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FUNG-YEE CHAN, Winnipeg

Graduation, Bootstrap and Confidence Intervals

Introduction

The familiar graduation methods used in actuarial science provide us point
estimates, and the methods fall short in providing confidence intervals. In this
paper, we would like to supplement them with a bootstrap confidence interval
and see their coverage accuracy and interval lengths, and how their shapes
follow the point estimates.

In section 1, we review the four graduation methods to be used: moving
weighted average minimum R?, cross validation polynomial regression,
supersmoother, and basis-spline.

In section 2, we give a brief introduction to the bootstrap methods. There are
many versions of bootstrap methods: for instance, percentile, bias-corrected
accelerated, bootstrap t and short bootstrap t methods. In this paper, the
percentile method is used to produce confidence intervals, and the other
methods will be applied in a sequel paper.

In section 3, we apply the graduation methods to 1979 English Life Table No.
13 (male). Although the graduation methods used here have been around for
some time, this paper uses them together for the first time on a common data
set. These methods can then also be compared in terms of smoothness, squares
of residuals, mean weighted sum of squares of residuals and cross-validated
SCOTES.

In section 4, we outline some future work.

| Graduation Methods

As the following methods are quite familiar to the actuaries, extensive quote
of literature does not seem necessary. On each method , we will include only
a few representative names.

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 1/1989
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A.  Moving-weighted-average minimum R? method (see Greville, 1974)

The 2m + 1 term m-w-a formula is given by

m

V= Z a;¥iyj

j=—m

where the coefficients are determined by the required properties that the
formula reproduces polynomials of degrees up to a certain degree d, usually
cubic, and minimizes the zth differences of graduated values. Usually z is
taken as 2 or 3.

In essence, the graduation problem is solved by minimizing
3. {Amg)?

subject to the condition

iajzl and ijzaj=0,

Jj=—m Jj=—m

where AZ is the zth difference operator.

B. Cross-validation regression method (see Stone, 1974)

The cross validation method is used to determine the degree d of the estimated

polynomial regression model. For instance, for a given d, let the polynomial
regression model be

y=Bp+ x4+ +Bx+e
where e is the error term, and let
5G) = By + B,9Ox + -+ + B,0x?

be its least squares estimated polynomial based on n — 1 data points,
(910005 (s Vit ) (i 15 Vig1)s -+ 5 (%5, 1), 1€. all data except Fhe ith pair
are used in the estimation. The y, is saved to cross validate the 3,1, the value
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of y(i) at x,. We can then obtain the weighted cross-validation score associated
with the degree d as

n

1 A i
ovs (d) =~ D wily; =),

The optimal value d is the degree which gives the minimum cross-validation
score among the various scores of d =0,1,2,... ,n— 2.

C.  Supersmoother (see Friedman, 1984)

This method is a varying span moving average method, similar to the m-w-a
method above, except that the span, J;, which is the number of observations
being included in averaging the y; values around y,, can be chosen individually.
The graduation formula can be described as

R 1 J=i+Ji/2)

L. %
i=i=(Ji/2)

where the J; are chosen to minimize the weighted average

I+ -
; Z wf(yi - Yf)z .
i=1

D.  Basis-spline (see Silverman, 1985)

This method produces a fitted curve f which minimizes

5 b
: Dl )=y £k [ o7 wrax,

where f is a sum of basis splines which are cubic polynomials on each
interval (x;,x;,,); at each x;, the first and second order derivatives f" and f”
are. continuous. This is analogous to Whittaker-Henderson graduation, using
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f" rather than z-th difference as a measure of smoothness. The constant

k, which balances the two goals of fit and smoothness, i1s determined by
cross-validation.

2 Bootstrap methods

Since Efron (1981) introduced this Monte Carlo simulation method, bootstrap
has caught the attention of both theoretical and applied statisticians.
Discussion of the following methods can be found in Efron (1985, 1986,
1987). The latest paper by Hall (1988) put the various bootstrap methods in
a unified framework and derived their theoretical properties. Portnoy (1987)
applied bootstrap to investigate the cross over in sex-distinct mortality rates.

