have found empirically that f, still
depends only upon y,, but now upon all of y°; the latter is due solely to the
complexity of f,. so we get a formula for f, like the first line of (2.5)! Now,
as n — o0, the 3 x 3 NW corner of Z'' behaves like the Gamma-Exponential
example in J&S, which is some consolation. H~" always exists in this model
(in non-degenerate cases), so that, as r — oo, we have full credibility at the
portfolio level.

The Gamma-Poisson is another (non-hierarchical) model that has exact first-
and second-moment credibility forecasts. Creating a hierarchical model by
again making the Gamma scale parameter into a Gamma r.v., we obtain
different results than those described above. Now the approximation f,
depends upon all components of y' and y°! Moreover, we obtain the surprising
empirical result that, as n — o0, the 3 x 3 NW corner of Z'' now approaches /,
rather than the corresponding limit in J&S! H~' always exists in this model,
so Z% — I as the number of risks increases without limit, although the rate
of convergence is very slow, compared with previous models. There seems to
be much more variability in Poisson model prediction.

It 1s dangerous to extrapolate this expericnce to other models, since cach
case requires developing the appropriate 24 analytic moments to look for
simplifications. However, the pathologies observed above seem to be due to
the fact that densities at all three levels are members of the quadratic variance
family of Morris and are natural conjugate between levels. With different
densities, one should obtain “regular” asymptotic behavior. The reader is
cautioned against choosing the 24 moments at random for experimental
trials, as the moments must obey many Schwarzian inequalities based upon
applying {74} = [6{7?}]° = [#{7}]* at all levels; assuming positive random
variables and/or special densities adds further constraints.

Special thanks are due to M. Lin, who assisted in the complicated details of
program development, computation, and validation for these examples.

13  Conclusion
We have seen that the hierarchical credibility model reduces from a large

least-squares formulation to a pair of 4 x 4 problems, one of which finds
the portfolio-level f°(%), and the other the individual-level f'(Z). The
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methodology also agrees numerically with those simple hierarchical models
for which analytic forms are known, and gives reasonable approximations for
“nearby” models for which exact results are not available.

The use of the common exponential-family modeling densities greatly
simplifies parameter estimation, but raises interesting questions about the
asymptotic behavior of these formulae when n and/or r are large, since “full
credibility”, using the natural estimators, may not be attained. And we have
not at all considered whether a subset of our statistics might give almost as
good approximations. Thus, there remains a great deal of practical exploration
of the methodology, which we must leave to the future.

14  Dedication

Some scientific ideas are like complex wines — they need substantial blending
and ageing before they can be properly appreciated. So it is with the topic of
this paper.

The basic ideas and the formulae of Section 6 were developed during a visit of
HB to Berkeley in Spring, 1986. However, extensive “cellaring”™ was necessary
to simplify notation, to understand and exploit the special structure of the
coefficients, to find a heteroscedastic test model, and, above all, to develop
and test the many computer programs used for the numerical calculations.
On this special occasion of his sixtieth birthday, the cellarmaster would like
to dedicate the long-overdue bottling of this work to Hans Bihlmann, with
the hope that he will find it to his taste.

William S. Jewell

Engineering Systems Research Center
University of California, Berkeley
Berkeley, Ca 94720

USA
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Summary

Multidimensional credibility provides simultaneous linear least-squares approximations to the
first and second predictive moments of the hierarchical model, using natural first- and second-
order statistics formed from all risks in the portfolio. This gives a very large, special-structure
covariance matrix, which would be very difficult to invert for a typical portfolio. Matrix arguments
show that the formulation can be reduced to small, fixed-dimension matrices, giving prototypical
credibility formulae for use with any number of risks. Numerical examples are given for the
normal-normal-normal model, for which exact Bayesian results can be obtained in some cases,
and for other models.

Zusammenfassung

Mehrdimensionale Kredibilititstheorie liefert lineare Approximationen (mittels der Methode
der kleinsten Quadrate) gleichzeitig flir das erste und das zweite Moment des hierarchischen
Modells, wobei natiirliche Statistiken erster und zweiter Ordnung — basierend auf allen Risiken
cines Portefeuilles — benutzt werden. Dies fiihrt zu einer sehr grossen. speziell strukturierten
Kovarianzmatrix, deren Invertierung sehr schwierig sein diirfte. Mit Hilfe der Matrizenrechnung
wird der Formalismus reduziert auf kleine Matrizen fester Dimension. Numerische Beispiele
werden erldutert fir das “normal-normal-normal”-Modell, fiir welches in gewissen Fillen exakte
Bayesianische Resultate hergeleitet werden konnen, sowie auch fiir andere Modelle.

Reésumé

La crédibilit¢ multidimensionnelle livre des approximations par moindre carrés simultanées et
linéaires pour les premier et second moments a priori du modele hiérarchique, et cela sur la
base des statistiques naturelles de premier et de second ordres formées par I'ensemble des risques
du portefeuille. Ce fait fournit une matrice de covariance tres etendue et de structure speciale,
qu’il serait tres difficile d'inverser dans le cas d'un portefeuille typique. Une étude montre que la
formulation peut étre reduite au cas de matrices de petite taille et de dimension fixe comportant
des formules de credibilité prototypiques pour un usage en presence d’un nombre quelconque de
risques. Des exemples numériques suivent dans le cas du modele normal-normal-normal, pour
lequel il est possible d’obtenir des resultats bayesiens exacts dans quelques cas de figure, ainsi
qu'avec d’autres modeles.
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