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ERWIN STRAUB, Zurich

Poissonmodelle versus Pascalmodelle oder
Die unheimliche Vielfalt der negativen Binomialverteilung

1. Vorbemerkung

Auf den ersten Blick mochte man gerne glauben, dass die Literatur der
Nichtlebenmathematik praktisch ausschliesslich auf der Poissonannahme
beruht. Aber ganz so einfach liegen die Dinge doch nicht, denn es sind,
und zwar zum Teil schon sehr friith, bedeutende “Non-Poisson”-Arbeiten
erschienen, die einen nachhaltigen Einfluss auf die spitere aktuarielle
Wissenschaft hatten: Das Ansteckungsmodell von Polya/Eggenberger [1], die
schwankenden Grundwahrscheinlichkeiten von Hans Ammeter [2] und Fritz
Bichsels technische Grundiagen der Motorfahrzeughaftpflichtversicherung [3].
Alle diese drei Arbeiten haben bekanntlich mit der negativen Binomial- oder,
wie sie, mindestens fiir ganzzahlige Parameter, manchmal auch genannt wird,
der Pascalverteilung zu tun.

Die vorliegende Arbeit ist gedacht als eine Art Anstiftung zum vermehrten
Gebrauch der Pascal- anstelle der Poissonverteilung, und um diese Anstiftung
glaubwiirdig zu machen, wurde versucht nachzuweisen, dass praktisch
jeder guten Eigenschaft der Poissonverteilung eine ebenbiirtige, wenn nicht
bessere Eigenschaft der negativen Binomialverteilung entspricht. Aber wie
zu erwarten, ist ein solcher Nachweis nicht vollstindig zu erbringen, die
Poissonverteilung hat eben — und dies ganz besonders in praktischer Hinsicht —
zwel, drei uniiberbietbare Qualitdten. Dafiir kann die Pascalverteilung wieder
andere Dinge ... die beiden sollen jedoch nicht gegeneinander ausgespielt, es
soll vielmehr auf ihre Komplementaritit und die Zusammenhidnge zwischen
den beiden hingewiesen werden.

Obwohl die folgenden Darlegungen keineswegs neuartig sind (siehe insbeson-
dere [4]), wurden nur wenig Literaturangaben gemacht und einige bekannte
Resultate wiedergegeben, damit das Ganze ohne zusitzliche Lektiire auch fiir
solche Leser einigermassen nachvollziehbar bleibt, die sich nicht tagtédglich
mit diesen Dingen befassen. Im iibrigen verdanke ich meinen Kollegen A.
Bloch, A. Dubey und H.U. Gerber manche wertvolle Anregung, die sie mir
in mehreren “Fusionsgespriachen” gegeben haben.
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2. Schlicht und einfach oder zu primitiv?
Fiir Poisson-verteiltes K gilt bekanntlich
E[K] = Var[K] = ,[K] =2  mit o[K] = E[(K — E[K])"]

Wer das nicht glaubt oder wieder einmal selber nachvollziechen mochte, der
berechne die drei ersten Ableitungen von

o8} 1k
¢ AT otk q
k(1) =InE[eX] = lnz P k= e —1)
k=0
und betrachte dieselbigen an der Stelle © = 0. (PS: *: = 7 steht fur “per

definitionem gleich™)

Nun ist diese Poissoneigenschaft, dass Erwartungswert und erste zwei Zen-
tralmomente alle gleich sind, zum einen sehr handlich und zum anderen aber
vielfach eine unrealistische Modellannahme. Insbesondere in der Riickversi-
cherung kann die Stichprobenvarianz der Schadenanzahl wesentlich grosser
ausfallen als das Stichprobenmittel, so dass sich die negative Binomialvertei-
lung eher anbietet, denn fiir diese gilt

wt+k—1 Yk
p; = Prob [K = k] :z( I )(1“!7) Pt
also
(r) =aln L =P
Peit) = 1 — pe®
und somit
Q1) =« be also E[K] =« 5 ;
1 — peT l—p
" pe’ p
) =0——— also Var[K]=a und
o) = ey (1 —p?
(1 i 4 1
0" (1) = aw somit  oy[K] = ocp( +P)

(I =pe)’ ‘ (1—p)’

das heisst E[K] < Var [K] < a,[K] wegen 0 < p < 1.