A. Standard error estimation

In the different graduation methods we have different estimates of the true
values underlying the given data set. In order to answer the question how
good are these graduated values as estimates of the true values, we may rely
on bootstrap samples. Assume that the (x;,y;) are related by y, = f(x,) + ¢,
where f is unknown, and ¢; ~ N(0,0;). The bootstrap algorithm proceeds as
follows:

a. Use y,, the graduated value as a point estimate of f(x;), and residue
r? = (y, —9,)%. We can smooth the r? over i and then use it as an estimate of
the variance o?

I' .

b. For each i, generate an independent observation e¢; from N(0,0,), and
let y; =y, + e/. The bootstrap sample (x,,y]), (x5, ¥3),...,(x,,y;) is then
considered as a new set of data points. The sample is smoothed to produce
j}\]a.’y\b L2 aj;n'

c¢. When step b is repeated, say, 100 times, then for each i, the mean and
variance of J, can be approximated respectively by

1 .
Av(y,7) = ﬁ(z the 1007, values ) :

1 . o
= ﬁ(z the 100 (y,” — Av (¥, )" values )
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After smoothed over i, Av();") and Var(y,") are the bootstrap mean and
variance.

B.  Confidence intervals constructions

From the above estimate standard error, we have several ways to construct
confidence intervals:

a. Standard percentile method
We use the 100« point of a standard normal variate. For instance, the 90 %
central confidence interval is

Av () + 1.65+/var (37) .

b. Percentile t method
It is similar to the above, except that the ¢ table is used for the 100x percentile
point.

c. Bootstrap ¢t method

For each i, let TAV (") be the 25 % trimmed mean, and Iq (,") be the distance
between the 75th and 25th percentiles of ;. We can smooth TAV (3,*) and
Iq (3;") over i. The bootstrap t 90 % confidence interval is

[TAV (3;") —1q (3;)e®, TAV(3;") +1q(3,")e™],

where 0% and ¢ are estimated from the critical points in the empirical
distribution of the bootstrap values.

d. Bias corrected method & bias corrected accelerated method

The bias corrected method assumes that normality and constant standard
error can be achieved by some transformation, z = g(y) and Z = g(¥). Then
(z —z)/t ~ N(—z,1), with ¢ being the constant standard error of z, and z,
the bias constant, and z will have the confidence interval z + tz, + tz*. The
confidence interval for y is obtained by the inverse transformation y = g~ (z).
The bias corrected accelerated method assumes there is some g which
normalizes the standard error, with the result (z —z)/t ~ N(—zy0,,0,) where
o, = 1 +at for some bias constant a.
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3 The English Life Table Example

We now apply the above methods with The 1979 English Life Table No. 13,
for males age 2-40. We set i = x,, with i ranging from 2 to 40. Using crude
mortality rate u,, exposure E, graduated mortality rates b, from The 1969
English Life Table No. 12, for males age 240, and weight w, which is defined
as E,/b,(1 —b,), we graduate y, = u; — b;. The end result is the graduated
mortality 4, which is obtained by u;, =3, + b,

A.  Numerical results of the graduation methods

a. Moving-weighted average minimum R?

We use z = 3 and m = 5, i.e. a symmetric eleven term formula with coefficients
(a_s,...,ay) = (—.0279,—.0268,.0357,.1413, .2387). We use the natural method
(Greville 1981) to extend y, for graduating the end values.

These extended y; are:

Vi =€ Vi T CViua +FCsyys, fori=1,0,...,-3, and
Vi=C Vi F i+ +esys, fori=41,42,...,45,

where

(€),Cq5... ,€5) = (1.1608, 0.2811, —0.1410, —0.2045, —0.0964).

b. Cross-validation polynomial regression

Computation by Brooks et al. (1986) showed that for the same set of data
the degree 3 gives minimum cross-validation score. The estimated polynomial
regression is y = —0.001985 + 0.3155x — 1.7086x% + 0.02435x°.

c. Supersmoother

Computation was done using an aigorithm developed by J. Friedman and W.
Stuetzle of Stanford University.

d. Basis-Spline

Computation was done using a package developed by F. Sullivan of University
of California, Berkeley, using cubic splines.

