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Erwin Straub, Zürich

Poissonmodelle versus Pascalmodelle oder
Die unheimliche Vielfalt der negativen Binomialverteilung

1. Vorbemerkung

Auf den ersten Blick möchte man gerne glauben, dass die Literatur der
Nichtlebenmathematik praktisch ausschliesslich auf der Poissonannahme
beruht. Aber ganz so einfach liegen die Dinge doch nicht, denn es sind,
und zwar zum Teil schon sehr früh, bedeutende "Non-Poisson"-Arbeiten
erschienen, die einen nachhaltigen Einfluss auf die spätere aktuarielle
Wissenschaft hatten: Das Ansteckungsmodell von Po/ya/Eggenberger [1], die
schwankenden Grundwahrscheinlichkeiten von Hans ztwmefer [2] und Fr/fr
Bic/ise/s technische Grundlagen der Motorfahrzeughaftpflichtversicherung [3],
Alle diese drei Arbeiten haben bekanntlich mit der negativen Binomial- oder,
wie sie, mindestens für ganzzahlige Parameter, manchmal auch genannt wird,
der Pascalverteilung zu tun.
Die vorliegende Arbeit ist gedacht als eine Art Anstiftung zum vermehrten
Gebrauch der Pascal- anstelle der Poissonverteilung, und um diese Anstiftung
glaubwürdig zu machen, wurde versucht nachzuweisen, dass praktisch
jeder guten Eigenschaft der Poissonverteilung eine ebenbürtige, wenn nicht
bessere Eigenschaft der negativen Binomialverteilung entspricht. Aber wie

zu erwarten, ist ein solcher Nachweis nicht vollständig zu erbringen, die

Poissonverteilung hat eben - und dies ganz besonders in praktischer Hinsicht -
zwei, drei unüberbietbare Qualitäten. Dafür kann die Pascalverteilung wieder
andere Dinge die beiden sollen jedoch nicht gegeneinander ausgespielt, es

soll vielmehr auf ihre Komplementarität und die Zusammenhänge zwischen
den beiden hingewiesen werden.

Obwohl die folgenden Darlegungen keineswegs neuartig sind (siehe insbeson-
dere [4]). wurden nur wenig Literaturangaben gemacht und einige bekannte
Resultate wiedergegeben, damit das Ganze ohne zusätzliche Lektüre auch für
solche Leser einigermassen nachvollziehbar bleibt, die sich nicht tagtäglich
mit diesen Dingen befassen. Im übrigen verdanke ich meinen Kollegen A.
Bloch, A. Dubey und H. U. Gerber manche wertvolle Anregung, die sie mir
in mehreren "Fusionsgesprächen" gegeben haben.

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 2/1989
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2. Schlicht und einfach oder /.u primitiv?

Für Poisson-verteiltes K" gilt bekanntlich

£[K] Var [K] aJK] / mit a^K] := E[(K - £[K])~]

Wer das nicht glaubt oder wieder einmal selber nachvollziehen möchte, der
berechne die drei ersten Ableitungen von

<Px(T) := lnE[c^] lnX^e"V* ^ ~ D
Jt=0

und betrachte dieselbigen an der Stelle i 0. (PS: " steht für "per
definitionem gleich")
Nun ist diese Poissoneigenschaft, dass Erwartungswert und erste zwei Zen-
tralmomente alle gleich sind, zum einen sehr handlich und zum anderen aber
vielfach eine unrealistische Modellannahme. Insbesondere in der Rückversi-
cherung kann die Stichprobenvarianz der Schadenanzahl wesentlich grösser
ausfallen als das Stichprobenmittel, so dass sich die negative Binomialvertei-
lung eher anbietet, denn für diese gilt

p,t Prob [K fc] :=
*

*)(l-p)V

also

o>k(t) a In
1 — pe"

und somit

<p'(r) z——— also £[-K] a———,
1 — pe* 1 — p

<P"U) t also Var [K] a
^ und

(1-pe'l- (1-p)-
pe*(l+pe*) rt-i P(l+P)

cp (r) x — somit a,[A|=o! r-
(1 - pe*)' (1 -P)-

das heisst £[£] < Var [K] < a,[X] wegen 0 < p < 1.