Fazit: Wenn immer in der Praxis die statistische Varianz von K signifikant
grosser ist als der Mittelwert, nehme man die Pascal- anstelle der Poissonver-
teilung — vorausgesetzt, die iibrigen Umstdnde erlauben dies — was allerdings
nicht immer der Fall ist, wie wir spiter noch sehen werden.
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A Verteilung der Anzahl der Exzesschiden

Sei K die Anzahl der Bruttoschiden und p, = Prob[K = k] sowie K
die Anzahl derjenigen Schidden, deren Betrag eine vorgegebene Prioritit r
tibersteigt, dann ist

Prob[K =h|K =k] = (D(l —V()'V )kt

worin ¥ (x) = Prob [X < x] die Verteilung des Einzelschadenbetrages.
Somit

PrOb = h] = Z pA( ) V(r))h V(r)‘\'—h

und

k
@z(t) =InEfe anpAZ ( )(1 — V(N ()"

h=0

Also

pr(t) = anpk(D’,;(T)

k=0

worin ®g(r) die Momentenerzeugende einer Bernoulli-Variablen B mit
Prob[B = 0] = V' (r) und Prob [B = 1] = 1 — V' (r), so dass wegen In®g(7) =
¢@g(t) auch fir die logmomentenerzeugende Funktion der Exzessschdden eine
Ineinanderschachtelung gilt, ndémlich

‘PR(T) = @k leg(7))

wie sie uns vom Gesamtschaden her vertraut ist.

Ist nun die Anzahl K der Bruttoschiaden Poisson-verteilt, so verifiziert man
mit eben dieser Identitit leicht, dass dasselbe auch fiir die Anzahl K der
Exzessschdaden (liber einer beliebigen Prioritat r) gilt:

Ist namlich K Poisson, also ¢ (1) = A(e" — 1) und

pg(t)=In(1+ 1=V () (e —1))
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so folgt

Pplt)=A01+ (1 =V () (=1 =1
= Al =V(r)- (e =1
was wieder einer Poissonverteilung entspricht, jetzt aber mit Parameter
A= A1 —=V(r)).
[st andererseits K negativ binomial verteilt, also
] —p
]~ pe?

@(t)=aoln
dann wird

P (1) = @ lpg(T))

Zu
1 —p
aln -
1—p(1+(1=V(r) (e —1))
oder
] —p l—=p

e =] = gl

Prt) = S =T me T e
mit

1=V

also wieder eine negative Binomialverteilung.

Zugegeben ist die Interpretation des neuen Paramters bei Poisson einfacher
als bei Pascal: Bei der ersten erhilt man /1 durch Multiplikation des alten
Parameters 4 mit der Uberschreitungswahrscheinlichkeit 1 — ¥ (r). Das ist
sofort einleuchtend. Aber wie soll man sich die Transformation

o 1-v)
TR

bei der negativen Binomialverteilung erkldren? (Die mathematisch zwingende,
aber nicht direkt einleuchtende Erkldrung ist diese: aus

E[R]=EK]1—V() =a—P—(1 = V(1) = a—2—
I—p 1—p

folgt obiger Wert fiir p).
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Im tbrigen sind auch bei der gewohnlichen Binomialverteilung die Exzess-
schiden wieder binomial verteilt: Sei

Py = ( )q‘N kpk, @i (1) = Nln(g + pe’),

k

; pe’

(1) =N s
Pk (1) et

. pqe’
prp(t) = N—"——,

5 (q + pet)?
@l(t) =N EL;M:EJ

(g + pet)*

mit g = 1 — p und E[K] > Var [K] > o4[K].
Dann ergibt sich

9r(0) =N1n (q+p(V (1) + (1= V(1)e') = NIn(g + pe")

mit p=p(l =¥ (r))und g=1—p.

