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Werner Hürlimann, Winterthur

Allgemeine Lebensversicherungen: Überschuss und Rentabilität

Einführung

Ende der siebziger Jahre ist das Problem der Rentabilität von Lebensversicherungen

in Deutschland ergiebig diskutiert worden (z. B. Feilmeier [1979]). Die
bekannteste Methode, um die Rentabilität und die Finanzierbarkeit der
Überschussbeteiligung nachzuweisen, ist das sogenannte "Verbandsverfahren", das

von Gessner (1978) ausführlich behandelt worden ist (siehe auch Wolfsdorf
[1986], Kap. 8.8).
In dieser Arbeit schlagen wir einen alternativen Lösungsweg ein, um aus der
Sicht des Versicherers die Rentabilität von Lebensversicherungsbeständen zu
messen. Insbesondere berücksichtigen wir die neuesten risikotheoretischen
Methoden und die Möglichkeit des Einsatzes von Rechenanlagen. Wir
hoffen weiter, dass unsere Überlegungen als mathematische Grundlagen für
computerunterstützte Verwaltungssysteme in der Lebensversicherung dienen
können.
In Abschnitt 1 charakterisieren wir Lebensversicherungen durch wenige
Elemente, die es erlauben, das Lebensversicherungsgeschehen mit einer
Ausscheideursache zu beschreiben. Danach interpretieren wir in Abschnitt 2 das

Versicherungsgeschehen auf zwei verschiedene Arten, die zu unterschiedlichen

Prämienzerlegungen in Spar-, Risiko- und Kostenkomponenten führen.
Es sind dies die bekannten Netto- und Bruttokomponenten, letztere auch
ausreichende Komponenten genannt. Diese Betrachtungsweisen sind nicht
unabhängig. Der Übergang zwischen den Interpretationen ist durch Formeln
gewährleistet, die Vermögensschiebungen darstellen. Wir erhalten ebenfalls
interessante Formeln für die Kosten 1. Ordnung, die nach Tarifgrundlagen
genügen, um eine Lebensversicherung durchzuführen.
Wir erinnern weiter daran, dass die Deckungskapitalien mit Hilfe von
Rekursionsformeln berechnet werden können (z.B. Wolfsdorf [1986], Kap. 4.2). In
Abschnitt 3 diskutieren wir ausführlich ein additives Modell der "Technischen

Rechnung" eines Lebensversicherungsunternehmens, das auf die Zerlegung
des Versicherungsprozesses in Spar-, Risiko- und Kostenprozesse angewendet
wird. Insbesondere erhalten wir einfache Formeln für die Zerlegung des

Nettoergebnisses nach seinen Quellen Zins, Risiko und Kosten. In Abschnitt 4

diskutieren wir die Betriebsrechnung eines Lebensversicherungsunternehmens,
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insbesondere die Hauptfragen nach Rentabilität und Ermittlung der
Uberschusse nach den Quellen Zins, Risiko und Kosten Wir beschranken uns
auf deterministische Zins- und Kostenprozesse und diskutieren den Risikobereich

anhand eines stochastischen Modellansatzes, der nach Modifikationen
auf Zins- und Kostenbereich möglicherweise anwendbar ware In Abschnitt 5

berücksichtigen wir ein einfaches Modell der strukturierten Programmierung,
um die "Technische Rechnung" computergestutzt zu generieren Das Konzept
wird anhand von zwei numerischen Beispielen in Abschnitt 6 illustriert.
Zum Schluss mochten wir auf mögliche Verbesserungen und Weiterentwicklungen

hinweisen Kompliziertere Modelle, die die unterjahnge Zahlungsweise
und die unterjahngen Versicherungsereignisse (Eintritt, Austritt usw)
berücksichtigen, sind durch Erweiterung unseres Basismodells denkbar Wünschenswert

ist ebenfalls ein Modell, das ein Überschussbeteiligungssystem integriert
Es ware dann von Interesse, dieses Modell mit dem herkömmlichen
"Verbandsverfahren" zum Nachweis der Finanzierbarkeit eines Bestandes samt
Uberschussbeteihgung zu vergleichen Schliesslich bleibt ebenfalls ein
ubergreifendes Modell zu konstruieren, das imstande ist, die globale Rentabilität
von verschiedenartigen Beständen zu messen

1 Zum Konzept der allgemeinen Lebensversicherung

Wir setzen voraus, dass der Leser mit den modernen Grundlagen der Lebens-
vesicherungsmathematik vertraut ist Durch Algebraisierung der
Lebensversicherungstechnik streben wir danach, wesentliche Konzepte in einfacher und
klarer Weise darzustellen
Unser Ausgangspunkt ist eine allgemeine Lebensversicherung, charakterisiert
durch folgende Elemente

- ein Versicherungstarif (z. B gemischte Versicherung, Altersrente, Risiko¬
versicherung, ErlebensVersicherung usw),

- ein Eintrittsalter x,

- eine Versicherungsdauer n,

- Todesfallleistungen (Tf 7"*), wobei Tx nach t Jahren fällig wird,
falls der Versicherte im t-ten Versicherungsjahr stirbt

- vorschüssige Rentenleistungen (Rf R*), wobei R* zu Beginn des f-ten
Versicherungsjahres fällig wird, falls der Versicherte zu diesem Zeitpunkt
lebt, und/oder

- nachschüssige Erlebensfallleistungen (Ef £*), wobei JE* nach t Jahren
fällig wird, falls der Versicherte diesen Zeitpunkt uberlebt,
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- Nettoprämien {n^'x, n^'x) und Kostenprämien (nf'x, n^-x), wobei
n?'x und nf'x zu Beginn des Men Versicherungsjahres fällig werden,
falls der Versicherte zu diesem Zeitpunkt lebt.

Wir setzen natürlich voraus, dass der Versicherungstarif die Rechnungsgrundlagen

vorgibt, wie z.B. Sterblichkeiten, Kostensätze oc,ß,y usw. Die obigen
Elemente sind die fundamentalen Grössen der Lebensversicherungstechnik. Wir
behaupten, dass sie genügen, das Lebensversicherungsgeschehen mit einer
Ausscheideursache vollständig zu beschreiben, sowohl aus theoretischer wie
aus rechnerisch praktischer Hinsicht. Diese Arbeit befasst sich aber nicht
damit, diese Behauptung mathematisch streng zu beweisen, sondern möchte die
Nützlichkeit unserer Betrachtungen für eine moderne computerunterstützte
Lebensversicherungspraxis in konstruktiver Weise hervorheben. Ein
komplizierteres Berechnungsmodell für mehrere Ausscheideursachen (z. B. Tod und
Invalidität) sollte ebenfalls in Reichweite sein (hierzu verwende man die Technik

von Gerber [1986], Kap. 7).