Fazit: Wenn immer in der Praxis die statistische Varianz von Â' signifikant
grösser ist als der Mittelwert, nehme man die Pascal- anstelle der Poissonver-

teilung - vorausgesetzt, die übrigen Umstände erlauben dies was allerdings
nicht immer der Fall ist, wie wir später noch sehen werden.
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3. Verteilung der Anzahl der Exzesschäden

Sei A die Anzahl der Bruttoschäden und Prob [A k] sowie Ä
die Anzahl derjenigen Schäden, deren Betrag eine vorgegebene Priorität r
übersteigt, dann ist

worin K (x) Prob [Ä' < x] die Verteilung des Einzelschadenbetrages.
Somit

worin <hg(r) die Momentenerzeugende einer Bernoulli-Variablen ß mit
Prob [ß 0] E (r) und Prob [ß 1] 1 — K (r), so dass wegen ln<t>g(r)
<Pg(r) auch für die logmomentenerzeugende Funktion der Exzessschäden eine

Ineinanderschachtelung gilt, nämlich

wie sie uns vom Gesamtschaden her vertraut ist.

Ist nun die Anzahl A der Bruttoschäden Poisson-verteilt, so verifiziert man
mit eben dieser Identität leicht, dass dasselbe auch für die Anzahl Â der
Exzessschäden (über einer beliebigen Priorität r) gilt:
Ist nämlich A Poisson, also <p^(r) /.(<?" — 1) und

und

Also

'Pß(t) ln(l + (1 - I "(r)) • (<?' - 1))
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so folgt

cpp(r) /(I +(l - !/(>•)) (£ — 1) — 1)

was wieder einer Poissonverteilung entspricht, jetzt aber mit Parameter
A(i - t»),

Ist andererseits X negativ binomial verteilt, also

<^.(T) aln
' ^
— pe"

dann wird

ZU

1 -pa In
1 -p(l +(1 - K(r)) (e< - 1))

oder

</3 r (t a In — 7 In —* 1 — ;» !'(/•) -p(l - f ' (r))c- 1 -pF
mit

1 - F(r)
p p •

1 -pK(r)
also wieder eine negative Binomialverteilung.
Zugegeben ist die Interpretation des neuen Paramters bei Poisson einfacher
als bei Pascal: Bei der ersten erhält man / durch Multiplikation des alten
Parameters / mit der Überschreitungswahrscheinlichkeit 1 — F(r). Das ist
sofort einleuchtend. Aber wie soll man sich die Transformation

1-f»p —> p p- ——
1 -pf (r)

bei der negativen Binomialverteilung erklären (Die mathematisch zwingende,
aber nicht direkt einleuchtende Erklärung ist diese: aus

£[X] £ [X ] 1 - h») 7- — 1 - K(r)) 7:
^

— p 1 — p

folgt obiger Wert für p).
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Im übrigen sind auch bei der gewöhnlichen Binomialverteilung die Exzess-

Schäden wieder binomial verteilt: Sei

mit p p(l — K(/-)) und I — p.

4. Fusion zusammengesetzter Poisson- und Pascalverteilungen

Angenommen, zwei Versicherungsbestände lassen sich in der üblichen Art je
durch einen zusammengesetzten Poissonprozess modellieren, also wenn die
Zufallsvariablen

Kj die Schadenzahl,

V" den Einzelschadenbetrag und des Portefeuilles no. y

Z- den Gesamtschaden

für y 1,2 bezeichnen, dann sei

_Prob [Ky /c] — ttC V Poisson,
/c.

