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RaGNAR NORBERG, Copenhagen

Actuarial Analysis of Dependent Lives

1 Introduction

Actuarial tables of multilife statuses are invariably based on the assumption
of mutual independence of the component life lengths. Presumably, the
popularity of the independence hypothesis is due to its computational
feasibility rather than its realism; there are reasons to believe that the
component life lengths may be interdependent. For instance, husband and
wife are more or less exposed to the same risks, which may change for either
of them when the spouse dies. Moreover, there may be certain selectional
mechanisms in the matching of couples (birds of a feather flock together).
The present paper undertakes to investigate some alternatives to the
independence hypothesis and to derive some consequences for actuarial
computations. We shall focus on the bivariate case and find sufficient
conditions for positive or negative dependence between life lengths and present
values of insurances. In Section 2 we refer some definitions of different notions
of positive and negative dependence between stochastic variables and some
useful results on relationships between these definitions. Section 3 discusses
how various forms of dependence affect present values of payments related
to single- and multilife statuses. Section 4 and 5 present model assumptions
that imply positive or negative dependence of life lengths; Section 4 treats
a Markov model with forces of mortality depending on marital status, and
Section 5 launches a heterogeneity model specifying that the component forces
of mortality are stochastic processes that may be dependent.

Actuarial aspects of dependence between life lengths have been discussed
previously by Carriére and Chan (1986). Their approach centers on quantifying
the possible impact of dependence on actuarial values by establishing bounds
for bivariate distributions, and is thus methodologically remote from the one
taken here.
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2 Notions of dependence between random variables

Let S and T be real random variables defined on some probability space.
We say that S and T are positively quadrant dependent and write PQD(S, T)
if

P[S>s,T>t]=P[S>s]P[T >t] forall s,t. (2.1)

Note that (2.1) isequivalent to P[S > s | T >t] = P[S >s]for P[T >1t] >0,
which is easy to interpret.
We say that § and T are associated and write AS(S,T) if

Cov [g(S,T), h(S,T)] =0 (2.2)

for all pairs of functions g and h that are increasing in both arguments and
for which the covariance exists. We could state this definition equivalently
by saying that g and h are decreasing in both arguments or by reversing the
inequality in (2.2) and saying that g is increasing and h is decreasing.

We say that S is right tail increasing/decreasing in T and write RTI(S | T)/
RTD(S | T)if

P[S >s| T >1t] 1isincreasing/decreasing in ¢ for all s. (2.3)

Stochastic independence is included as a special case of each of the three
notions of dependence: replace “>" by “=" in (2.1) and (2.2), and replace
“increasing/decreasing” by “constant” in (2.3). We could distinguish between
independence and genuine dependence by adding the qualification “strictly”
to PQD, AS and RTI/RTD in the latter case.

A thorough analysis of these and other notions of dependence between
random variables can be found in Sections 2.2 og 5.4 in Barlow/Proschan
(1975). From this reference we pick the following useful result:

Lemma 2.1: RTI(S|T) = AS(S,T) = POD(S,T)
3 Present values of endowments, annuities and insurances on dependent
lives

We shall restrict our discussion to the bivariate case and, more specifically,
consider a married couple which buys an insurance policy when the husband



245

is at age x and the wife is at age y, say. Let § and 7 denote the remaining
life lengths of husband and wife, respectively. We consider them as random
variables.

In actuarial applications we are interested in the following single- and multilife
statuses defined by S and 7.

Status Life length Survival function

(z) U PlU >7]
Husband (x) it PlS > 1] (3.1)
Wife (y) T P[T > 1] (3.2)
Joint life (x, y) SAT P[S>1,T > 1] (3.3)
Longest life (x,;y) SVvT P[S>t]+P[T>1t]—P[S>1,T >1] (34

Random variables of particular interest are the present values of certain
payments determined by the life lengths of these statuses. We list some that
are commonly used, restricting to n-year payment schemes specifying that a
unit amount is payable either immediately upon the survival of a status (z)
to time n or death of the status, or annually, continuously at constant rate 1,
during the existence of the status. As usual, v = ¢ denotes the discounting
factor corresponding to a fixed force of interest 6, and [, denotes the indicator
function of the event A.