Unseres Erachtens ist eine analoge Methode sogar in der Nicht-Lebensversicherung

denkbar. Dazu erweitere man das Konzept mit einer Lösung des

Problems der Schadenreservierung: unbekannte Schadenhöhen (stochastische
Natur der Leistungen), d. h. IBNER-claims (incurred but not enough reserved),
sowie verspätete Kenntnisnahme von Schäden, d.h. IBNR-claims (incurred
but not reported).

Lür die weitere Diskussion benötigen wir noch folgende durchgehend
verwendete Bezeichnungen:

t das Versicherungsjahr der Beobachtung, zu Beginn dessen der
Versicherte mit Eintrittsalter x lebt

tVx das Nettodeckungskapital

tVx das Bruttodeckungskapital (auch ausreichendes Deckungskapital
genannt)

yK yB _ ytr X tv X ty X

das Kostendeckungskapital

_x NyX K,x
7lt — 7lt + 7Zt

die Bruttoprämie

7tfs'x die Bruttosparprämie (auch ausreichende Sparprämie)
S xnt' die Sparprämie
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nBR'x die Bruttorisikoprämie (auch ausreichende Risikoprämie)
71*"* die Risikoprämie't

BK,x x BS,x BR,x
7lt — 7Tj — 7— 7l{

die Bruttokostenprämie (auch ausreichende Kostenprämie)
K S x

7t(
" ' die Sparkomponente der Kostenprämie

nf'R'x die Risikokomponente der Kostenprämie
K* die Kosten 1. Ordnung, d.h. die nach Tarifgrundlagen Ende

des Jahres t fällig werdenden Kosten zur Verwaltung einer
allgemeinen Lebensversicherung

qx, px 1 — qx die Sterblichkeit bzw. die Uberlebenswahrscheinlichkeit
i, v= l/(l+i) der technische Zins bzw. der dazugehörige Diskontierungs¬

faktor

Im folgenden wird der Index x meistens weggelassen, und die Bezeichnungen
ebenfalls für Bestände, d. h. Kollektive von allgemeinen Lebensversicherungen
zu demselben Versicherungstarif verwendet.

2 Zwei Interpretationen des Lebensversicherungsgeschehens

Die fundamentale Zerlegung der Prämien in Spar-, Risiko- und Kostenkomponenten

ist auf mindestens zwei Arten möglich, je nachdem wie der Geldfluss
gedeutet wird.
In einer ersten Interpretation kann man verlangen, dass der stochastische
Prozess des ausreichenden Geldflusses genügt, die finanzielle Lage zu
beschreiben. Der Erwartungswert dieses Prozesses ist durch die Gleichung
des erwarteten Bruttogeidflusses gegeben:

(,_, VB + TT, - R,)(l + 0 — qx+t_{ Tt — Kt — Px+t_y(tVB + £,) (2.1)

In Worten ausgedrückt, werden die verfügbaren Einnahmen, abzüglich den
erwarteten Todesfallleistungen und den Ende Jahr fällig werdenden Kosten,
dem Kapital gleichgesetzt, das bei Erlebensfall vorhanden sein muss. Die
Auflösung dieser Gleichung nach der Bruttoprämie ergibt nach Umordnung
die Beziehung

nt vtVB - VB + Rt + vEt + vKt + vqx+t_y(Tt - tVB - Et) (2.2)
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aus der man die folgende Zerlegung in ausreichende Komponenten erhält:

7tfs vt VB - (_J
VB + R, + vEt (2.3)

nBR=vqx+t_l(Tt-tVB-Et) (2.4)

7ifK vKt (2.5)

Dabei werden die Kosten 1. Ordnung residual bestimmt als

Kt (ti, - TiBS - 7ifR)(l + i) (2.6)

Ausserdem liefert (2.1) Rekursionsformeln zur Berechnung der Bruttodek-
kungskapitalien, nämlich:

tVB VB+nt- Rt)( 1 + 0 -Kt- qx+t_x Tt} - Et
Px+t-l

0VB=—a (a : Abschlusskostensatz) (2.7)

In diesem Fall genügt für die Definition einer allgemeinen Lebensversicherung
die Kenntnis der Bruttoprämien anstelle der Netto- und Kostenprämien,
um die Zerlegung in ausreichende Komponenten rechnerisch durchzuführen.
Diese Interpretation hat also eine informationstheoretische Reduktion der

notwendigen Statistiken zur Folge. Ferner beachte man, dass im allgemeinen

nBS + Trf^Trf, nBKfnf (2.8)

Beispiel 1 Für eine lebenslänglich laufende Altersrente

Tt Et 0, Rt 1,

gilt

71, 7t,V 7t,R =0

und

,Fß (l +y2yax+t

wobei y2 ein Verwaltungskostensatz für Rentenbezüger ist. Durch Rechnung
erhält man

nfR =~vqx+t_i(l +y2)äx+t

nfs=-nf*-y2, nBK r2 (2.9)
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In dieser Deutung des Versicherungsgeschehens enthalten die Bruttospar-
prämien und die Bruttorisikoprämien einen Kostenanteil. Daher sind die

dazugehörigen Spar- und Risikoprozesse keineswegs kostenneutral. Wie wir
später sehen werden, besitzen die Hauptfragen eines Lebensversicherungsunternehmens

nach Überschussermittlung und Rentabilität trotzdem vernünftige
Antworten. Möchte man aus betriebswirtschaftlichen, tariflich konstruktiven,
risikotheoretischen oder anderen Gründen echte Spar-, Risiko- und
Kostenprozesse, so muss das Versicherungsgeschehen anders gedeutet werden.