The graduated values from all these four methods are given in Table 1.



Table 1

The ungraduated values y; = u; — b; and graduated values J, and 4, for the 1979 English Life Tables No. 13
(males ages i = 2 to 40), where the u, are the crude mortality rates, the b, are the graduated mortality rates for
the 1969 English Life Table No. 12, and the w; are the weights.

[N

[=- B - Y e " N

11
12
13
14
15
16
17
18
19
20

|

803
626
514
462
467
413
369
360
335
334
3238
374
440
512
811

1036
1034
1079
1068

990
690
620
570
520
480
440
410
390
380
380
410
470
590
780
990

1120
1170
1190

107 Cy,
1

1205.5
1757.7
1989.8
2201.8
2428.7
2616.8
2811.3
2955.9
3027.5
3027.5
2955.6
2682.4
2285.6
1775.3
1323.9
1033.0

906.9

865.1

861.2

Cross-Validation

GRADUATETD

VALUES

Meving-Weighted-Average

Supersmoother

Basis-Spline

108y, 108y, 105, 108y, 108, 108y, 10%;

-144.9 -~153.8 826.2 -120.5 869.5 -109.2 880.8
-122.8 -120.5 569.2 -110.9 579.1 -100.5 589.5
-103.7 - 96.4 523.6 -101.4 518.6 - 92.0 528.0
- 87.4 - 81.1 488.9 - 91.1 478.9 - B3.7 486.3
- - 72.4 447.3 - 82.3 437.7 - 75.8 444 .2
= - 66,7 413.3 - 73.9 406.1 - 68.6 411 .4
= - 61.4 378.6 - 65.9 374..1 - 62.1 377.9
- - 56.0 354.0 - 59.9 350.1 - 56.5 353...5
- - 51.9 330.0 - 55.0 335.0 - S1.8 338.2
= - 49.6 330.4 - 48.3 331.7 - 48.3 331.7
= - 48.9 331.1 - 43.2 336.8 - 46.0 334.0
- - 43.5 336.5 - 40.6 369.4 - 45.0 365.0
- . - 30.8 439.2 - 39.4 430.6 - 45.6 424.4
- « 5 - 16.4 573.6 - 41.6 548 .14 - 47.7 542.3
= i | -10.7 769.3 - 47.8 732.2 - 51.5 728.5
] : 1 - 19.8 970.2 - 56.3 933.7 - 56.8 933.2
- - 4s.1 1074.9 - 68.6 1051.4 - 63.5 1056.5
- - 77.6 1092.4 - 82.0 1088.0 - 71.3 1098.7
- -110.3 1079.7 - 97.0 1093.0 - 79.7 1110.3

eEl



Table 1 continued

21 -119 1061

22 -151 989
23 -127 953
24 =202 818
25 -120 870
26 - 67 913
27 - 84 916
28 -172 868
29 -194 B96
30 -160 990

31 -149 1061
32 -196 1084
33 -242 1118
34 -243 1207
35 ~-152 1398
36 -140 1530
37 -218 1592
38 -255 1705
39 -173 1907
40 -104 2246

10" b,

1180
1140
1080
1020

990

980
1000
1040
1290
1150
1210
1280
1360
1450
1550
1670
1810
1960
2140
2350

894.6
973.0
1082.6
1131.6
1111.3
1045.8
998.2
918.3
828.5
759.7
7229
693.2
651.5
605.0
557.8
508.2
464.5
430.9
403.0
372.4