4. Fusion zusammengesetzter Poisson- und Pascalverteilungen

Angenommen, zwei Versicherungsbestinde lassen sich in der iiblichen Art je
durch einen zusammengesetzten Poissonprozess modellieren, also wenn die
Zufallsvariablen

K;  die Schadenzahl,
XY den Einzelschadenbetrag und des Portefeuilles no. j
Z, den Gesamtschaden
fiir j = 1,2 bezeichnen, dann sei
o
Prob [K; = k] = ﬁe"‘f Poisson,
Prob [XY) < x] = V;(x) beliebig

und man erhilt wegen ¢, (1) = @ (¢ (7)) und der obigen Poissonannahme

(pZ_,- (t) = (ij ((PXM(T)) — ’;'j (e‘g_\-ul‘f) B 1) _ /,'j(qu () —1)
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worin ¢, (1) = E[e*""] die Momentenerzeugende von X', Sind die beiden
Portefeuilles unabhiingig, so gilt fiir die Zusammenlegung Z = Z, +Z, cinfach

?7(1) = @z (1) + @z, (1) = 2 (P, (1) = 1) + A(y(7) — 1)
PN A /) B
_("‘+/'2)(/‘.1+;.2¢'(”+/ i et 1)

was wieder die Logmomentenerzeugende einer zusammengesetzten Poisson-
verteilung ist, und zwar mit

= Poissonparameter A = 4, + 4,
= Summe der Poissonparameter der Teilportefeuilles

Apt+4z

- Einzelschadenverteilung V (x) = . Vi(x) + ,-_l’f/._j V,5(x)

= Mischung der Verteilungen von X'V und X,

Das 1st natiirlich eine sehr schone und dusserst praktische — manchmal sogar
die ausschlaggebende — Eigenschaft, und es steht zu befiirchten, dass die
Pascal- und die Binomialverteilung da nicht mehr mithalten kénnen.
Trotzdem scheint die Fusion zweier unabhingiger zusammengesetzter Pas-
calprozesse (mit demselben Parameter p) mindestens prima vista wieder ein
zusammengesetzter Pascalprozcss Zu sein.

Sei namlich Prob [K; = k] = ( ””‘"1)(1 —p) s p* und Prob [XV) < x] = Vi(x)
beliebig wie oben, also P, () =

l=p

=y = ¢ G =o; |

so folgt fiir unabhingige Z,, Z,

¢z(t) = ln — 1 +oz7lr1 et
” 1 —po,(z I —po, (1)
l—p
= (o; + ;) 1
‘ 1 —po(
mit
11 12

I —podlr) == _17(151(1'))ﬁ (1 = poy(r)) 1+

Es ist also | — p¢(r) per definitionem ein gewichtetes geometrisches Mittel
der Funktionen 1 — p¢,(r) und 1 — p¢,(r) anstelle des obigen gewichteten
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arithmetischen Mittels der Verteilungen V(x) und F,(x) - wobei der
exakte Beweis dafiir, dass die so definierte Funktion ¢(t) tatsidchlich eine
Momentenerzeugende ist, allerdings noch zu erbringen wiire.

Man befindet sich im iibrigen hiermit unverhofft auf dem Gebiet der
elementaren Mittelwerte, welches seinerzeit von den beiden “Altmeistern™
Jecklin und Eisenring [5] beschrieben wurde!

Statt einen solchen Beweis anzutreten zu versuchen, kann man auch folgende
Beobachtung machen:

Seien wieder K die Schadenanzahl und X', X}, XV, ... die Einzelschaden-
betrige des Portefeuilles no. j, j =1, 2, wobei

Prob [K; = k] = p{’
und

X iid. mit Prob [XY) < x] = V;(x)
und somit

Py, (1) = (PK_,. (‘Pxijl (1)).

o

Fiir die Fusion der beiden als unabhiangig vorausgesetzten Portefeuilles gilt

K
Z=> X, wobei X, iid.
k=1

(also paarweise unabhingig und nach dem selben Gesetz verteilt) gemaiss
einer Verteilung Prob [X < x] = V(x), dic von Fall zu Fall (das heisst in
Abhidngigkeit der p‘k’)) zu bestimmen ist. Allerdings wurde der Sachverhalt
“X, = 11.d.” bis anhin nur fir den Poissenfall konkret nachgewiesen!