Payment scheme  Present value Expected present value
Pure endowment  C,(U) = v"[ ., LE, =v"P[U > n] (3.5)
Ca(U) = / v Ly dT ;
Annuity 0 @ =/v‘P[U =tldr (3.6)
_ = vU/\n 5
e _
(Term) insurance CL(U) = v* Iy <) A =1-da.,—,E. (37
= Hn : :

Both C¢(U) and C%(U) are increasing functions of U, whereas C!(U) is a
decreasing function of U. Furthermore, each of the life lengths U defined
in (3.1)—(3.4) are increasing functions of § and 7. Combining these results
with the definition (2.2), we obtain a number of results on interdependence of
present values of payments related to associated lives.
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Assume that S and T are associated, and let U and V' be any two of the life
lengths listed in (3.1) - (3.4). Then C*(U) and C’ (V) are positively correlated
tor o, i € {a,e} and for «x = f = i, and they are negatively correlated for
x € {a,e} and f§ = i. For instance, C! (S) and C\(T') are positively correlated,
and C!(S) and C%(T) are negatively correlated. Similar statements are valid
also for expressions of the type

Cl(V)—nCHU), (3.8)

which 1s the present value of benefits less premiums for a life insurance
payable at time V if V' < n, with level premium payable at constant rate =«
until U A n. Clearly, the expression in (3.8) is a decreasing function of S and
T, and so we have, for instance, that C},(S) — n,C(S) and C(T) — n CY(T)
are positively correlated. General results of this kind cannot be obtained for
present values that are not monotone in S and 7, e.g. deferred payments of
the type C2(U)—C}(U), « € {a,i}, or for present values related to compound
statuses, like USI[SS,-,\H] (contingent insurance on (x) payable if (y) outlives
(x)) or C(T)—C3(SAT) (reversionary annuity on (y) after the death of (x)).
In any case, the covariance of any two given present values can be evaluated
by integration.

Dependence between § and 7 affects not only variances and covariances
of present values, but also expected present values of payments related to
multilife and compound statuses. Let the topscript “ind” signify that a quantity
is calculated under the independence hypothesis, that is, P[S > s, T > t] is
replaced by P[S > s] P[T > t]. Suppose that § and T are PQD as defined
in (2.1). Inspection of (3.3)—(3.7) and use of (2.1) gives that

: : — —ind
E,>,E™, G, -=a", 4, <A,
nxy nxy o Xy xyn): 57 v
ind - —ind T — ind
nEFSn Xy af\"_\“‘ﬂsaﬁ'n » A 2AL_

1
v nl xy n

Moreover, let the level premium in (3.8) be determined by the equivalence
principle, that is, by requiring that the expected value of the expression in (3.8)
be zero. Then, from the inequalities above, we obtain that © > gind e.g. for
V=SVvTand U € {S,T, SV T}, that is, the independence hypothesis yields
an insufficient premium. On the other hand, 7 < 7™ eg. for V € {S, T, SAT}
and U =SAT.
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4 A Markov model with forces of mortality depending on marital status

The interdependence of the life lengths of husband and wife could be explained
by the change that incurs in the living conditions upon the loss of the spouse
(grief, stress, etc.). Such effects can be accounted for simply by allowing the
forces of mortality to depend on marital status (apart from age and sex).
More specifically, assume that the husband’s force of mortality at age x + s 1s
u(s) if he is then still married and p/(s) if he is a widower. Likewise, the wife’s
force of mortality at age y + ¢ is v(¢) if she is then still married and v'(r) if
she 1s a widow. (To simplify the notation, the dependence on x and y is not
made visible. The prime should not be confused with differentiation here.)
Under these assumptions the future development of the marital status for an
x years old husband and a y years old wife is a time continuous Markov
chain {X_(S.7); v = 0} with state space and forces of transitions as shown in
Fig. 1. The transition probabilities Py, (s,t) = P[X, = j | X, =0], j € {0, 1,2},
0 <s<t,are given by

Figure 1.
Markov chain representation of the marital status of husband and wife
0. 1
Both alive - > Husband dead
' Wife alive
v v’
2 w 3
Husband alive > Both dead
Wife dead




II
~ [ v
POO(S’ l) =¢ N

: —v’k.;r-%\' f'l-\"
Pm(S»I)=/€ s u(tye * drt,

1 1
t

_'l.u-i-r —‘!‘,u'
Poz(s,t):/e s vit)e © drt.