In der zweiten Interpretation verlangt man, dass die stochastischen Prozesse
des Netto- und Kostengeldflusses, separat betrachtet, die finanzielle Lage
beschreiben. Die Erwartungswerte dieser Prozesse sind gegeben durch die

Gleichungen des erwarteten Netto- und Kostengeldflusses:

0-, y+V- R,v+o - wiT, PX-K-I ov + v Ü-10»

(t_{VK+V)(l + i)~Kt=px+t_[ tVK (2.11)

Wie zuvor erhalten wir durch Umformungen die Beziehungen

V =vtV-l_1V + R, + vEt + vqx+t_{(Tt — tV — Et) (2.12)

7if vt VK — t_1VK + vKt — vqx+l_l tVK (2.13)

aus denen man folgende (Netto)Komponenten abliest:

nf vtV—t_{V + R, + vEt (2.14)

V v<h+t-i{Tt-ty ~Et) (2.15)

nf>s vtVK -t^VK +vKt (2.16)

n=-vqx+t_ltVK (2.17)

Kt (,_, VK - jzr,r)(1 + 0 - tVK + ttf (1 + 0 (2.18)

Man erhält ebenfalls die folgenden Rekursionsformeln zur Berechnung der
Deckungskapitalien:

,y —1—{(r-t y+n?- r,)(i + o - w. Vt - Et
Px+t-\

0^=0 (2.19)

tvK {(«-. yK+Vv +1) - Kt}
Px+t-\

o VK=~« (2.20)
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Hiermit überzeugt man sich, dass diese zweite Komponentenzerlegung
vollständig anhand des Informationsinhalts einer allgemeinen Lebensversicherung
durchgeführt werden kann. Diese zweite Interpretation ist im Einklang mit
der risikotheoretischen Standardliteratur, die meistens nur den Nettogeldfluss
ausführlich behandelt.

Beispiel 2: Für dieselbe laufende Altersrente wie zuvor erhalten wir mit
tV äx+t und tVK y2äx+t die Komponenten

nf ~vqx+t_x tV, 7rf -nf, nf'R y2nf, nf's -nf*
Kt =720 +0

Im allgemeinen bestehen zwischen der ersten und zweiten Interpretation
folgende Zusammenhangsformeln (Geldverschiebungen):

[VB=tV+tVK (2.21)

nBS =nS+nK.S _nBK {222)
— BR R -

Kt 7lt + 7lt (Z.Z3)

Bemerkung: Es ist möglich, den Begriff allgemeine Lebensversicherung
und die dazugehörigen Interpretationen des Geldflusses auf unterjährige
Prämienzahlungen und Leistungen sowie auf unterjährige Versicherungsereignisse

(Deckungskapitalien zu einem gebrochenen Zeitpunkt) auszudehnen.
Die Techniken hierzu findet der interessierte Leser im Lehrbuch von Gerber

(1986).

3 Technische Rechnung für allgemeine Lebensversicherungen

Nach geringfügigen Vereinfachungen lässt sich das Nettoergebnis einer

Lebensversicherungsgesellschaft wie folgt darstellen:

Nettoergebnis Prämien

+ Zinsen

— Leistungen

— Kosten

— Erhöhung Rückstellungen (3.1)
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Diese Gleichung wollen wir als additives Modell der technischen Rechnung
benützen, um den Gesamtprozess sowie die Spar-, Risiko- und Kostenprozesse
von allgemeinen Lebensversicherungen zu beschreiben.

Als Konsequenz dieses Modells diskutieren wir dann die Hauptfragen nach
Überschussermittlung und Rentabilität.

Nebst den Annahmen, die dem Begriff allgemeine Lebensversicherung
zugrunde liegen, setzen wir voraus, dass der Stichtag mit dem Beginn
des Versicherungsjahres und mit ganzzahligem Eintrittsalter stattfindet.
Seit der Einführung des BVG-Obligatoriums in der Schweiz ist diese

zusätzliche Annahme zumindest im Kollektivbereich überwiegend erfüllt.
Durch eine adäquate Behandlung der Unterjährigkeit (vgl. hierzu Gerber
[1986], insbesondere 4.8, 6.6) kann diese Annahme aufgehoben werden.
Um einfache und klare Konzepte zu erhalten, verzichten wir hier auf den

allgemeinsten Fall.

Zur mathematischen Beschreibung benötigen wir noch folgende Grössen:

Rückkaufsleistung (Abfindungswert) des Versicherten x,
die nach t Jahren fällig wird.

f 1, bei Tod des Versicherten x im Jahr t

\ 0, sonst

1, bei Rückkauf des Versicherten x im Jahr t

\ 0, sonst

C 1, bei Tod oder Rückkauf
£x+I + Öx+t j n[ 0, sonst

Rk;

Sx+t

"x+t

Die Variablen £, 6, Q sind Zustandsindikatoren und werden als Zufallsvariablen
behandelt. Hiermit erhält man die Zufallsvariable der individuellen zufälligen
Leistungen als

Ll ex+t{T?-E?) + öx+tRk? (3.2)

Für ein festes Versicherungsjahr t betrachten wir nun einen Bestand von N
Versicherten mit Eintrittsalter x,, die sich im Beobachtungsjahr f, befinden,
und Anfang Versicherungsjahr t noch leben, i 1, N.
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Die Bestandesgrössen von Interesse, die durch Summation von individuellen
Grössen definiert werden, sind gegeben durch

n die Bruttoprämien
nBS die Bruttosparprämien
ns die Sparprämien
nBR die Bruttorisikoprämien
nR die Risikoprämien
nBK die Bruttokostenprämien
nK die Kostenprämien
71

K,S die Sparkomponente der Kostenprämien
nK'R die Risikokomponente der Kostenprämien
R die Rentenleistungen
E die Erlebensfallleistungen
L Yj, EXt[ die zufälligen Leistungen
sB z,(L*;-nXi+!i-tvB)

die Bruttoschadensummen (auch ausreichende Schadensummen)

s=UL*:-&Xi+t/tvj
die Schadensummen

SK SB — S die Schadensummen der stochastischen Komponente des Ko¬

stenprozesses
K die Kosten 1. Ordnung
Reff die effektiven Kosten des Bestandes

t-\VB, tVB die Bruttodeckungskapitalien zu Beginn, bzw. Ende des Versi¬

cherungsjahres t

hF, tV die Nettodeckungskapitalien zu Beginn, bzw. Ende des Versi¬

cherungsjahres t
t^EK, tVK

Versicherungsjahres t

Dabei sind die Grössen L, SB, S, SK natürlich Zufallsvariablen. Zu beachten
ist, dass alle Bestandesgrössen, bis auf die effektiven Kosten, additiv definiert
sind. Findet man eine geeignete Verschlüsselung, um die effektiven Kosten
des Bestandes auf die individuellen Versicherten umzuverteilen, so gelten die
Überlegungen dieses Abschnittes ebenfalls für individuelle Versicherte. Wir
lassen die Kostenprobleme beiseite und betrachten lediglich eine proportionale
Umverteilung der effektiven Kosten, definiert durch