Prob[A"'-'' < a] 1 j(a) beliebig

und man erhält wegen cp^lt) </g (<Pv U und der obigen Poissonannahme

mit c/ 1 — p und E[K] > Var [K] > 2,[A'].
Dann ergibt sich

(r V In fq + p( F (r) + 1 — K (r) j c' TV ln(i/ + pe~

G - 1 j G (</>_,-(t) - 1)
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worin := E[e'*'""] die Momentenerzeugende von X'-". Sind die beiden
Portefeuilles unabhängig, so gilt für die Zusammenlegung Z Z- /. einfach

<Px (T <P/, D) + A,(0,(T) - 1) + /o(02(T) - 1)

(/.| + Zo) f -7—(T) +
/[ + Z-2

was wieder die Logmomentenerzeugende einer zusammengesetzten Poisson-

Verteilung ist, und zwar mit

Poissonparameter z /., + /,
Summe der Poissonparameter der Teilportefeuilles

Einzelschadenverteilung F (x) 7^777 E, (x) + ^ lAl.v)

Mischung der Verteilungen von V" und V'-'.

Das ist natürlich eine sehr schöne und äusserst praktische - manchmal sogar
die ausschlaggebende - Eigenschaft, und es steht zu befürchten, dass die
Pascal- und die Binomialverteilung da nicht mehr mithalten können.
Trotzdem scheint die Fusion zweier unabhängiger zusammengesetzter Pas-

calprozesse (mit demselben Parameter p) mindestens prima vista wieder ein

zusammengesetzter Pascalprozess zu sein.
Sei nämlich Prob [K^ fc] ("' ^ '

1 — p)Tp^ und Prob [V'-" < .vj IZ(.v)

beliebig wie oben, also (t In das heisst nun

<Pz,to <Pk,(<PxU>(*)) In

so folgt für unabhängige Zj.Z^

^(r) o<i In - -7—- + In
' ^

l-p0,(r) " l-p</Mr)

(a, + «3) In —^
1 -P^(T)

mit

»1 *2
1 — P0(T) := (1 — p0,(t))*i+*2 (1 — p02(t))

Es ist also 1 — p</>(r) per definitionem ein gewichtetes geometrisches Mittel
der Funktionen 1 — p</>|(r) und I — p</Mr) anstelle des obigen gewichteten
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arithmetischen Mittels der Verteilungen F, (a) und fb(x) wobei der
exakte Beweis dafür, dass die so definierte Funktion c/)(t tatsächlich eine

Momentenerzeugende ist, allerdings noch zu erbringen wäre.

Man befindet sich im übrigen hiermit unverhofft auf dem Gebiet der
elementaren Mittelwerte, welches seinerzeit von den beiden "Altmeistern"
JecA:/in und fhse/irhig [5] beschrieben wurde!
Statt einen solchen Beweis anzutreten zu versuchen, kann man auch folgende
Beobachtung machen:
Seien wieder /C- die Schadenanzahl und 2fj", A'V', Ay",... die Einzelschaden-
betrage des Portefeuilles no. /, / 1. 2, wobei

Prob[K,.

und

A|r" i.i.d. mit Piob[À''^' < x] Ky(x)

und somit

<Pz,U) (<Pa-OI (T)).

Für die Fusion der beiden als unabhängig vorausgesetzten Portefeuilles gilt

À' K| + Kb und Z Z, + Zi

mit

Z X wobei Aj. i.i.d.
£=1

(also paarweise unabhängig und nach dem selben Gesetz verteilt) gemäss
einer Verteilung Prob [A < x] l '(.v), die von Fall zu Fall (das heisst in
Abhängigkeit der pj/') zu bestimmen ist. Allerdings wurde der Sachverhalt
"A,,. i.i.d." bis anhin nur für den Poissenfall konkret nachgewiesen
Offensichtlich ist allgemein A Z | K 1 also

KM _
Pi"Po'^W + PÔ'V,"^W

„mj'i I „(»/I
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nach der Bayes'schen Regel und ebenso für die Momentenerzeugende
0 0/ K=1

^
p'i"p»'</>i(Ü +/'o Vi"V;(T)

pW +

Es interessieren uns die folgenden drei parametrischen Fälle:

/lA

A) Poi'sswi i.e. p!:" -~-e "<
" k!

