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ErRHARD KREMER, Hamburg

Loss-Reserving by Kernel Regression

1 Introduction

In the following one of the main problems of nonlife insurance mathematics
is reconsidered, i.e. how to calculate loss reserves. In principal this problem
reduces to the prediction of the future development of yet unsettled claims. In
the last few years a vast body of papers appeared in actuarial journals treating
the problem of loss reserving in nonlife insurance, worth mentioning are e.g.
the articles of Biihlmann et al. (1980), De Jong/ Zehnwirth (1983), De Vylder
(1978), Kremer (1984), Linnemann (1980), Straub (1971), Taylor (1977), Verbeek
(1972) and the actuarial surveys of Van Eeghen (1981) and Taylor (1986).
The papers contain many different approaches, some authors use socalled
separation techniques (see Linnemann (1980), Taylor (1977), Verbeek (1971)),
some others apply credibility methods (see De Vylder (1982), Straub (1971)),
recently also time series methods were adopted (see De Jong and Zehnwirth
(1983), Lemaire (1981) and Kremer (1984)). Some methods were tested and
applied on empirical data, see e.g. Taylor (1981), Pater (1987), and found to be
adequate for practical determination of loss reserves. Though at the present
state there exist already quite many different methods, the author thought
again about that topic and recognized an interesting connection between loss
reserving and nonparametric kernel-regression estimation, a topic discussed
extensively in journals on Mathematical Statistics during the past twenty-five
years (see Devroye (1981), Gleblicki (1984), Nadaroya (1964)). This noticed
correspondence led the author to write this further paper, presenting a new
loss reserving or better predicting approach, based on modified nonparametric
estimation methods.

2 The Loss Reserving Problem

Let Yij, j=1,...,m, i=1,...,m be (nonnegative) random variables on a
probability space (€, .<Z, P), ¥;; denoting the claims number or the claims size
(per claim) of a collective of risks in the development year j and in respect of
the accident year i. Known is only the triangle

sz(Yij, j=1....m—i+1, i=1,... ,m),
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representing the past claims development. The problem consists in calculating
or estimating the unknown loss reserves for the accident years i = 2,... ,m.
For this one has to calculate or estimate the future growth

Ri(YV) = Yim - yvi,m—i+1 ’ (21)
for each accident year i = 2,... ,m. In case of claims numbers one speaks of
the IBNR-reserving problem, in case of claim sizes of the IBNER-reserving
problem. Here IBNR or IBNER are abbreviations for ‘incurred but not
reported’ or ‘incurred but not enough reserved’. Replacing in case of claim

numbers Y, by N, in case of claim sizes Y;; by §;;, the loss reserve for the
IBNR-claims of accident year i is given by

R,(Ny) - S;, (2.2)
and the loss reserve for the IBNER-claims of the accident year i by
R;(Sy) - N:‘,m—i«H : (2.3)

The total loss reserve for the accident year no. i then is given by the sum of
the reserves for the IBNR-claims and the IBNER-claims.

Obviously claims reserving, in the above sense, reduces to predicting the
unknown Y,.j, J=m—i+2,...,m, i=2,...,mfrom the known triangle Y.
Fortunately concepts and ideas of the Mathematical Statistics can be adapted
to this situation, more concretely methods of the estimation and prediction
theory (see e.g. Lehmann (1983) and Granger/Newbold (1977)). As already
mentioned in the introduction many adequate actuarial methods, which are
modifications of corresponding mathematical-statistical methods, do yet exist
and are successfully applied in the insurance practice. In the sequel a further
new one is presented.

3 The Optimal Predictions

Denote by L, the set of all square-integrable random variables X, defined
on a fixed probability space (€, ./, P). By identifying X with the equivalence
class of all X with

o~

X=X almost surely,
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the L, becomes a Hilbert space with scalar product and norm respectively

(X,Y)=EX - T),
1 X 1l = (E(x?)'?
for X, Y of the L,. We denote by My the set of all Z of the L,, depending

measurably on Yy, this means that there is a measurable function g on the
m - (m + 1)/2-dimensional real space with

Z:g(YU, j=1,....m—i+1, i=1,...,m).