,VK, tVK die Kostendeckungskapitalien zu Beginn, bzw. Ende des

Refft: K*t Keff/K (3.3)
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Der effektive Zins, der von der Versicherungsgesellschaft im Versicherungsjahr
erwirtschaftet wird, sei ie. Je nachdem wie das Lebensversicherungsgeschehen
interpretiert wird, ergeben sich verschiedene Darstellungen der technischen
Rechnung. Das Nettoergebnis zerlegen wir jeweils nach seinen Quellen Zins,
Risiko, Kosten.
Für jeden Prozess erhalten wir ein dem additiven Modell (3.1) ähnliches
Abrechnungsschema. Die sich ergebenden Abrechnungsschemas sind in den
Tabellen 1 bis 8 ersichtlich.
Die Herleitung der Ergebnisse sei im folgenden kurz erläutert. Nach
Umformung erhält man für das Nettoergebnis in Tabelle 1:

(t_, VB + nBS - R)(ie - i) + (,_! VB + nBS - R)(l + i) - tVB - E

was nach (2.3) das gewünschte Resultat liefert.
Die Tabelle 2 ist klar, und Für die Tabelle 3 beachte man, dass nBK(l +i) K
nach (2.5). Die Tabelle 4 erklärt man wie die Tabelle 1 mit Hilfe von
(2.14) an Stelle von (2.3). Die Tabelle 5 ist wiederum klar. Dagegen
braucht die Tabelle 6 eine ausführliche Erklärung. Analog zur Zerlegung des

Nettoprozesses in Spar- und Risikoprozess, zerlegen wir den Kostenprozess
in eine deterministische und stochastische Komponente wie in Tabelle 8. Das
deterministische Nettoergebnis Kosten ist dann nach Umformung gleich

(,_, VK + nK'S)(ie - i) + (t_, VK + tzk-s)(1 + i) - tVK - Keff

was nach (2.16) die gewünschte Darstellung liefert. Die stochastische Komponente

erklärt sich von selbst. Der Eintrag der Schadensumme

SK — V Q • VKZj <1 xi
l

in der Position Kosten der stochastischen Komponente bedeutet Befreiung der
Kostenreserve bei Tod oder Rückkauf.
Die Tabelle 7 folgt durch Addition der Tabellen 1, 2, 3 bzw. 4, 5, 6.

Bemerkung: Man beachte, dass im Gegensatz zur Tarifierung, beschrieben
in den Abschnitten 1 und 2, das Abrechnungsverfahren das Stornorisiko
berücksichtigt.
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Tabelle 1: Bruttosparprozess

Prämien nBS

Zinsen {t_lVB + 7lBS_R)ie

Leistungen R+E+L-SB
Kosten —

Erhöhung Rückstellungen tVB-t_{VB +SB-L
Nettoergebnis Zins (r-tVB+nBS-R)(ie-i)
Nettoergebnis Risiko —

Nettoergebnis Kosten —

Tabelle 2: Bruttorisikoprozess

Prämien nBR

Zinsen nBR ie

Leistungen SB

Kosten —

Erhöhung Rückstellungen —

Nettoergebnis Zins nBR{ie-i)
Nettoergebnis Risiko nBR{i + i)-SB
Nettoergebnis Kosten

Tabelle 3: Bruttokostenprozess

Prämien nBK

Zinsen

Leistungen —

Kosten Keff
Erhöhung Rückstellungen —

Nettoergebnis Zins nBK(ie-i)
Nettoergebnis Risiko —

Nettoergebnis Kosten K — Keff
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Tabelle 4: Sparprozess

Prämien ns

Zinsen (t_, V + ns — R) ie

Leistungen R+E+L-S
Kosten —

Erhöhung Rückstellungen tV -t^V +S-L
Nettoergebnis Zins (t-XV+izs-R)(ie-i)
Nettoergebnis Risiko —

Nettoergebnis Kosten —

Tabelle 5: Risikoprozess

Prämien nR

Zinsen nR ie

Leistungen S

Kosten —

Erhöhung Rückstellungen —

Nettoergebnis Zins xR(ie~ 0

Nettoergebnis Risiko ttr(1 +i)-S
Nettoergebnis Kosten

Tabelle 6: Kostenprozess

Prämien nK

Zinsen it-lVK+nK)ie
Leistungen —
Kosten Keff
Erhöhung Rückstellungen tvK-t_xvK + SK

Nettoergebnis Zins (t_lVK+nK)(ie-i)
Nettoergebnis Risiko nK'R(\ + 0 — SK

Nettoergebnis Kosten K - Keff
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Tabelle 7: Gesamtprozess (1. und 2. Interpretation)

Prämien n

Zinsen (r-1 VB + n — R)ie

Leistungen R + E + L
Kosten Keff
Erhöhung Rückstellungen tVB -HF8 +SB — L

Nettoergebnis Zins (r_1 VB + n — R)(ie — i)

Nettoergebnis Risiko 7tßR(l + i) — SB

Nettoergebnis Kosten K — Keff

Tabelle 8: Zerlegung des Kostenprozesses

Deterministische Stochastische

Komponente Komponente

Prämien nK-s nK-R

Zinsen (t l VK + nK'S)ie nK'R ie

Leistungen — —
Kosten Keff— SK SK

Erhöhung Rückstellungen t
VK — ;_1 VK + SK —

Nettoergebnis Zins (t_, VK + nK's)(ie — i) nK-R(ie — i)

Nettoergebnis Risiko — 7tK'R(l + i) — SK

Nettoergebnis Kosten K — Keff

4 Betriebsrechnungen, Überschuss und Rentabilität

Damit der Versicherer wirtschaftlich erfolgreich sein kann, hat er Anspruch
auf angemessene Gewinnmargen, die z. B. bestandesspezifisch und nach