B) ßinornia/* i.e. pj/' Q' ^ p) 1 - p,- Ü' ^

insbesondere wenn p, p, p

C) Pasca/ i.e. p[/'
'

jü p, Ü • pj

insbesondere wenn p, p-, p,

und man erhält ohne grosse Überraschung und für den Fall, dass p, p, p

1 9 i •

A) Po/sson r/>(r -p-c/j, (t H—~c/>^(r mit / /, + A
A A

N /V
B) ß/nomia/ r/>(r) c/>, (t) + -^ü/>,(r) mit N ,'V, + As

a, a 9
C) Pasc«/ </>(r) —0, (r H—mit a a, +x,

a a

für beliebige 0, und </>-,.

Die Überraschung kommt erst, wenn man die Summe zweier Einzelschäden
aus dem Fusionsportefeuille betrachtet. Es ist allgemein wieder nach Bayes:

(1) (2) ,2 (1) (2) / (1) (2) »2

^ P; Po 0T + Pl Pl ^2 + P{> P: 02
Z|K=2 (1) (2) (1) (2) (t) (2)

P: Po + Pi Pi +Po P2

und somit für A). B) und C) letztere wenn p, p, p:

Im folgenden sind für den Fall B) die Resultate jeweils ohne Beweis angegeben.
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A) Poisson

y2 ;2
-=f<jf>ï + A

i >-2 <^>
I 02 + ~£0? i

</>.Y, t-AS^) Ö 0"^—- 0~(Ü

y + + y

wie nicht anders erwartet.
B) B/nomia/

0*,+*,('» " j^TTj^i " 02>~ mit /V N, + JVj

C) Pasc«/

+ + «,«20102 +

- (^l'Ai + *20:)" + + 01 + *202

a(a + 1)

,2 «+0i + *+0s - «101 - 2« !«,(/)[(/>2 -'' «2(a+1)

0' 3" |)^i ~ 02^ mit a «, + a.

Dies bedeutet aber, dass in den Fällen B) und C) die Einzelschäden des

fusionierten Portefeuilles im allgemeinen nicht mehr i.i.d. sind, denn sonst
müsste ja

+*2 ~ 0z *=: 0" 0z K=I

gelten, was offensichtlich nicht stimmt sobald </), + 0,.
Als einfachstes Illustrationsbeispiel zur Aufklärung dieser "Überraschung"
nehme man die Fusion zweier zusammengesetzter Bernoulli-Variablen, lies

zweier Einzelrisiken mit verschieden verteiltem Schadenbetrag, also

0Z, </+P0h 0z,=? + P02

0z ('/ + P01 (<7 + P0a) <7~*P(0i +02)+p'0i02

Po + Pi0 + P2 ^0" ~ ^(0i — 0a)" J
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mit

^ 2

1st hierin z. B. X'" degeneriert verteilt bei x und X'~' bei y, so tritt die

- in diesem Fall sogar totale - Abhängigkeit zweier Schäden X, und X,
des fusionierten Portefeuilles sofort zutage: Ist nämlich X, x dann muss
notgedrungen X, y sein und umgekehrt.
A propos mehr zur Abhängigkeit der Einzelschäden im fusionierten Porte-
feuille siehe Abschnitt 7.

5. Pascal zusammengesetzt Poisson und/oder Gamma u.a.m.

Natürlich ist die Poissonverteilung in einem engeren Sinne stets selbst eine

zusammengesetzte Poissonverteilung, man nehme nur als Einzelschaden X
die bei x 1 degenerierte oder eine Bernoullivariable. Die Pascalverteilung
ist ihrerseits, je nachdem wie man es anschaut, zugleich auch eine in einem
weiteren Sinne zusammengesetzte Poisson- und zudem eine zusammengesetzte
Gammaverteilung. Obwohl auch dies in der Literatur verschiedentlich
beschrieben wurde für zusammengesetzt Poisson siehe z. B. Küpper [4],
für zusammengesetzt Gamma ßt'c/ise/ [3] hier eine kurze Skizze dieser

Zusammenhänge:
Sei K Poisson- und X logarithmisch verteilt, also

I p"
Prob [X a] • — für n 1,2,...

ln( 1 — p) n

bzw.

