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Hans U. Gerber, Lausanne

From the Convolution of Uniform Distributions
to the Probability of Ruin

1. Introduction

Let y I, >2 v„ be positive numbers. We consider the uniform distribution
over (0, y,); the corresponding cumulative distribution function is

/ 1,2 ,/!. The cumulative distribution function of their convolution is

Explicit formulas for E/„(a) //„(,x;>', y„) and its derivative are well
known and have been derived in different ways, see for example Sea/ (1950)
and S/n» (1987). In this note, which is mostly of a pedagogical nature, we shall
first show by geometric reasoning how two dual expressions for can be

obtained. In section 4 the extension to the convolution of distributions with
decreasing probability density functions is discussed. Thanks to these more
general formulas certain series expressions for the probability of ruin can be

derived easily.

2. Geometric reasoning: the rocket principle

We start with m 2 and prefer to consider y,jnEMa) (instead of /F(a)), since

this expression has a geometric interpretation: It is the area of that part of
the rectangle

0 for a < 0

for 0 < a < v.
-V;

1 /or A' > y,-

(1)

E/„(a-) F, * F, * - • * F„(a). (2)

{(A'|, an) j 0 < A-, < V,, 0 < AN < y2}
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Figure lb Geometric derivation of formula (3b)

V +

+
that is below the line x, + x, x. There are two formulas for y, VtFT(x):

V: v.//.i\! y I y 2 - 4(>'i + y 2 - *)+

+ ^(y, -x); + ^(j'2 - x);2 '+ '

2
* (3a)

and

Vivs/Tfx) ^M+ - - y,); - ^(x - y,)+ + ^(x - y, - ys); (3b)
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These inclusion-exclusion type formulas are best derived geometrically. The

geometric derivation of (3a), term by term, is illustrated in Figure la. The
idea is to start with a line above the rectangle (i.e., x > y, + vs), to lower
the line successively and thereby to make the necessary corrections by adding
and subtracting the areas of certain isosceles right triangles. In Figure lb we

illustrate the geometric derivation of (3b). Here, the idea is to start with a line
that is below the rectangle and to raise it successively.
For a 3 we consider which is the volume of that part of the

three dimensional rectangle

{(x,, xs, X,) I 0 < X, < y,, i'=l,2,3}

that is below the plane x, + x, + x, x. If we start with a plane that is

above the three-dimensional rectangle (x > y, + y, + y,) and lower the plane
successively, we have to add and subtract the volumes of certain isosceles

right pyramids. This way we get

>:T-yT/;i\) =yiV2.v3

- 7(.Vl TV, +>3 ~-Vt;

+ ^()'| + >'2 - *)"l + + >3 - •*)+ +
g

(3^2 + .V3 - *) +

- ^(3'l - *) + - ^(>'2 ~ - ^(>'3 -
+ g(—x)+. (4a)

If we start with a plane that is below the three-dimensional rectangle (x < 0)

and raise it successively, we get

VHTVbtfdx) =^M+

- ~(x - .Vj)! - ^(x - >s)+ - jHx - y, )i

+ ^(.v - y2 - >'-,)+ + ~ (x - y, - y,)* + ^(x - y, - y,)i

- ^(x-y,->'2->b)+- (4b)

The artistic reader is invited to draw diagrams similar to those of Figure 1
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3. The general formulas

For arbitrary n, the formulas are now the following natural extensions:

/I V M

iiv,//„im -rib
/=i ' i=i

~ ~i (>'l + • ' + - A-)"

+ +'"+>V, "*>+ (5a)

~ TT Z(>';, + ' " + .V/„_2 ~ *>+

± v':
n!

" +

and

nyjw„(x)4w"
/=!

(5b)

These formulas can be verified by induction with respect to n. For (5b) this

can be done, for example, by using the recursive relation

/I \ n— 1

n -F j =n b y - .v) ^ (6>

1=1 1=1
Q

and observing that

zriyr / (* ~ " ~ ^ - " - >'„)+ - ^(A - < (7)
(«

for any a > 0.

o
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4. Application: The convolution of distributions with decreasing probability
density functions

Let I',. F, T„ be independent, positive random variables. We denote the

cumulative distribution function of F, by P,(.x) and suppose that its mean, /(,
is finite. To P,(x) we associate another cumulative distribution function, given
by the formula

ß,.(x) - / [1 - P,-(z)] dz. (8)

0

Note that there is a one-to-one correspondence between ß, and P, : as ß,(.x)
is a distribution function with decreasing probability density function, the

underlying P, can be retrieved by the formula

p.(x-) 1 _ (9)
' e;(oi

'

Furthermore, the Laplace transform of ß, can be expressed in terms of the

Laplace transform of P, :

0

1 - J' e"' ^P,(Lx)

fPi
e"' *ß,-(dx) 2— (10)

The proof of this well known formula is a simple exercise of integration by

parts.
Let us now consider random variables A",,... ,X„ which (given F,,... FJ are

conditionally independent, such that A,, is uniformly distributed over (0, F;);
then H„(.x;T|,... FJ is the conditional cumulative distribution function of
Aj + • • + AT„. The following Lemma will allow us to apply the results of
section 3.