Überschussquellen definiert sind. Die Rentabilität eines Bestandes, oder

allgemeiner einer Kollektion von Beständen, wird durch die Realisierung
der Gewinnmarge beurteilt. Wir beschränken uns auf die Definition von

möglichst einfachen und praktischen betriebswirtschaftlichen Kriterien für die

Beurteilung der Rentabilität eines einzigen Bestandes. Je nach Interpretation
des Versicherungsgeschehens ergeben sich unterschiedliche Kriterien. Wir
fordern, dass die einzelnen Prozesse selbsttragend sind, sei es in der Bruttooder

Nettorechnung.
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Wir beginnen mit der Rentabilität in einem deterministisch angenommenen
Zins- und Kostenbereich. Modelle zur Ermittlung des effektiven Zinssatzes

und der effektiven Kosten sollen in dieser Arbeit nicht behandelt werden.

Die Gewinnmargen des Versicherers seien durch einen Zinsgewinnsatz iG mit
iG — i > 0, was einen Zinsrückbehalt definiert, und einen Kostenrückbehalt RBK

gegeben. Als Modell für das Bestandesergebnis eines Prozesses aus der Sicht
des Versicherers dient das additive Modell:

Bestandesergebnis Rückbehalt — Überschaden (4.1)

wobei wir definieren

Überschaden (Rückbehalt — Nettoergebnis)+ (4.2)

mit (V)+ der positive Teil von X. Die Terminologie "Überschaden" stammt aus
der Interpretation des Risikoprozesses, der weiter unter detailliert behandelt
wird. Alternativ könnte man die klassischere Terminologie "Gewinn" für
"Rückbehalt" und "Verlust" für "Überschaden" verwenden.

Unter Zinsprozess verstehen wir die Überlagerung der Überzinsprozesse

(Zins über dem technischen Zins) für jeden einzelnen Spar-, Risiko und
Kostenbereich. Die Tabellen 3 und 7 liefern sofort:

Bestandesergebnis Zinsprozess

(t_, VB+7r - R){(iG - i) - (iG - ie)+} (4.3)

Bestandesergebnis Bruttokostenprozess

RBk - {Keff-K + RBk) +

Im Normalfall, d. h. deterministischer Zinsprozess mit i < iG < ie und positiver
Zinsträger, ist ein Bestand immer zinstragend, d. h. rentabel im Zinsbereich.
Ein Bestand ist kostentragend (im deterministischen Fall und in der ersten

Interpretation), d. h. rentabel im Kostenbereich, falls das Bestandesergebnis
Bruttokostenprozess positiv ist. Die Beurteilung des Kostenbereiches für die
zweite Interpretation folgt später.
Der Risikobereich soll nun aufgrund der neueren risikotheoretischen
Erkenntnisse behandelt werden. Die Beurteilung des Risikobereiches kann auf
folgende allgemeine Situation zurückgeführt werden.
Am Ende des Versicherungsjahres stehen für einen gewissen Bestand
verfügbare Einnahmen P Schäden X gegenüber, die zufällig schwanken.
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Für die Kompensation eines Schadens X > P stellt der Versicherer einen
Risikorückbehalt R(X) in Rechnung, der durch das Nettoergebnis Risiko
P—X finanziert werden soll, d. h. mit 0 < R(X) < (P—X)+. Dieser Rückbehalt
soll eine Risikogewinnmarge und einen Schwankungsausgleich enthalten. Dieser
letzte Zuschlag ist notwendig, weil nur endlich viele Jahre oder Verträge zur
Verfügung stehen, um Verluste aufzufangen. Sei noch

U(X) (R(X)-(P-X))+ (4.4)

die Zufallsvariable des Überschadens, der nach Abzug des Nettoergebnisses
vom Rückbehalt entstehen kann. Die resultierende Zufallsvariable

Y R(X)-U(X) (4.5)

beschreibt dann das Bestandesergebnis Risiko, das zur Beurteilung der Rentabilität

im Risikobereich dient. Ein Bestand heisst risikotragend, d. h. rentabel
im Risikobereich, falls im Erwartungswert das Bestandesergebnis positiv ist
und die jährlichen Schwankungen des Risikoergebnisses mit einer vorgegebenen

Sicherheitswahrscheinlichkeit auffangt (vgl. hierzu Bernhardt/Endres [1979],
203). Um dieses Kriterium in der Praxis verifizieren zu können, muss noch die
Funktion R(X) bestimmbar sein. Wir bemerken, dass das Bestandesergebnis
Risiko selbst ein Risiko ist, das mit Hilfe eines Prämienkalkulationsprinzips
H tarifiert wird. Da der Rückbehalt R(X) die bestandesspezifische
Selbstfinanzierung dieses Risikos durch das Nettoergebnis Risiko garantieren soll, ist
keine Prämie mehr nötig, um das Risiko Y zu decken. In anderen Worten
verlangen wir, dass

H(R(X)-U(}Q) 0 (4.6)

wobei das Prämienprinzip H den Risikogewinnanteil des Versicherers und
den Schwankungsausgleich natürlich enthalten (diese Forderung ist ebenfalls
in der Notiz Hürlimann [1988]).
Es sei vorweggenommen, dass die Gleichung (4.6) nicht immer lösbar sein

muss, wie auch R(X) konkret aussieht. Das heisst, es gibt Bestände, die a

priori nicht risikotragend sind. Dies ist zum Beispiel intuitiv einleuchtend bei
sehr kleinen Beständen. Die Marge P—E(X) genügt nicht mehr, um Lösungen
von (4.6) zu garantieren. In der Literatur sind bisher folgende Wahlen für den

Risikorückbehalt am häufigsten getroffen worden:

R(X) min(ß, (P —X)+), B const. (4.7)

was einen konstanten Abzug vom Nettoergebnis Risiko bedeutet,
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oder

R(X)=g(P-X)+, 0 < g < 1 (4.8)

was ein proportionaler Abzug ist (Bernhard/Endres [1979]).
In der weiteren Diskussion behandeln wir nur den Fall (4.7), der bei schadenfreiem