GRADUATED

VALUES

Cross-Validation Moving-Weighted-Average Supersmoother Basis-Spline
10y, 10%, 10%%, 10%, 108y, 10%, 106y, 105,
- 93.3 1086.6 -136.3 1043.7 -108.9 1071.1 - 88.5 1091.
-102.9 1037.1 -148.8 991.2 -119.7 1020.3 - 97.4 1042.
-112.6 967.4 -148.2 931.8 -126.7 953.3 -106.2 973,
-122.4 897.6 -137.3 882.7 -131.1 888.9 -144.6 8754
~132.1 857.9 -122.7 867.3 -133.6 856.4 -122.8 867.
-141.6 838.4 -115.8 864.2 -139.6 840.4 -130.7 849.
-150.7 849.3 -120.6 879.4 -145.4 854.6 -138.5 861.
-159.3 880.7 -134.9 905.1 -150.7 889.3 -146.3 893.
-167.2 922.8 -153.4 936.6 ~156.4 933.6 ~153.8 936.
-174.3 975.7 -174.1 975.6 -162.2 987.8 -161.2 988.
-180.4 1029.6 -190.7 1019.3 -167.0 1043.0 -168.2 1041.
-185.4 1094.6 -200.3 1079.7 -171.8 1108.2 -175.0 1105.
-189.1 1170.9 -202.3 1157.7 -177.2 1182.8 -181.6 1178.
-191.5 1258.5 -200.8 1249.2 -181.8 1268.2 -187.8 1262.
~192.3 135377 -198.8 1351.2 -184.7 1365.3 -193.7 1356.
-191.4 1478.6 -198.1 1471.9 -185.0 1485.0 -199.5 1470.
-188.6 1621.4 -198.7 1611.3 -182.,1 1627.9 -205.1 1604.
-183.9 1774.1 -193.9 1766.1 -176.7 1783.3 -210.6 1749.
-177.0 1963.0 -173.1 1966.9 -169.6 1970.4 -216.0 1924.
-167.9 2182.1 -131.3 2218.7 -162.5 2187.5 -221.4 2128.

5

6
8
4
2
3
5
.
2
8
8
4]
4
2
3
5
9
4
0
6

143!
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B. Comparisons of the graduation results

For easy comparisons, we have plotted the graduated values against
ungraduated values in Figure 1.

We can note the following comparisons:

a. smoothness

We note that the cross-validation regression polynomial and basis spline
methods show the underlying cubics, while the moving weighted average
minimum R? and supersmoother methods reflect more the local variations.
Of the latter two methods, the minimum JRZ2 fit the end values, i = 2, 40, rather
too closely, and the supersmoother has a global shape that resembles the first
two methods.

b. weighted residues

The weighted residuals w;(y; — ) for them are plotted in Figure 2, where we
provide a fitted curve for easy comparison. The residuals do not show any
unusual patterns. The curves seem to be smooth and centre around O.

It may be of interest to note that the four methods use different minimizing
criteria. There is no priori knowledge which method will give the minimum
mean weighted sum of squares of residuals or the minimum cross-validation
score. It is easy to compute the mean weighted sum of squares of residuals,

MWSSR = — Zw R,

To compute the cross-validation score, which is
P

40
(i)
CVS = QZw(yI 7.9,

with 3, as the least squares predictor of y, using only 38 data points while
excluding (x;,y;), is not as easy. This can be accomplished, however, by its
other form, see Craven/ Wahba (1979),

wilyi —)° y)2
392 (1—a;)?



Figure 1

Smoothed curves fitted to y; = u; — b, at ages x = 2 to 40

10%y

50

=100 r
=150
-200 r

=250

=300

Cross-Validation

50

=50 r

-100 -

=150 |

=200 r

=250

—-300

10

Super smoother

50

-50

=100

=150

—-200

-250

-300

-100

-150

-200

=250

=300

Moving-Veighted-Average

1

10

20
Basis-Spline

9¢l



Figure 2

Supersmoother fits to the weighted residuals ,/w;(y; — J;) obtained by the four methods
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where g; are the diagonal elements of A4, a 39 by 39 matrix which transforms
Vaseee 5 Yap 10 Vaoueo s Vo

For the weighted moving average minimum R? method, we use q, for ;. For
the supersmoother method, we approximate a; by 1/J, where J is 7 which
is the average variable span. For the basis-spline method, a;; is automatically
calculated by the package. For the cross validation regression method, we
make use a matrix X which is a 39 by 4 matrix, with rows [1 x; x? xJ] for
different i. Then a; are the diagonal elements of X (X X')~'X", where ¢t means
transpose. We give these calculations in Table 2.