My 1s the class of all predictors from the triangle Yy. It is obvious to define
the optimal forecast (or prediction) of ¥;; from the triangle Yy as the unique

element ?i-j € My satisfying
1Yy — Y1, < 1Y — Z|,

for all Z € L,, ie. as the (orthogonal) projection of Y;; on the closed linear

subspace My, of the L,. As wellknown this projection can be represented as a
conditional expectation operator, more concretely
Yij =E (Yij | Yy)
=EY;| Yy I=1....m—k+1, k=1,....,m) (3.1)

(compare e.g. Theorem 2.15 in Kremer (1985)). On the additional assumption
that the row vectors

g ans s X s f=1::.: ;0 (3.2)
are stochastically independent,

one has the more simple formula for the optimal prediction:
Y, =E(Y;| Y, I=1...,m—i+]). (3.3)

According to the above written, the loss reserving problem reduces simply
to the determination of the conditional expectations given in (3.1) or (3.3)
respectively.
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4 Estimating the Optimal Predictions

Without additional assumptions no simple explicit formula can be given
for the conditional expectations of (3.1) and (3.3). In a former article the
author took a nonstationary, autoregressive model for the development of the

ijs j=12,...,m,ie.

|4
Yy=Y ay- Y, +b;+e; i=l..,m j=1..,m (4.1)
I=1

with real parameters a;;, b; and random error terms e; (see Kremer (1984))
and gave in his Theorem 1 simple recursions for the conditional expectation
or optimal prediction (3.3). As variants of the classical least squares estimation
practicable estimation methods were given in his Theorem 2 for the unknown
parameters a;;, b; (see also Pater (1987)). Instead of assuming a parametric
model, e.g. something like (4.1), let us only assume that for a given p > 1:

Y;; depends only through the

Yi,m—i‘pﬁ—Z LA Yi,m—i+l (42)
from the Y;,.... Y%, ..

forj=m—i+2,... mandi=23,...,m.
Then (3.3) simply reduces to the predictor

Y =E@ Yipipras-s Yimoivn) (4.3)
forj=m—i+2,...,mandi=2,... m—p+ 1.
Now, how to estimate this slightly more simple conditional expectation without
any additional parametric assumption?
For this one can use ideas of a special field of nonparametric estimation theory,
the socalled nonparametric regression estimation. For adapting we assume in
addition to (3.2) and (4.2) that

one has given (random or nonrandom) variables A4,, B;,)

i=1,2,...,m such, that for the transformed variables

(Y, — B)

i = T
> (4.4)
the random vectors

Koo s X)), i=12...,m

are identically distributed.
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These transformations represent possible trend effects in the different accident
years, which have to be eliminated in advance. Besides this, in case of claim
sizes one has to inflation adjust all claims in advance, leading to the above
random variables ¥;. Assuming for the X in place of the Y; the conditions
(3.2) and (4.2) (which for nonrandom A,, B, clearly carry over), obviously the
optimal predictions of the unknown X;; from the triangle

sz(ij, j=1,....m—i+1, i=1,...,m)
are

Xij = E(Xz'j |Xi.m~i—p+2 st 3 X gty ) (4.5)
forj=m—i+2,..., mandi=2,... m—p+ 1.

If the A4;, B; are stochastically independent of the X;;, j =m—i—p+2,... ,m—
i+ 1 (which in case of nonrandom A4, B; clearly is satisfied), the predictions
Y;; of (4.3) obviously can be computed from predictions X;; of (4.5) according

~D

= A4.-X.+B,. (4.6)

Consequently it remains to give a formula or an approximate formula for the
predictions (4.5) on the assumptions (3.2), (4.2) and (4.4) with the X; instead
of the Y. In order to get a good approximation procedure, we extend the
above setting a little bit. We assume that we have some more complete claims
developments of past years indexed by i = —n,—n + 1,...,0. This means we
have in addition the random variables

Y LY., i=-n-n+1,...,0

i S im

with the claims amount or claims number Y;; of the j-th development year
with respect to the i-th accident year. We assume (4.4) for the whole set of
claims data, with accident year index running through the valuesi = —n,... ,m.

Finally (3.2) is supposed for the whole set of transformed data
(Xips e s Xi)s i=-—n,...,m

(clearly for nonrandom A;, B; this follows from the same statement for the
original data Y};).