Verlauf grosse Überschüsse liefert. Wir wählen ein translationsinvariantes

Prämienkalkulationsprinzip (d. h. H(X + C) H(X) + C für konstantes

C), zum Beispiel das Streuungsprinzip H(X) E(X) + aa(X), a > 0. Durch
Nachrechnen erhält man

H(R(X) - U(X)) H(B ~(X-(P- B))+)

B-H((X-(P-B))+)
Die Forderung (4.6) liefert somit

B H((X-(P-B))+), (4.9)

was die Konstante B als eine Brutto-Stop-Loss-Prämie zur Priorität P — B
mit implizit definiertem B identifiziert (siehe auch Bernhard/Endres [1979],
Hürlimann [1988]).
Dieses allgemeine Resultat soll nun auf die Lebensversicherung angewendet
werden. Wir benötigen folgende Risikogrössen mit ihren Bezeichnungen:

SBb Selbstbehalt des Bruttorisikoprozesses
SBr Selbstbehalt des Risikoprozesses
SBk Selbstbehalt der stochastischen Komponente des Kostenprozesses
FB Verteilungsfunktion der Bruttoschadensumme SB

FR Verteilungsfunktion der Schadensumme S

FK Verteilungsfunktion der Schadensumme im Kostenprozess SK

Für die Verteilungsfunktion F einer Zufallsvariablen X sei weiter

BSL(F,SB) E[(X- SB)+] + aa[(X - SB)+] (4.10)

die Brutto-Stop-Loss-Prämie zum Selbstbehalt SB (Streuungsprinzip). Nach
den neuesten Erkenntnissen können diese Prämien sowohl im individuellen
wie im kollektiven Modell mit Hilfe einer Rechenanlage exakt oder zumindest
approximativ sehr genau gerechnet werden. Für das kollektive Modell
benützt man die Adelson-Panjer-Rekursion (Panjer [1981]) bzw. deren
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Verallgemeinerungen auf negative Risikosummen (Hürlimann [1985], Sundt
[1986]) oder die FFT-Methode (FFT: schnelle Fourier Transformation,
Bertram [1981/83], Hürlimann [1986]). Im individuellen Modell benützt man
das exakte, aber langsame Verfahren von De Pril [1986] oder andere
schnelle und gute Approximationsmethoden (Kornya [1983], De Pril [1987],
Bemerkung von Reimers [1987], Goovaerts / van Heerwaarden / Kaas [1988],
diese letzte Methode ist allgemeiner im Nicht-Leben-Bereich anwendbar). Die
verwendeten Grundlagen sind nun, in Kontrast zu den Tabellen 1 bis 7, nicht
mehr tarifliche Grundlagen, sondern Sterblichkeiten 2. Ordnung.
Die eingeführten Selbstbehalte seien nun implizit als Lösungen, falls sie

existieren, der folgenden Gleichungen definiert (Begründung durch Formel
(4.9)):

BSL(FB,SBB) nBR(l+i)-SBB, (4.11)

BSL(Fr,SBr) tzr(\+ i)-SBR, (4.12)

BSL(Fr,SBk) nK'R( 1 + 0 - SBk, (4.13)

Die Berechnung aller Bestandesergebnisse nach Modell (4.1) in den verschiedenen

Interpretationen liefert zusammengefasst:

Bestandesergebnis Zinsprozess

- (,_i VB +iz- R){(ic - i) - (iG - ie)+} (4.14)

Bestandesergebnis Bruttorisikoprozess

BSL{Fb,SBb)-{Sb -SBb)+ (4.15)

Bestandesergebnis Risikoprozess

BSL(Fr,SBr)-(S-SBr)+ (4.16)

Bestandesergebnis Bruttokostenprozess
RBk — (Keff— K + RBk)+ (4.17)

Bestandesergebnis Kostenprozess

RBk - (Keff- K + PBk)+

+ BSL(Fk,SBk)-(Sk -SBk)+ (4.18)

Die Überschüsse der verschiedenen Prozesse, gegeben durch die additive
Modellgleichung

Überschuss (Nettoergebnis — Rückbehalt)+ (4.19)

lassen sich ebenfalls berechnen.
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Man erhält:
Überschuss Zinsprozess

(4-20)

(4-21)

(4.22)

(4.23)

(4-24)

Zusammenfassend haben wir Für Bestände von allgemeinen Lebensversicherungen

einen allgemeinen Weg aufgezeigt, um die Rentabilität zu messen und
die Überschüsse zu ermitteln. Die Frage der Rentabilität und Überschüsse

eines ganzen Portefeuilles von verschiedenen Lebensversicherungsprodukten
für eine Lebensversicherungsgesellschaft sollte unseres Erachtens auf den
behandelten Spezialfall zurückführbar sein. Für kostenneutrale Beurteilungen ist
die zweite Interpretation des Lebensversicherungsgeschehens (Nettoprozesse
und Kostenprozess selbsttragend) vermutlich vorzuziehen.
Andererseits ist durch die Ermittlung der Überschüsse die Überschussbeteiligung

noch nicht festgelegt. Obwohl durch unsere Methode der totale
Überschuss eines Bestandes dem Versicherungsnehmer zurückerstattet werden

kann, ist aus verschiedenen Gründen (z. B. Aufsichtsbehörde) denkbar,
dass dies nicht der Fall sein muss. In diesem Fall sind weitere Überlegungen
zu unserem Modellansatz notwendig.

Beispiel 3: Wir diskutieren kurz den behandelten Abzug (4.7) ohne

Gewährung einer Überschussbeteiligung im Risikobereich. Das Ergebnis Risiko
des Versicherers lässt sich auf zwei Arten darstellen, als das Nettoergebnis

Risiko oder als die Differenz Rückbehalt abzüglich Überschaden. Mit
SB — P — B, Schaden X mit Verteilungsfunktion F, ergibt dies die Gleichung

P-X BSL(F, SB) - [X - SB)+

mit SB als Lösung der Gleichung

BSL(F,SB) + SB P

(4.25)

(4.26)
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Durch Einsetzen folgt

(X -SB)+ =X -SB (4.27)

Nimmt man an, dass X nur positive Werte annimmt (positive Risikosummen),
so bedeutet dies, dass SB 0 sein muss. In diesem Fall gilt

BSL(F,0) E(X) + aa{X), a
''~(4.28)a(X)

Der Parameter a muss natürlich so festgelegt sein, dass die Sicherheit
und der Gewinn des Versicherers für den betrachteten Bestand "gerade"
genügen. Die Tarifierung ist damit mit dem Streuungsprinzip äquivalent. Als
typisches Lebensversicherungsprodukt zu diesem Beispiel gilt die Stop-Loss
Rückversicherung, wobei X folgendermassen interpretiert wird: X (S — T)+,
S der Gesamtschaden des Bestandes, T die Priorität.