Table 2

The mean weighted sum of squares of residuals MWSSR and cross validation
score CVS

Graduation Methods

Cross- Moving-Weighted- Super- Basis-

Validation Average smoother Spline

MWSSR 1.76817 1.18881 1.65955 1.77805
CVS 2:25892 2.05116 2.25883 2.33892

C.  Observation on the confidence intervals

We use the bootstrap percentile method to produce the confidence intervals
for the point estimates obtained from the four graduation methods. They are
given in Figure 3.

It is of interest to note that the interval bands follow the curves of the point
estimates; this feature is especially prominent for the moving weighted average
minimum R? method.

There does not seem to be much difference in the interval lengths among the
different methods. The interval lengths are shortest in the age range 812,
where the original data points are clustered together. It can also be noted
that most methods produce wide confidence intervals towards the end of the
age range, except for the minimum R? method which has fabricated extended
values for graduation.

In terms of coverage accuracy, there does not seem to be much difference
either: There are four original data points that none of the confidence intervals



Ligure 3

Bootstrap confidence intervals for true rates (* denotes an ungraduate value)

106y

50 F

=100

-150 t

=200

=250

1

=300

10

20
Cross-Validation

=100 t

=150

=200

=250

-300

10

20
Superancother

50

=100

=150

-200

-250

=300

50

=50

=100

-150

=200

—250

=300

10

Moving-Weighted-Average

20

30

10

20
Basis-Spline

6t 1



140

covers; each method has also two or three near misses. There is no clear
winner or loser. On the whole, the coverage is between 32/39 and 35/39, ie.
about 82 % and 90 %.

4 Concluding remarks

We have compared four graduation methods on a common data set. Besides
small differences, there does not seem to be vast differences. The conformity
seems to extend to their confidence intervals. One conclusion of this paper may
be that it does not matter much which graduation method one would employ,
provided the graduation method’s characteristics are known and the method
is ready to use. For instance, one may argue that although the minimum R?
method tends to reflect more local variations than other methods the method
is very easy to apply.

In a sequel paper we will use the other bootstrap methods to produce
confidence intervals. Recent bootstrap papers have succeeded to compare the
various bootstrap methods in a uniform theoretical framework, discussing
their critical points, confidence interval lengths, coverage accuracy and
dependency on sample sizes. For instance, it has been shown that the
bias corrected accelerated method and bootstrap method have some nice
theoretical properties.

Professor Fung-Yee Chan

Department of Mathematics / Statistics
University of Winnipeg

Winnipeg, Manitoba

Canada R3B 2E9
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Summary

Bootstrap method is applied to produce confidence intervals for the four following graduation
methods: moving-weighted-average minimum-R?, cross validation polynomial regression, super-
smoother and basis-spline. The graduation methods are compared and we observe how the

underlying graduation methods affect the confidence intervals in terms of coverage accuracy and
interval length.

Zusammenfassung

Anhand der Bootstrap-Methode werden Konfidenzintervalle fiir die folgenden Methoden der
Ausgleichsrechnung konstruiert: Gleitendes gewichtetes Mittel (Minimum R?), polynomiale
Regression mit Cross-Validierung, <Supersmoother> und «Basis-Spline». Die Ausgleichsmethoden
und die entsprechenden Konfidenzintervalle werden anhand eines praktischen Beispiels verglichen.

Résumeé

La methode <bootstrap> est utilisee pour produire des intervalles de confiance dans le cas
de quatre méthodes de lissage: moyenne mobile (minimum R?), régression polyndmiale avec
validation en croix, <supersmoothers et <basis-spline>. Ces méthodes de lissage et les intervalles
de confiance correspondants sont comparés a 'aide d’'un exemple pratique.
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