In this setting approximate formulas for (4.5) can be given by the use of kernel
regression estimators of order p. We take a nonnegative function K on the
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p-dimensional real space of row vectors into the real line such, that there exist
constants ¢, ¢, and r > 0 with

€y X Kix) < iey,

holding on the circle {x: ||x|| < r} of the p-dimensional space of row vectors.
Here and in the following || - | denotes the euklidean norm. Furthermore
choose a sequence (h,),., with

h,—0, forn—co.
With this notation define for i =2,... m—p+1land j=m—i+2,...,m
the following functions y; on the p-dimensional real space of row vectors
X = (Xy,... ,xp) according

’"“zj:“K ((w)("”"“—”‘ﬂ)) "Xy

hm—j+n+2 hm7j+n+2

m—zj:+lK ((w), ,(m))

\ hm~j+n+2 hm7j+ri+2

The sense of this becomes clear in the following general Theorem, giving the
fundamental property of these functions g (x).

Theorem

Assume for the sequence (h,),_,,  that one has

h

" log(n)

— 00, for n > o0.
and that (what is satisfied in insurance):
| Xl <X < o0, for all i and ;.
Then one has
,llffg(#sj(x)) = EXy | Xipmipi2 = X1 Ky = Xp)

in almost all x = (xy,... ,xp). J
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Proof

We reformulate the statement in a more general way: Let (X,Y),(X,,Y)), ...,
(X,,Y,) be independent, identically distributed (row) random vectors in the
corresponding (p + 1)-dimensional real space with Y, Y, € L,. Similar to the
definition of y;; we define m, on the real space of p-dimensional row vectors
according:

mn(x) = Z Wm'(x) ' Yz

i=1

for x = (xy,...,x,) with the weights
K((xl —X)/he (X, —Xt.p)/h)

> K((xl — Xy ’(xp _Xip)/h)
=1

W..(x) =

for (X;,....X;) = X; and K, (h,),., declared as above. Obviously this is
a generalized version of the above setup of predicting the X from the
Xy, l=m—i—p+2,...,m—i+ 1. The statement of the Theorem simply
reduces to

[m, (x}) —m(x)| =0 ae. for n-— o0, 4.7
for almost all x, with the definition:
m(x) =E(Y | X;; = x,,... ’Xip = xp).

This statement is nothing else but the Theorem 4.2 in Devroye (1981). For
sake of completeness the main steps of Devroye’s proof are given in a very
short style. One has obviously:

n

|m,(x) —m(x)| <

W,e(x) - (¥, — m(X)) |+

i=1

+ Y W) - [m(X) —m(x) . (4.8)
i=1
For given & > 0 one can give constants ¢, ¢, such that

7

X, Koo X)

Y W) (Y; = m(x)) l > ¢
i=1

< ¢, -exp (— ¢, - sup W,,(x)) (4.9)
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and the second term in (4.8) is bounded from above by

Unl) = (f;-%) Y Im(X) = m(x) |- (L)

I i=1 Ei 14 0
where 1, ) is the indicator function of the event
Ap,x)={IIX;— x| <r-h,}.
One concludes that for given ¢ > 0 there exist constants c;, ¢, such, that
P(1U,(x) = E(U, ()| > &) < ¢~ E expl(—c, - N,(x)) ,

where N, (x) is distributed like 1, (), ie. is binomially distributed with
parameters n and p,(x), satisfying:

. Pa(x)
log(n)

— 0 for n » oo,

for almost all x. One can show that for almost all x:
[0 6]
Z E ( exp(—s - N,,(x))) < 60
n=1

for all s > 0, implying with Borel-Cantelli-Lemma that for almost all x
U,(x)—E(U,(x)) =0 a.e., for n—o0.

Since
E(U,(x))—0 forn »

in almost all x, one has that the second term on the right hand side of (4.8)
converges a.e. for almost all x to zero. Also the right hand side of (4.9) can
be bounded with a suitable ¢g by

¢y - exp(—cs - N,(x)),

implying again with the Borel-Cantelli Theorem and Lebesques Theorem, that
also the first term on the right hand side of (4.8) converges a.e. to zero for
almost all x. This completes the proof of the statement (4.7). O
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According to this result the X i= 2,....m—p+1, j=m—i+2,...,m,

ij°
calculated by

Xy =y X i pr2se- s Xim 1)

can be used as approximations to the optimal prediction )?,-j. With the
modification of (4.6)

j=A;-X;+B;

~»

one has the desired loss predicting procedure of forecasting Y; by ¥ i -
In the application of this loss predicting procedure the following things have
to be considered:

1. In the case p > 1 there is a terminating problem for the accident years
i > m—p+ 1. For these years one can use functions K defined on lower
dimensioned spaces and proceed like above.