5 Computerunterstiitzte Berechnungen

Die Begriffe und Konzepte dieser Arbeit sind so entwickelt worden, dass sie auf
kleinere Rechenanlagen (Personal Computer) mit relativ geringem Aufwand
implementierbar sind. Wir skizzieren einen möglichen Weg zur erfolgreichen
Realisierung unserer Konzepte.
Das Leitmotiv der strukturierten Programmierung, das in den siebziger Jahren

vorgeschlagen worden ist, beruht auf dem vereinfachten Berechnungsmodell:

Programm Datenstruktur + Algorithmen (5.1)

das von Wirth [1975] popularisiert worden ist. Höhere Programmiersprachen,
die diesem Paradigma folgen, sind z. B. PASCAL und MODULA-2. Für
eine Realisierung auf PC's ist z. B. das effiziente Programmiersystem TURBO
PASCAL 4.0 verfügbar.
Abgesehen von den Stop-Loss-Berechnungen, für die es zur Zeit verschiedene

gute effiziente Algorithmen gibt, bereiten die anderen Berechnungen keine

arithmetischen Schwierigkeiten. Wie schon erwähnt, ist die Berechnung der

Stop-Loss-Prämien in letzter Zeit in der Literatur ergiebig diskutiert worden.
Deshalb konzentrieren wir uns in dieser Arbeit ausschliesslich auf die

bestandesspezifische computerunterstützte Erzeugung der Tabellen 1 bis 7.
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Eine elegante Lösung hängt gemäss (5.1) von einer geeigneten Wahl der

Datenstruktur ab. Der Zustand einer allgemeinen Lebensversicherung für
einen Versicherten in einem bestimmten Versicherungsjahr ist beschrieben

durch einen Datensatz Datenstruktur "record"):

VersicherteDaten (g, x, n, t, RL, EL, TL, RkL, IndT, IndRk) (5.2)

wobei die (neu eingeführten) Variablen folgende Bedeutung haben:

g : Geschlecht, RL Rf, EL Ef, TL Tf, RkL Rkx,

IndT £x+t, IndRk öx+t, wobei t die Ende Versicherungsjahr
abgelaufenen Jahre seit dem Eintritt zählt.

Die bestandesspezifischen Daten können in einer Datei "file") oder in einer
indizierten Tabelle "array") gespeichert werden, wobei jeder Eintrag von
der obigen Datenstruktur ist. Einfachheitshalber nehmen wir an, dass diese

Daten durch folgende strukturierte Variable dargstellt sind:

BestandDaten: array[1 ...AnzVMax] of VersicherteDaten, (5.3)

wobei AnzVMax eine Konstante, die die speicherbedingte maximale Anzahl
von Versicherten angibt. Durch die flexible Verwendung einer Datei muss diese

Konstante übrigens nicht festgesetzt werden. Das Element Versicherungstarif
einer allgemeinen Lebensversicherung wird durch eine Variable VTarif vom
folgenden Datentypus "record") beschrieben:

Tarif (Ps,Pr,Pks,Pkr, Va, Ve, BVa, BVe, KVa, KVe, K) (5.4)

mit

PS nf'x, Pr nf'x, Pks nR'S,x, Pkr nR'R"x, Va t-1 Vx,
Ve tVx, BVa t_{ Vx BVe tVxB, KVa t_,Vf, KVe
tVxK, K Kf.

Zur Berechnung von VTarif aufgrund von VersicherteDaten, dies geschehe in
einer Routine namens Compute VTarif, benötigt man nebst mathematischen
Formeln versicherungstechnische Grundlagen wie z. B. Sterblichkeiten,
Barwerte usw. Diese werden in Variablen qx, äx usw. mit Hilfe von geeigneten
Tabellen Tafeln einmal generiert, z. B. durch eine Prozedur Generate Tafeln,
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und dann zur ständigen Verwendung bereitgehalten. Danach benötigt man
eine Routine, sagen wir ComputelndSchema, zur Berechnung eines individuellen

Abrechnungsschemas mit Hilfe der Prozedur ComputeVTarif und aufgrund
von VersicherteDaten. Dieses individuelle Abrechnungsschema entspricht einer
Variablen IndSchema vom Datentypus "record"):

Schema (P, Ps, Pr, Pk, Pkr, Pks,

Va, Ve, BVa, BVe, KVa, KVe,

S, BS, KS.

L, RL, EL, TL, RkL,

K, Keß)

mit den (neu eingeführten) Bezeichnungen

Pk Pks + Pkr(= n*'x),
P Ps + Pr + Pk(= nf),
S LXt-nx+t-tVx,

BS=L;-£lx+ttVxB,
KS BS — S,

L L*.

Anschliessend werden aufgrund der konkreten BestandDaten das bestandesspezifische

Abrechnungsschema, Variable Bestandschema vom Datentypus Schema,
in ComputeBestandSchema durch Abrufen der Prozedur ComputelndSchema
generiert. Die so erhaltenen Informationen werden schliesslich dem Benützer
mit Hilfe von geeigneten Druckprozeduren zugänglich gemacht. Übersichtshalber

sei die wesentliche algorithmische Struktur des Verfahrens durch
folgenden Programmausschnitt dargestellt:
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PROGRAMM Abrechnungsschema;

CONST AnzVMax ;

TYPE Tafeln ;

VersicherteDaten ;

Tarif \

Schema ;

VAR AnzV; INTEGER,
BestandDaten: ARRAY [1 AnzVMax] OF VersicherteDaten;
VTarif: Tarif;
IndSchema, BestandSchema: Schema;

qx, aex. Tafeln;

PROCEDURE GenerateTafeln;

{generiert die versicherungstechnischen Grundlagen }

PROCEDURE ReadBestandDaten;