N
The joint survival function of S and 7 is

Py, (0, £) + Pyo(0, 5) Py, (s, t) 4 § <,

P[S>S,T>t.]={
Pyy(0,5) 4 Poo(0, ) Py, (2, 5) e A

4 t T 4

The marginal survival function of T is

P[T >1t] = Py(0,t) + Py, (0,1)

t
[

—~.]‘,u+\' —J.,qu\' ~j v/
=e O +]e o pf(r)e * dt, t=0. (4.3)
0

The expressions in (4.1) —(4.3) can be realized by direct reasoning.

We now prove that § and 7 are positively/negatively dependent if the
mortality is higher/lower for widowed persons than for married persons.
It is assumed throughout that all forces of mortality appearing in the model

are continuous, so that the differentiations performed in the following are
valid.



Theorem 4.1.: The following implications are valid:

(1) W(t) = pu(r) and Vv(r)>v(r) forall >0 (4.4)
== RTIS|T) and RTI(T |S)
—  AS(S.T) =—> POD(S.T).

(11) W(t) <p(r) and v(t) <v(r) forall >0 (4.5)
— RTD(S|T) and RTD(T|S)
= AS(-S,I) == PQD(-S8.71),

(111) W(t)=pu(r) and V(t)=v(r) forall 7>0 (4.6)

<= S and T are stochastically independent.

Proof: We first prove item (1). The last two implications are generally valid,
confer Lemma 2.1. We need only to prove the first implication and, by
symmetry, it suffices to establish that (4.4) implies RTI1(S | 7).

First, for s <t we find from (4.1) and (4.3) that

PIS>s|T>t]=
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By the rule for differentiating a fraction, é(u/v) = (vdu — ucv)/v*, the sign of
ZP[S>s| T >t]is the same as the sign of

; ‘Ilu+v~v' z» i ptv—y’
{l s /c‘ () clr} [;L(I) + / et p(r)de{pu(e) + v(r) — \-’(r)}}
0 r , (4.7)
; llku+rf\" ! j ;x+\'~\"
— {1 -+ /ef w(7) dr} |:,u(t) + /ef () dr{ut) +v(t) — \"(t)]} .
s 0
Put
u '[‘AH-\‘—\'I
Alu) = /ef ulr)dr,
0
and rewrite (4.7) as
(1+ A0} [0 + (A1) = AG 0 +v(0) = v'i)}]
— {1+ AW — A} (0 + AO 0 + v(0) = v (0)}]
= A(S){v'(t) —v(1)}. (4.8)

Second, for s > ¢t we find from (4.2) and (4.3) that

- ’ A . —-‘j‘u+v - i.[i’

e 0 + [e © v(t)e * dt
PS>s|T>t]=— ‘ [

mf,umh' 7‘[‘,Li+v - "\'
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The sign of %P[S > s | T > t] is the same as the sign of

i 4 ! 4 S

—f,u-ﬁ-v {' —‘I‘;H-v _._/.r' —i[.li-ﬁ' —.l-ll’
{é’ 0 + / e 0 u(t)e = dr }{ g O vt)e }
' 0

s T s 3
—J.y+v p 7‘/';“ v f‘li,u' = f;z—H-
- {e 0 - /e 0 v(t)e * dr} [e 0 { — u(t) — V(l‘.)} (4.9)
.f
_f,’l-f-r : —j..u+\' — l‘\'
+e 0 ,u(r)+/e 0 u(t)e dr{—v'(t)}]
0
Multiplication by e? e’ preserves the sign and transforms (4.9) into
', S‘
L [ u+v‘r' l ;Hw—u'
{J—{—]e? ,u(r)dr}{mef v(t)}
0
2 f,u+\'f‘ul ! \",u+\'~v'
—{1 +fef v(t)dtl[—v(t)—-/eﬂ w(t)de \"(I)}
J
{ 0

: fu+r——v’ ‘[‘;H—\'—y'
=/0f u(t) dr [—e*‘ v(t)
0

S

2 f,u—&—v-.u’
+ {] + /er v(r)dt}v’(t)} (4.10)

e

s )

‘I.;H-\'——-ﬂ’ : f;t—}—'v—gi'
+v(t){—€' +1+/ef v(r)dr} .