Infi — pG)
<P,y(t) In

Infi — p)

so dass für den Gesamtschaden Z resultiert

U /' Inf — pG
cpzft) (/>jG<pyfr)) /'

V Infi - p)

(Infi - p) - Infi - pr-Infi -p)

also eine negative Binomial Verteilung mit a — in(i"—/j) demselben p.
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Ist andererseits zur Abwechslung einmal A kontinuierlich und A' diskret, und

zwar

A ~ Gamma also (/^(r)=yln
und

A' - Poisson mit 7. 1 also <y>y(r) e" — 1

und somit

1 A_' i+/i
I - l+/i

also auch wieder Pascal.

Es ist eben dies die erstaunliche Vielseitigkeit der negativen Binomialvertei-
lung, dass man mit ihrer Hilfe gleichzeitig Schadenansteckung (auf die hier
allerdings nicht näher eingegangen wird), variierende Grundwahrscheinlich-
keiten und Kollektivschadensituationen modellieren kann. (Viel mehr darüber
findet man in [4].)
Als Faltungspotenz der geometrischen Verteilung kann man die negative Bino-
mialverteilung überdies auch als das diskrete Pendant der Gammaverteilung
auffassen.
Und schliesslich ist noch zu bemerken, dass alle drei Binomial-. Poisson- und

Pascalverteilungen einer Rekursion der Form

h

/>*= l«+£ JPfc-i

genügen, was bekanntlich Für die numerische Berechnung der Gesamtscha-
denverteilung nützlich ist.

6. Ruinwahrscheinlichkeiten

Nach Du/resne/Gerber [8] gehorcht die Ruinwahrscheinlichkeit für zusam-
mengesetzt Poisson verteilte Schadenlasten einer zusammengesetzten geome-
trischcn Verteilung, was eine spezielle zusammengesetzte Pascalverteilung ist.

Dieses sehr schöne Resultat, das sich gemäss [8] schon 1974 bei Bec/cman

und noch viel früher, nämlich bereits 1952 bei Du/wurr/ieu, findet, dürfte auch
heute noch viel zuwenig bekannt sein und noch viel weniger zur Lösung
praktischer Aufgaben angewendet werden.
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Was, wenn man hier die Poissonannahme fallen liisst?
Diese Frage wurde vom Jubilar selbst für den Fall negativ binomial statt Pois-

son verteilter Anzahl beantwortet [9] : Die zu den reinen Poissonverteilungen
gehörenden Ruinwahrscheinlichkeiten sind einfach mit der Strukturfunktion
- im interessierenden Fall einer Gammaverteilung zu gewichten, um die zur
gemischten Poisson Pascal) verteilten Anzahl gehörende Ruinwahrschein-
lichkeit zu erhalten.

7. Durch Fusion induzierte Abhängigkeit der Einzelschäden

Nach Abschnitt 4 ist

^.V,+A':|K=2^) <£"(*) +

wobei

0(r) —0i(t) + —<MT) K=I(*)
£ £

mit g / wenn Poisson, o /V wenn Binomial, o « wenn Pascal

C
.'V

i As

und 7 -

A'-pV — I |

0 wenn <j Poisson

a, a-.