Offensichtlich ist allgemein X = Z ‘ K =1 also

3 8l
- P',Upé{} Vi(x) + pé,”l)',") Vy(x)
= 0 2 TNE

pg 'pé’-&-pé)p‘[’

Vi(x)
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nach der Bayes'schen Regel und ebenso fiir die Momentenerzeugende

Cb:d’z;x:l

() _(2) (h (2)
Py Py O (T)+p p du()
(p(.[)_ | 0 0 p) 0 l 2

Py Py +Po 1”1

Es interessieren uns die folgenden drei parametrischen Fille:

A) Poisson LE. p}f’ =

21k
_j_ 4j
k!
B) Binomial Le. p}\,j) = ( )Pl 1 —PJ,) B
insbesondere wenn p, = p, = p

A .+ k—1 :
C) Pascal  ie. p!' = (11 +k )(1 —p;)% - pl

insbesondere wenn p, = p, = p,

A) Poisson  ¢(t) = ’;—.'¢>1(T) n %(bz(r) mit A = A, + 4,
N N, :
B) Binomial  ¢(1) = K} () + -r-\[;(bz(r) mit N =N, + N,

C) Pascal Pir) = ;d),(r) + a—;d)z(r) mit o = o; + o,
fiir beliebige ¢, und ¢,.

Die Uberraschung kommt erst, wenn man die Summe zweier Einzelschiaden
aus dem Fusionsportefeuille betrachtet. Es ist allgemein wieder nach Bayes:

(2 (2 .
5 Py py 3+ pi ' p” ¢¢a+170 2055
ZIK=2 = (. (2 (1 7)_L (1)
P> Py TP, P Po P':

und somit fir A), B) und C) letztere wenn p, = p, = p:

Im folgenden sind fur den Fall B) die Resultate jeweils ohne Beweis angegeben.



A) Poisson

12 . iz
T+ 4 Aab by + F 3 3
D

PO /e

o |
AL
3 A+ F

‘f"\'] £ (r) =

wie nicht anders erwartet.
B) Binomial

mit N=N,+N,

C) Pascal

ap(ap+1) xp(ap+1) 42

é (0) - ¢%+“1a2¢1¢2+ S e
X;+X T - { 4 1
2 1](1£+1) _I_alaz + 27 { §+ )

oy + 05¢,)" + ot b7 + oy 3

oo+ 1)
_ d)z 4 9‘9‘1(!";12 + a3 — afdpt — 20,05, Py — “g(f)%
(o + 1)
oo .
=0+ GG ) mit a=w e

Dies bedecutet aber, dass in den Fillen B) und C) die Einzelschaden des
fusionierten Portefeuilles im allgemeinen nicht mehr i.id. sind, denn sonst
miisste ja

2 2
¢,\'1+X2 = f/szu(:z = ¢ = ¢Z1K:1

gelten, was offensichtlich nicht stimmt sobald ¢, # ¢,.

Als einfachstes Illustrationsbeispiel zur Aufklidrung dieser “Uberraschung”
nehme man die Fusion zweier zusammengesetzter Bernoulli-Variablen, lies
zweier Einzelrisiken mit verschieden verteiltem Schadenbetrag, also

bz, =4+ pP,. ¢, =4a+pp,
b, = (q+pd)a+pd) = a’gp(d, + ¢5) + p b, b,

1 )
=py+ PP +pr (d’z - Z((b] - (157_)“)
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Ist hierin z. B. X'V degeneriert verteilt bei x und X® bei y, so tritt die
— in diesem Fall sogar totale — Abhidngigkeit zweier Schiden X, und X,
des fusionierten Portefeuilles sofort zutage: Ist namlich X, = x dann muss
notgedrungen X, = y sein und umgekehrt.

A propos mehr zur Abhidngigkeit der Einzelschaden im fusionierten Porte-
feuille siche Abschnitt 7.

S Pascal = zusammengesetzt Poisson und/oder Gamma u.a.m.