2. The question appears, how to choose the sequence (h,),.. A criterion
for the choice of the h,, n > 1 is given in the above Theorem, ie.
choose the sequence such, that h, — 0 and

h
log(n)_)oo’ n— 0.
3. A lot of freedom in the above general method lies in the choice of the

function K, called Kernel-function, and the appropriate dimension p of
the definition space. In the case p = 1 the author got good results with
a kernel of the type:

K(x) = |x|7t, for x ¢ (—¢,¢)
=% for x € (—¢&,¢)

bl

where X 1s a comparably large and ¢ a comparably small positive value.
When applying the method, one should try to find an adequate kernel
function on some given test data.

For illustration of the above method a simple example is cited.
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5 An Example

In the above notation with m = 3, n = 0 we take the truncated triangle of the
claims sizes

YO}’ j=1,2,...,m

Yis J=Le.sm—i+1, d = 1. Dis 5y
given by:
Fe= i 2 3 4

i=0 23.2 33.8 37.3 389

1 25.8 37.3 429 45.6

2 22.1 30.3 30.7

3 359 430

4 349

Obviously the rows seem to be not identically distributed. We have to
transform the data like in (4.4). We choose simply 4, = Y, B, = 0, ie.
we take:
Xy = i for all i and j
17 Y, />

and use a kernel function with p = 1, i.e. calculate the approximate prediction
according:

m—j+1

)2( Z(:) K ((X'J - Xl,m—i+l)/hm—j+2) ’ X!j
1 m—j+1
forj=m—i+2,...,m, i=2,...,m. According to the remark 2. one can take

e.g.

1/2
(2
n

and according to the remark 3.:

K(x) = |x|!, for x ¢ (—e, ¢)
= 1000, for x € (—¢,¢)
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with ¢ = 1000~". This implies the completed rectangle of the X

j=1,...,m:
J=1
i=0 1.0000
1 1.0000
2 1.0000
3 1.0000
4 1.0000

2
1.4569
1.4457
1.3710
1.1978
1.3678

3
1.6078
1.6628
1.3891
1.5316
1.5532

if> i=0,...,m,

4
1.6767
1.7674
1.7170
1.7230
1.7220

Multiplication of the rows with the corresponding Y;,-values yields the
completed lower part of the rectangle of the Y;;-values:

37.95

54.98 61.86

47.74 54.21 60.10
These values are basis for giving the loss reserves of section 2. ]

Prof. Dr. E. Kremer

Verein zur Forderung der
Angewandten Mathematischen
Statistik und Risikotheorie e.V.
Robert-Koch-Strasse 14a
D-2000 Hamburg 20
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Summary

A new approach to loss reserving is presented in this paper. The statistical concept of
nonparametric regression is adapted to the problem of calculating IBNR or IBNER reserves.
General prediction formulas for forecasting the unknown future claims development are defined
with a given kernel function. The application of the resulting methods is demonstrated in an
example.

Zusammenfassung

In der vorliegenden Arbeit wird ein neuer Zugang fur die Schédtzung von Schadenreserven
vorgestellt. Das statistische Konzept der nichtparametrischen Regression wird angewandt auf das
Problem der Berechnung von IBNR- und IBNER-Reserven. Allgemeine Formeln zur Voraussage
der unbekannten kiinftigen Schadenentwicklung werden mit einer gegebenen Kernfunktion
definiert. Die Anwendung der Methode wird an einem Beispiel erldutert.

Résumé

Une nouvelle approche pour I'évaluation des réserves est présentée dans cet article. Le concept
statistique de régression non-parametrique est adapté au probléeme du calcul des réserves IBNR
et IBNER. Des formules générales pour la prévision de I'évolution future et inconnue des sinistres
sont définies avec une fonction noyau donnée. L'application des méthodes résultantes est illustrée
par un exemple.
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