[
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Observe that

s

&

2 .I‘ﬂl‘l“\'—}ll \f.LHr"—I-"
/ef v(t)dt = /ef {u(r) +v(t) = p(r)} dr

t f

5

r _]vyrr‘r\'ﬂt'
+]ef {1 (t) — ()} dt

t

fy-?-v—u' f,u-}-v-—y’
= et — 1+/ef W) — pln) ) de,
i
and continue from (4.10):
! j Ju-f—v—v' [ ity qu'
= /e*- u(t)de {ei Wity —v(t)}
0
f ,u+v~—u'
-%—v’(t)/er {u'(r)—u(r)}df} 4.11)

t

s

w30 [ W= umhds.

t

By inspection of (4.8) and (4.11), it is seen that ¢’ > p and v' > v implies
(‘;{P[S >s| T >t]>0forall sand ¢, hence RTI(S | T). This proves item (1).
Item (11) follows immediately.

[tem (111) follows by noting that RTI(S | T) and RTD(S | T) together is
equivalent to stochastic independence. Q.E.D.

Reliability theorists would speak of (4.4) as the WBF-condition (the
system (S,7) is “Weakened By Failures™). Arjas/Norros (1984) have proved
association for multicomponent WBF systems by use of refined counting
process theory. The present proof presents some interest of its own since it is
elementary and, moreover, shows RTI(S | T'), which is stronger than AS(S, 7).
The case (i, v) # (u',v') could be taken as a definition of a causal relationship
between the two events underlying the process, here death of husband and
death of wife, see Schweder (1970).
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5 A heterogeneity model with dependence between component forces of
mortality

So-called frailty or heterogeneity models are commonly used in biomedical
statistics to describe variation in mortality between individuals. A heteroge-
neity model specifies that the survival function or, equivalently, the force of
mortality of a randomly selected individual is a random process.

In the bivariate case — and we stick to the example with the married couple
~ we assume that the forces of mortality of § and T are stochastic processes,
{u(t); T > 0} and {v(r); © > 0}, respectively. By assuming that these processes
are dependent, we can model such effects as selective matching and exposure
to common risk factors.

The joint survival function of S and T is

t

e

P[S>S,T>t]=E|:€

and the marginal survival functions are

5 t
e T e P
P[S>S]:E[e 0]. P[T>I]x£[e '”:I.

s t
It is readily seen that if the cumulative intensities |y and [ v are associated
0

0
for each s and ¢, then we have PQD(S, T') as defined in (2.1). This implies that
Cov [2(S), h(T)] = 0 for each g and h that are increasing.

As a special case, assume that the intensities are of the form

w(t) = Om(r), V{E) = ARIT),

with @ and A associated positive random variables and m and n non-random

N s { i

intensity functions. Then [ u=© [mand [v = A [ n are associated for each
0 0 0 0

s and t.

Ragnar Norberg
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University of Copenhagen
Universitetsparken 5
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Summary

The present paper discusses how actuarial analyses of multilife statuses are affected if we drop
the traditional hypothesis of independent component life lengths. Some notions of dependence,
well known from reliability theory, are presented, and conditions for positive dependence are
found in a Markov model as well as in a heterogeneity model for the bivariate case.

Zusammenfassung

In der vorliegenden Arbeit wird die traditionelle Voraussetzung tiber die Unabhingigkeit der
Sterblichkeiten bei Versicherungen auf mehrere Leben ersetzt durch verschiedene Formen der
Abhiingigkeit zwischen zukiinftigen Lebensdauern. Es werden Konsequenzen diskutiert und im
Fall von zwei Leben ein Markov- sowie ein Heterogenitiits-Modell prisentiert.

Résume

Le présent article discute de I'effet, dans le cas des risques-vie sur plusieurs tétes, d’'un renoncement
a I'hypothese traditionnelle de I'indépendance des durces de vie. On y presente quelques notions
de dépendance bien connues en théorie de la fiabilité, ainsi que — dans le cas de risques sur
deux tétes — des conditions de dépendance positive d’'un modele markovien et d’'un modéle
d’héterogeneite.
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