Natirlich ist die Poissonverteilung in einem engeren Sinne stets selbst eine
zusammengesetzte Poissonverteilung, man nehme nur als Einzelschaden X
die bei x = 1 degenerierte oder eine Bernoullivariable. Die Pascalverteilung
ist ihrerseits, je nachdem wie man es anschaut, zugleich auch eine in einem
weiteren Sinne zusammengesetzte Poisson- und zudem eine zusammengesetzte
Gammaverteilung. Obwohl auch dies 1n der Literatur verschiedentlich
beschriecben wurde — fiir zusammengesetzt Poisson siche z. B. Kupper [4],
fir zusammengesetzt Gamma Bichsel [3] -, hier eine kurze Skizze dieser
Zusammenhinge:

Sei K Poisson- und X logarithmisch verteilt, also

] n
Prob[X:n]:——-p— fir n=12,...
In(l—p) n
bzw.
In(1 — pe)
(Y= —
ext) =l a )

so dass fluir den Gesamtschaden Z resultiert

, [ In(1 — pe*
Qﬂz(f)mﬁﬂk(ﬁox(f)):ﬂ(H-l)
/. r
::m-(ln(l—p)mln(l—pe )

also eine negative Binomialverteilung mit « = _TH-UA“_[’) und demselben p.
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[st andererseits zur Abwechslung einmal K kontinuierlich und X diskret, und
zwar

1

K ~ Gamma also @g(r) =7In
| —ut

und

X ~ Poisson mit /=1 also @y(r) =e" — 1
und somit

! - 1
Aty )=»n—— :~ulnAL‘
Pz ) ) 1 — (et — 1) i | li#er

also auch wieder Pascal.

Es ist eben dies die erstaunliche Vielseitigkeit der negativen Binomialvertei-
lung, dass man mit ithrer Hilfe gleichzeitig Schadenansteckung (auf die hier
allerdings nicht nidher eingegangen wird), variierende Grundwahrscheinlich-
keiten und Kollektivschadensituationen modellieren kann. (Viel mehr dariiber
findet man in [4].)

Als Faltungspotenz der geometrischen Verteilung kann man die negative Bino-
mialverteilung {iberdies auch als das diskrete Pendant der Gammaverteilung
auffassen.

Und schliesslich ist noch zu bemerken, dass alle drei Binomial-, Poisson- und
Pascalverteilungen einer Rekursion der Form

b
Pr=\0% 1 )P

oeniigen, was bekanntlich flir die numerische Berechnung der Gesamtscha-
=) f =
denverteilung niitzlich ist.

6. Ruinwahrscheinlichkeiten

Nach Dufresne/Gerber [8] gehorcht die Ruinwahrscheinlichkeit fir zusam-
mengesetzt Poisson verteilte Schadenlasten einer zusammengesetzten geome-
trischen Verteilung, was eine spezielle zusammengesetzte Pascalverteilung ist.
Dieses sehr schone Resultat, das sich gemiss [8] schon 1974 bei Beekman
und noch viel friher, ndamlich bereits 1952 bei Dubourdieu, findet, diirfte auch
heute noch viel zuwenig bekannt sein und noch viel weniger zur Losung
praktischer Aufgaben angewendet werden.
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Was, wenn man hier die Poissonannahme fallen lasst?

Diese Frage wurde vom Jubilar selbst fiir den Fall negativ binomial statt Pois-
son verteilter Anzahl beantwortet [9]: Die zu den reinen Poissonverteilungen
gehorenden Ruinwahrscheinlichkeiten sind einfach mit der Strukturfunktion
— im interessierenden Fall einer Gammaverteilung - zu gewichten, um die zur
gemischten Poisson (= Pascal) verteilten Anzahl gehérende Ruinwahrschein-
lichkeit zu erhalten.

7. Durch Fusion induzierte Abhingigkeit der Einzelschiden

Nach Abschnitt 4 ist

5

Ox,xy k=2(T) = (1) 4+ 7(9, (1) — ¢, ()’

wobel

_a Cr) = o
() = 0 (,bi(f)+ ° d’z(f) qbZ;h:l(r)

= =

mit o = 4 wenn Poisson, ¢ = N wenn Binomial, ¢ = « wenn Pascal

NN,
—m Binomial
und 3y =4 0 wenn Poisson
4 21% Pascal
a?(a 4+ 1)

Damit Idsst sich die Abhidngigkeit zweier Schidden beschreiben unter der
Bedingung, dass auf dem fusionierten Portefeuille genau zwei Schiden
passieren: |K = 2. Die zweite Ableitung nach t an der Stelle © = 0 enthiillt,
dass

5

Cov ['Xl!X2 K = 2] — 7,(}5[1\/(1)] _ E[Xv('l)])

wobel y = negativ wenn die Schadenanzahlen (positiv) binomial und =
positiv wenn sie negativ binomial verteilt sind!