Binomial

Poissor

l Pascal
^ or a

Damit lässt sich die Abhängigkeit zweier Schäden beschreiben unter der

Bedingung, dass auf dem fusionierten Portefeuille genau zwei Schäden

passieren: |X =2. Die zweite Ableitung nach r an der Stelle r 0 enthüllt,
dass

Cov [A*|,/YI K 2] y ^£[X " '] - E[X^]

wobei y negativ wenn die Schadenanzahlen (positiv) binomial und y

positiv wenn sie negativ binomial verteilt sind!
Eine damit entfernt verwandte Formel findet sich in [10] auf Seite 321, Beispiel
12: Eine Urne enthalte Af, weisse und A', schwarze Kugeln, und es werden
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sukzessive Kugeln entnommen, und zwar, ohne diese zurück in die Urne zu
legen. Definiere

A'i
1 falls der /-te Zug eine weisse Kugel

0 sonst.

Dann gilt

Cov [A-,.Y,] " 'V. +

Wir interessieren uns im folgenden auch ein Stück weit für die Abhängigkeit
zwischen zwei Schäden, gegeben dass deren mehr als zwei auf dem fusionierten
Portefeuille auftreten sowie für die unbedingte gemeinsame Verteilung.
In Abschnitt 4 war wie gesagt

</>(t)zik I (.> fi+W

und Oy / A'y bzw. a
y

falls /c- ~ Poisson. Binomial bzw. Pascal.

Betrachten wir als nächstes die gemeinsame Momentenerzeugende von A",

und AA gegeben dass K 2. also

^ V V 2 I K=2^l' U) ' ~~ ^ ['' ' ' '
~ I ^ — 2j

P;"/'o"V|(U )</'|(u)
1

P2

+ -Pi"pf S (<Mu)</Mu) + <M*i)<MD))

mit pj pV'po'' + Pi'Vf + Oder wenn wir t, 0 setzen

P:'/fv, k=-2<U) p!>"pÔ~'0i(t,)

+ p'iV,^(<Mr,) + + PoV!f'<?Mu)

bzw. wenn wir r, 0 setzen

P2 7f\o 1 k=2 O21 P:"PÔ"'</)[(r A

+ p"Vf'^ (<Mu) + <Mu>) + Po'P2~'<JMU)
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was natürlich dieselbe Funktion jetzt von t-, ist wie vorher von r,. kurz,
wir können für einen beliebigen Schaden A von insgesamt deren zwei im
fusionierten Portefeuille schreiben

0.v TTI</>!(T) + 71,0,(1)

mit

U) (2) 1 (1) (2)
/7T PO f T/'i /'I

„
Pt

und

W+pW^ "—0P2

und man verifiziert in allen drei Fällen, dass

71.

£̂

das heisst, dass

0a' k=i (* ' ~ 0,v ; k=:'a

Wenn wir noch den Fall K 3 ansehen, dann ist für die gemeinsame bedingte
Verteilung oder vielmehr Momentenerzeugende von (A',, A',. A0) ] K 3

P3^(A-j..Y2-^3> 1 X=3^1 ' ^2' "^3) ' ^ ~

P3 W<£i0i0i

+ P2 Vf ^(0i0,02 + 0i020i + 020i0i)

+ P'i"P!>~' ^ (010202 + 02 0102 + 02 02 01 »

+ Po Vi~'020202

mit der Konvention, dass die Argumente i,,r,,T, stets in der natürlichen
Reihenfolge auftreten; es bedeute also 0,-0^-0,. dasselbe wie 0,-(t,)00t2)00t-,).
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Man findet dann für einen beliebigen Schaden V von den gegebenen drei AT,,

A2 und A3 durch Nullsetzen von zweien der drei r-Argumente, dass

0.v A =3<0 01 (T + TT.f/wlr)

jetzt mit

(I) (2) 2 (1) (2) 1 (1) (2)
Pjt Po + 5P2 Pi + iPi P:

Pi

und

und das bedeutet für Binomial

N|(/V|-l)QV|-2) 2 A' i (-'V | — 1 X, U A'2 (As — 1

6 3 2 2 + 3^1 2

/V(N-l)(N-2)
6

JV

bzw. für negativ Binomial

2| (»1 + 0(31+2) 2 »I (»1 +1) 1

6 3 2 2 ' 3 1

71,
»I »+1 )U+3)