Lemma :

n ^ • • r„) n e. * <22 * • * e„w-
1=1 i=l
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Proo/': We verify this formula by calculating the Laplace transforms. Since

GO

_ V,
'

*7/,,(7 \ : v,— y„) I [
i=l O',

(in

we get

,• P

E

£ n
- /=!

'•m
^ i=i

1 — e~'7 (12)

n
i=i

1 - £ [e

\ " /i_ F £,-")]

ri/jn^ ^
1= 1 ' 1=1 /'7

Q.E.D.

We consider now the special case where the L,\s are identically distributed.
We write P, /(, and 2 instead of P,. /y, and and set

Sfc - + h ^
for /c 1,... ,n (S'o 0). Let us look at the expression

(13)

(lkk<^> >;>•

i=i
(14)

Now we substitute (5a) or (5b), with y, replaced by L,. Finally we take

expectations and use the Lemma to obtain

"Q"M /.*- 4 £<-1)' ("V"K/-"']
_/=0 /

(15a)
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and

/,"e-(x) ^£(-l); (") e[(.v-S^)+] • (15b)

Formula (15a) can also be found in Gerber (1988) where it has been derived
by probabilistic methods.

5. Application: The probability of ruin

We consider the classical model of the collective theory of risk, where

t/(r) u + cf-S(f), f > 0, (16)

is the surplus of an insurance company at time f. Here u is the initial surplus,
c the rate at which the premiums are received, and

S(f) T, + • • + (17)

the aggregate claims, a compound Poisson process; the claim amounts
y,, ^ are i.i.d. random variables with common distribution function P(.v),

mean //, and {/V(f)} is a Poisson process with parameter /. It is assumed

c > //<.
The probability of ruin, i/'(m), can be expressed by the convolution formula,

OC

V>(u) (1 -a/t) ^(ap)"[l (18)
«=1

where a A/c and

X

ß(x) - /[I-P(f)]df (19)

0

in agreement with the notation of section 4.

Thanks to formulas (15) we can now derive two alternative formulas for the

probability of ruin. First we replace 1 — g*"(u) in (18) by using (15a). After
simplification of the resulting double summation we get

/c!
fc=l

(20a)
^ k r

v(") (i - «A) X fr^ ^
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Alternatively we may substitute (15b) into (18). After simplification we obtain
the formula

1 - t/Mn) (1 - «/;)
k̂=0

(-«)*
k!

(« - SY ^ (20b)

In the special case where all claims are of size /(, ,S\. /c/t, this formula is

well known, sometimes by the name of Khintchine-Pollaczek, see Fe//er (1966,

formula (2.11) of XIV.3). The general expression (20 b) has been derived by
S/î/m (1988). Formula (20a) has been derived by Prub/iu (1965, formula (5.55)).

If we add (20a) and (20b) we obtain the identity

1 (1

fc=0

(S* - (21)

which is the starting point of Gerber (1988).

H. U. Gerber
Ecole des H.E.C
Université de Lausanne
1015 Lausanne
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Summary

The dual formulas for the convolution of uniform distributions can be obtained by a geometric
reasoning of the inclusion-exclusion type. The two formulas can be generalized to the convolution
of distributions with decreasing probability density functions. Finally, this result can be used to

get two series expressions for the probability of ruin.

Zusammenfassung

Zwei klassische Formeln für die Faltung von Gleichverteilungen können leicht auf geometrische
Weise (gemäss dem "Raketenprinzip", d.h. mit sukkzessiven Korrekturen) hergeleitet werden.
Die beiden Formeln werden verallgemeinert für den Fall der Faltung von Verteilungen mit
abnehmender Dichtefunktion. Dieses Resultat kann man wiederum benützen, um zwei duale

Reihenentwicklungen der Ruinwahrscheinlichkeit herzuleiten.

Résumé

On peut obtenir des formules duales pour la convolution de distributions uniformes en utilisant
une approche géométrique de type inclusion-exclusion. On généralise les deux formules au cas
de convolution de distributions dont la fonction de densité de probabilité est une fonction
décroissante. Finalement, on utilise ce dernier résultat pour développer des expressions duales

(sous forme de séries) pour la probabilité de ruine.
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