Eine damit entfernt verwandte Formel findet sich in [10] auf Seite 321, Beispiel
12: Eine Urne enthalte N| weisse und N, schwarze Kugeln, und es werden
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sukzessive Kugeln entnommen, und zwar, ohne diese zuriick in die Urne zu
legen. Definiere

{ I falls der i-te Zug eine weisse Kugel
110 sonst.
Dann gilt
NN, .
Cov[X.X,]=——212— t N=N, +N,.
ov [X, _,] NIN =) mi N5

Wir interessieren uns im folgenden auch ein Stuck weit fiir die Abhidngigkeit
zwischen zwei Schiden, gegeben dass deren mehr als zwei auf dem fusionierten
Portefeuille auftreten sowie fiir die unbedingte gemeinsame Verteilung.

In Abschnitt 4 war wie gesagt

0

0 0 .
(b(f)zgp(:] = (—;(f)l(r)—}—fqﬁz(t) mit @ =0, +0;

=

und 0; = /Zj, Nj bzw. % falls kj ~ Poisson, Binomial bzw. Pascal.
Betrachten wir als nidchstes die gemeinsame Momentenerzeugende von X,
und X, gegeben dass K = 2, also

(f)(t\’[‘/\’:”,\r'gz(flﬁfz) = F [ X +1X, 1 K — 2]

=3-[ 1,06 (c)(cy)
p

2

1 |
+ 2P 3 (010 9a(r) + a2 by (1)

- p},”p‘f’cbz(r,)qﬁ-g(rg)}

b «
mit p, = pﬂ”p‘o’ -+ p‘lnp(l b pé,”p'q Oder wenn wir 7, = 0 setzen

(2
Pzd’x, U\":?( = P‘v )P:) )(f’
1
+ p(]l)p(lﬂ; (qb] (r)) + Cbz(fl)) + p(()l)pv )Cbﬁ
bzw. wenn wir 7, = 0 setzen
(1. (2)
ﬂﬁ\,m v( v) =i Po (/f’ Tz)

. g ptll)p{l ) ((/72(71) “ Cb1(fz)) 2% PE)I)PEE](I)}(T:)
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was natiirlich dieselbe Funktion jetzt von t, ist wie vorher von 7, kurz,
wir konnen fiir einen beliebigen Schaden X von insgesamt deren zwel im
fusionierten Portefeuille schreiben

qb,\’u\‘:g(T =Tt (/ (T )+7T3(fb

mit
(2 (2
P> p() + 7p| P,
Ty =
1%5]
und
L (1) (2 ( (2
3P P +P() P>
7’[7 —

|25}

und man verifiziert in allen drei1 Fillen, dass

das heisst, dass

¢Ah1 "b\lk’

Wenn wir noch den Fall K = 3 ansehen, dann ist fur die gemeinsame bedingte
Verteilung oder vielmehr Momentenerzeugende von (X, X, X3) [K =3

P3P (x| xyx3) K=3{T1> T2 T3) 1= E {erlxmlxﬁuwa = 3]
=p'p o, d> b,
Lol (@016 + 91026, + $2b,6)
+ *,”p, 3(B1026: + $26162 + brh20)
+Pn Px)(b b5,

mit der Konvention, dass die Argumente t,7,,7y stets in der natiirlichen
Reihenfolge auftreten; es bedeute also ¢;¢; ¢, dasselbe wie ¢,(t))¢; (1,) P (15).
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Man findet dann fir einen beliebigen Schaden X von den gegebenen
X, und X; durch Nullsetzen von zweien der drei t-Argumente, dass

Gy k=aT) =1 (T) + y5(T)

jetzt mit
() 2 (1) (2 (1 _(2)
Py py + 208 p + 100
=
P3
und
Ty = 1 T TC]

und das bedeutet fiir Binomial

_1(ll___(l;ﬂl__+ ’\1”‘1_”N _+_ V’\v(/\z 1)

&= NIN—T)(N— N
3

bzw. fiir negativ Binomial

o 1 | ar+1
+11| ql+)0(1+*1112{‘§+’ a,
= Aot D +2) =&
6

11(11 +|6)(11+2)

~

dre1 X,

und flr Poisson wissen wir schon zum voraus, dass m, = 4, /4 herauskommen

muss.