6

und für Poisson wissen wir schon zum voraus, dass tt, /.,// herauskommen
muss.
Betrachten wir auch noch die gemeinsame Verteilung zweier beliebiger
Einzelschäden (z. B. von A, und A,) gegeben X 3, so findet man leicht, dass

Vy,..Y:) k=3<T,,T2) </>!</>, —(^"pÔ"' + 3P2 Vf

+ 0102^- QpVpf + ^Pl'VV

+ 0202 p- (jp'i"pV + Po'Pi"'

„(1) „(2) </v/>
P2 Po

+ 0 1 02

+ 020

+ 02 0;

P2

' Pi P:
2 p,
1 pi'V,"
2 px

Pu P2
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also

^(A .A'2) K=.l(*l> ^2) ~ ^(,Y|_Y2) I K=2^1' ^2)

wie erhofft.
Als nächstes verifiziert man, dass

0iA ..Y2,.Y3,A 4 I AC =4^1' *2> ^3*

(1) (2) 1 (1) (2)
P4 Po + 4P3 Pl

<P101</>1
^4

±pW + ipW
+ ^ ^(0.0 ,0, + 0,0.0, + 010,0.)

P4

SP2P2" + 4-P<V7'
H (01 020? + 0201 02 + 020201

P 4
- ~

1 (1) (2) (1) (2)
4P1 P.3 +P0 P4

H 0.02t'*'
P4

und damit falls K ~ Poisson

pW + W'pf ä + 3^2 ;,J

p. g p..
""

' n'"n'-> 4- ' n'"n'-' ' 2i 3 4- ' "'1 -2 - (D 12)
4P3 P, + ftP. P2

__
3T0 + 617 ^ ^

1_ /); p'|

P4 g >' " 3 p,

bzw. falls /C- ~ Pascal

P4W + ïP.r'pf' 53<*i(=*i + l)(«i +2)(a, +3) + 3 g«, (a, + l)(a, + 2)a.

p
"" ala^l )(^+2)|q+3l

24

+ D(«i + 2)
^ P'iJ'L

a(a+l)(a + 2) p_,

îPo'pf + gPo'P:"' U^i0i + "0| + 2)3=2 + + l)l3=2(=2 + H

„ i(i+l)(3+2)(a+3)
* 4 24

a,(a,+ 1)«2 lpV'pf
oc(a + l)(a + 2) 3 P3
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Also ist

*=4^1'*2' *3*0) 0(.Y|.AS..Y,l K -0A G' G '

und somit insbesondere auch

0.Y K.-4<r) 0A K=.?<T) 0.\- K=2<^> 0.Y K |(f) := 0(f)

unabhängig von der Anzahl X der Schäden auf dem fusionierten Portefeuille.
Entsprechend ist auch die gemeinsame Verteilung von zwei oder mehreren
Schäden, also z. B.

Jl) (2) III (2) (II (2)

01 Y, AM (*1*2) —0101 + '
(0102 + 0201 + — —0202

p, 2p, " p,

0(T| )<0>(r,) + V (0, (t, - 02(r,)j (0i (t,) - 02(^2))

jetzt, wie gesagt, unabhängig von der Anzahl X im Gegensatz zu Abschnitt
4. wo X 2 Bedingung war.
Anstelle dieser etwas aufwendigen Nachrechnungen für fc 1,2,3,... (wobei
der Vollständigkeit halber auch noch ein Induktionsbeweis zu führen wäre)
kann man für binomial und mit demselben p verteilte X, und X, direkt
kombinatorisch überlegen, dass

0(T) 0.Y|K=it(T) 770A) + 7702^* f"r k 1.2—

indem man sich unter X den ersten Schaden vorstellt, der auf dem fusionierten
Portefeuille passiert und unter TV, bzw. ;V, die Anzahl der günstigen und unter
;Y die Anzahl der möglichen Fälle. Analog für die zwei ersten Schäden:

0(.Y,.AM JC=fc(Ti,T,) 01 (T, )0, (T,) + ^%0.(Ï|>02(G>

' - 02(T,)0i (T2) + ^7777 —02^2)02^2
;V(X - 1)

' - ' " - A(X - 1)

0(t,)0(T,)
A'.Ab

A-(A' - 1)
^01 (T,) - 0 2 ^ I (01 (T,) - 02 (^2))

Die entsprechenden Resultate für Poisson-verteiltes X sollten sich dann durch
den üblichen Grenzübergang ergeben, währenddem man für Pascal-verteilte
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Anzahlen /V,, IV, und (V durch —x,. —x> und —x ersetzen muss. Eine saubere

Herleitung von

'/'.v s c'"' ,i ' rH

bedingt, dass man die allgemeinen kombinatorischen Formeln

ö.\ k A-ir) X Pb [X, /1 X k] j ^,(r) + l
1=0

^ ^

sowie

]T Prob [X, 11 K *]{« _^</>|(h)<ME;)

+ r|ET7^('i)0,w
(Ar — i)(A- — I - 1) ^+ Hfl,-—

je Für Binomial-, Poisson- und Pascal-verteilte Anzahlen explizit durchrechnet.

8. Schlussbemerkungen

Die beabsichtigte Anstiftung zum vermehrten Gebrauch von zusammenge-
setzten Non-Poisson-Modellen ist also nur teilweise geglückt, indem sich un-
ser Interesse mehr und mehr von der ursprünglich praxisorientierten Frage
nach realistischeren Modellen abgewendet und sich auf das eher akademische
Phänomen der durch Fusion "induzierten" Abhängigkeit gerichtet hat.

Für ein besseres Verständnis dieser so entstandenen Abhängigkeit - die intuitiv
nach wie vor unbegreiflich erscheint - wäre allerdings unter anderem noch
konkret nachzuweisen, dass z. B. eine durch

«1 «2

1 — p(/>(r) := (1 — p0,(r))*>+*2 • (1 — p(/>,(r))
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definierte Funktion f/>(r niemals eine Momentenerzeugende, das heisst,
die Laplace-Transformierte einer Verteilungsfunktion sein kann, ausser im
trivialen Fall, wo r/>,(r) (/»fir).
Meines Wissens ist dieser Abhängigkeit der Einzelschäden in einem fusionier-
ten Portefeuille - und als eine Fusion verschiedener Portefeuilles kann man
schliesslich jedes Portefeuille auffassen - in der aktuariellen Literatur nur we-
nig bis keine Aufmerksamkeit geschenkt worden, es sei denn, der Jubilar habe
diese Zusammenhänge schon in [1 lj mindestens indirekt als Charakterisierung
der Poissenverteilung aufgezeigt.

Erwin Straub
Schweizer Rück
Postfach
8022 Zürich
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Zusammenfassung

Es werden Gemeinsamkeiten und Unterschiede der zusammengesetzten Poisson- und der

zusammengesetzten negativen Binotnialverteilung diskutiert. Für den Theoretiker von Interesse

ist die durch Fusion zweier Portefeuilles induzierte Abhängigkeit der Einzelschadenbeträge, wenn
die Schadenanzahl nicht Poisson-verteilt ist.

Résumé

L'auteur relève certaines ressemblances et dissemblances entre les distributions de Poisson et

binomiale négative composées. Le théoricien trouvera un intérêt dans l'ctude du type de

dépendance entre les montants des sinistres lors d'uns fusion de deux portefeuilles, lorsque
le nombre des sinistres n'est pas distribué selon une loi de Poisson.

Summary

The compound Poisson and the compound negative binomial distributions are compared with

one another within different contexts. Of a certain theoretical interest is a stochastic dependency

among individual claim amounts due to the merger of two portfolios with a non-Poisson-

distributed number of claims.
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