Betrachten wir auch noch die gemeinsame Verteilung zweier beliebiger
Einzelschaden (z. B. von X| und X,) gegeben K = 3, so findet man leicht, dass

5 1
(,bm ¥ | k=3(T15 T2) = ¢, — (p;”pé,“) + 3P(’I)P(| ,) = ¢, Cbl

l

+ ¢y py— ( pipl +§P‘|”p(f’) + ¢,

1

+ acby— (pé‘)p§”+3p‘.”r}§> + ¢y,

£ gy ( 0o |l p:) T 6,0,

ll) (

P>
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also

(ﬁlxg..\‘z) 1k=3{T1, 7)) = ‘/’(.\',u\':n k=271, T2)

wie erhofft.
Als nichstes verifiziert man, dass

qu X2.X3.X4) | K= (71,72, 73,0)

(1) (2) 1 (1) (2)
P4 Py T 3P3 Dy
PP,
Py
(1 (2) (1 (2)
4P1 + 6p P>
+ ) (D), + P D20, + DD D5)
4
1 (1) (2) 1 (1)
gP2 P2 + 3Py i
+ P (¢1¢2¢2+¢2¢’1¢’2+¢2¢2¢1)
4
(hy (2) () _(2)
4P1 Py + Dy Py
+ Py 05
Pa

und damit falls Kj ~ Poisson

4
(1) (2) 1 (1) A iil 3 (n
Ps Py +4P% pl ~24+46 2_’-]_[’1 (2)
= = = e Po
p4 .)— ~ p3
@) M2 14 4 2
{ 2 2213 lA_E_J_ 12 1 1 2)
4Pz P +6P” 155} __46/“2_{_622 _’»%"~2_1P(2)P(1
= 4 - T3 T 7
p4 -:_4 A 3 p:;

bzw. falls KJ- ~ Pascal

pgl)p};) + lp&”p(lz B 2‘—411(051 + Doy + 2) (et +3) + %éal(al + D(2; + 2),
p - (o 1) (o4-2) (2+3)
4 24
_al e +2)  pyey
oo + 1) (= + 2) D3
(1) 1 (1) _(2) 11 1 1
a5 p1 Y ¢ &Py Ps a2 (o + Doy + 2oy + g 500 () + D)5a5(0; + 1)
= alz41) (2+2) (x+3)
Dy (24 J(;— ) (2+

(o + Doy Ip‘a”p(l)
2@+ DE+2) 3 p




Also 1st

Dix, X200 Kk=4{T1 T 13,00 = x| x, x4 k=3 (11 T2 T3)

und somit insbesondere auch

Py k=4(T) :(/’,\’1&’:3“) = ‘f’xm_*( f/?\ k=i (1) = (1)

unabhingig von der Anzahl K der Schiden auf dem fusionierten Portefeuille.
Entsprechend ist auch die gemeinsame Verteilung von zwei oder mehreren
Schiden, also z. B.
() (2) (h (2 M, @
Py P Py P P
Qb{,\’lj('a)(rll) . ¢y + Lo (b1hy + Prh)) : —dy,
’ P> 2p, P

== ¢(T1)¢(T2) + ?(¢1(T1) - (/52“1)) (¢1(T2) - sz('fz))

jetzt, wie gesagt, unabhingig von der Anzahl K im Gegensatz zu Abschnitt
4, wo K = 2 Bedingung war.

Anstelle dieser etwas aufwendigen Nachrechnungen fiir k = 1,2,3,... (wobei
der Vollstandigkeit halber auch noch ein Induktionsbeweis zu fuhren wire)
kann man fir binomial und mit demselben p verteilte K, und K, direkt
kombinatorisch tiberlegen, dass

P(t) = by k= (1) = —(f) (,b2 fir k=1,2...

indem man sich unter X den ersten Schaden vorstellt, der auf dem fusionierten
Portefeuille passiert und unter N, bzw. N, die Anzahl der giinstigen und unter
N die Anzahl der moglichen Fille. Analog fiir die zwei ersten Schaden:

N,(N, = 1) NN,

¢(.t‘,,,x"3)i1<:k(flsfz) = Wdﬂ(ﬁ)%(%) + mfbl(fl)qbz(fg)
NN, Ny(N,—1)
N( . l)d) ( )¢1(Tz)+ N(N—— ]) ¢2(T2)¢)2(T2)
= P(1)d(x
N N7
- m (¢1(T1) - (bz(fl)> (‘/’1(1'2) - sz(fz))

Die entsprechenden Resultate fiir Poisson-verteiltes K sollten sich dann durch
den {iblichen Grenziibergang ergeben, wihrenddem man fiir Pascal-verteilte
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Anzahlen N, N, und N durch —u,, —x, und —x ersetzen muss. Eine saubere
Herleitung von

P x k=k(7) und (f)(xl.xgnkzk“h T,)

bedingt, dass man die allgemeinen kombinatorischen Formeln

2 . .
byixes(®) = X ProbIK, =il K =K 1,01+ i}
i=0

sowie

ﬁbm X, ) k=k (T, T2)

b

_ZProb llK—k]{liilk_;)ﬁ ()P (15)

(k — i

+ ;Ek_ll))qg’ﬂfl)(bz(fz)
ik —1)

o e k(k—1) (/>7 (f’
(k— i)k —i— 1}

k(k — 1) ¢2(Tl)¢2(fz)}

je fir Binomial-, Poisson- und Pascal-verteilte Anzahlen explizit durchrechnet.

8. Schlussbemerkungen

Die beabsichtigte Anstiftung zum vermehrten Gebrauch von zusammenge-
setzten Non-Poisson-Modellen ist also nur teilweise gegliickt, indem sich un-
ser Interesse mehr und mehr von der urspriinglich praxisorientierten Frage
nach realistischeren Modellen abgewendet und sich auf das eher akademische
Phidnomen der durch Fusion “induzierten™ Abhingigkeit gerichtet hat.

Fiir ein besseres Verstandnis dieser so entstandenen Abhéangigkeit — die intuitiv

nach wie vor unbegreiflich erscheint — wire allerdings unter anderem noch
konkret nachzuweisen, dass z. B. eine durch

2 1’!

L —pp(r) = (1 — pp, (1)) 172 - (1 — ph,(1)) 1 ™22



9]
-
[9'e]

definierte Funktion ¢(r) niemals eine Momentenerzeugende, das heisst,
die Laplace-Transformierte einer Verteilungsfunktion sein kann, ausser im
trivialen Fall, wo ¢, (t) = ¢,(1).

Meines Wissens ist dieser Abhangigkeit der Einzelschdden in einem fusionier-
ten Portefeuille — und als eine Fusion verschiedener Portefeuilles kann man
schliesslich jedes Portefeuille auffassen — in der aktuariellen Literatur nur we-
nig bis keine Aufmerksamkeit geschenkt worden, es sei denn, der Jubilar habe
diese Zusammenhidnge schon in [11] mindestens indirekt als Charakterisierung
der Poissenverteilung aufgezeigt.

Erwin Straub
Schweizer Riick
Postfach

8022 Ziirich
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Zusammenfassung

Es werden Gemeinsamkeiten und Unterschiede der zusammengesetzten Poisson- und der
zusammengeselzten negativen Binomialverteilung diskutiert. Fiir den Theoretiker von Interesse
ist die durch Fusion zweier Portefeuilles induzierte Abhingigkeit der Einzelschadenbetriige, wenn
die Schadenanzahl nicht Poisson-vertellt ist.

Résumeé

L'auteur releve certaines ressemblances et dissemblances entre les distributions de Poisson et
binomiale négative composées. Le théoricien trouvera un intérét dans I'¢tude du type de
dependance entre les montants des sinistres lors d'uns fusion de deux portefeuilles, lorsque
le nombre des sinistres n'est pas distribué selon une loi de Poisson.

Summary

The compound Poisson and the compound negative binomial distributions are compared with
one another within different contexts. Of a certain theoretical interest is a stochastic dependency
among individual claim amounts due to the merger of two portfolios with a non-Poisson-
distributed number of claims.
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