{liest die bestandesspezifischen Daten }

PROCEDURE Compute VTarif (Versicherte: VersicherteDaten; VAR VTarif: Tarif);
{berechnet den Versicherungstarif für einen Versicherten }

PROCEDURE ComputelndSchema Versicherte: VersicherteDaten; VAR Indschema:

Schema);

{berechnet ein individuelles Abrechnungsschema für einen Versicherten}
PROCEDURE Compute BestandSchema;

{ berechnet ein bestandesspezifisches Abrechnungsschema }

PROCEDURE WriteBestandSchema;

{ Druckprozedur }

{ Hauptprogramm }

BEGIN
Generate Tafeln;
ReadBestandDaten;
ComputeBestandSchema;
WriteBestandSchema;

END

Im nächsten Abschnit werden die Prozeduren

Compute VTarif, ComputelndSchema und ComputeBestandSchema
anhand von illustrativen Beispielen näher erläutert.
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6 Numerische Beispiele

Das allgemeine Konzept dieser Arbeit sei anhand von zwei speziellen
Versicherungstarifen inklusive numerische Auswertungen illustriert. Die Methode
wurde in PASCAL implementiert.

6.1 Laufende Altersrenten

In der heutigen Tarifierungspraxis werden immer häufiger anwartschaftliche
Versicherungen von laufenden Renten auseinandergehalten. Dafür gibt
es sowohl statistische Gründe (z.B. Niedermann [1987], 188) wie auch

risikotheoretische Motivationen (z. B. Hürlimann [1986], "Two inequalities

..."). Deshalb ist es erwünscht, Bestände von laufenden Renten separat
zu untersuchen.

Als Spezialisierung unserer allgemeinen Lebensversicherungen betrachten wir
lebenslängliche laufende Altersrenten mit vorschüssigen jährlichen Zahlungen

ohne Todesfallleistungen (Beispiele 1, 2). Mit einem Kostenansatz y2

beschreiben wir nun die relevanten Formeln zur computerunterstützten
Bestandesberechnung. Die Grössen qx, ax nach (GRM80, analytische Formeln)
werden in Tafeln gespeichert. Einfachheitshalber sollen keine Rückkäufe
stattfinden, d.h. es gilt stets IndRk 0. Die Variablen qx,äx, i, v, ie BestandDaten,
BestandSchema und Anz.V Anzahl Versicherte) sind global definiert. Der
Komponente BestandSchema.Keff werden zu Beginn die effektiven Kosten des

Bestandes zugewiesen. Die anderen Komponenten von BestandSchema werden
zu 0 initialisiert. Für die einzelnen Prozeduren erhalten wir im wesentlichen:

Compute VTarif
Der Variablen VTarif werden in Abhängigkeit von g, x, t (Komponenten von
Versicherte) folgende Werte zugeteilt:

Va 'äx+t-\>

Ve äx+t,

Pr ~v<Ix+t-i

K=y2(i+i).
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ComputelndSchema
Der Variablen IndSchema werden in Abhängigkeit von g, x, t, RL, IndT
(Komponenten von Versicherte), via der Hilfsvariablen VTarif, wie folgt Werte
zugeordnet:

Compute VTarif( Versicherte, VTarif)
Va RL VTarif Va, Ve RL VTarif Ve,

(beachte die PASCAL-Schreibweise für Komponenten vom Typ RECORD)
BVa (1 + y2) Va, BVe (1+y2) Ve, KVa y2-Va, KVe y2Ve,
Pr RL VTarifPr, Ps —Pr, Pkr y2Pr, Pks —Pkr, Pk 0,

P =0, S —IndT - Ve, BS (l+y2)-S, KS=y2-S, K RL-TarifK,
Kejf K BestandSchema.Keff
(proportional zugewiesene effektive Kosten)

ComputeBestandSchema
Die Variable BestandSchema wird gestützt auf BestandDaten, wie folgt
algorithmisch berechnet:

FOR j := 1 TO AnzV DO BEGIN
ComputeIndSchema(BestandDaten [/'], IndSchema)
P P+ IndSchema.P, (andere additive Zuweisungen)

END

Mit Hilfe von geeigneten Druckprozeduren können die Tabellen 1 bis 7 erzeugt
werden. Nach nochmaliger Anwendung der Prozedur ComputelndSchema
und proportionaler Umverteilung der effektiven Kosten auf die Versicherten
können sogar individuelle Tabellen 1 bis 7 erzeugt und gedruckt werden. Die
Ergebnisse der numerischen Auswertungen sind in den folgenden Tabellen
zusammengefasst. Wir rechneten mit ie 0.05, y2 0.02.
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Tabelle 9:
Versicherte Daten für einen Bestand von 500 laufenden Altersrenten

Anzahl % X t RL IndT Risikosummen
Versicherte Tod

5 1 65 3 12 000 1 - 118428

5 1 65 6 6000 1 - 49002
5 1 65 9 24000 1 - 152 220

5 1 65 12 10000 1 - 43 117

120 1 65 1 24000 0 - 262854
120 1 65 5 18000 0 - 157 425

120 1 65 10 12000 0 - 68 355

120 1 65 15 6000 0 - 11 663

Tabelle 10:

Technische Bruttorechnung: laufende Altersrenten

Sparen Risiko Kosten Gesamt

Prämien 1211479 - 1 360679 149 200 0

Zinsen 3002424 - 68034 7460 2 941 850

Leistungen 9 274 338 - 1 814338 7 460 000

Kosten 125000 125 000

Erhöhung Rückst - 6 261 405 - 6261405

Nettoerg. Zins 1200970 - 27 214 2 984 1 176 740

Nettoerg. Risiko 412 839 412 839

Nettoerg. Kosten 28 676 28 676
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Tabelle 11:

Technische Nettorechnung: laufende Altersrenten

Sparen Risiko Kosten Gesamt

Prämien 1 333 999 - 1 333 999 0 0

Zinsen 2943 553 - 66 700 64997 2 941 850

Leistungen 9 238 763 - 1 778 763 7 460000
Kosten 125 000 125000

Erhöhung Ruckst 6138 632 - 122 773 - 6261405

Nettoerg Zins 1 177421 - 26 680 25 999 1 176 740

Nettoerg. Risiko 404 744 8 095 412839

Nettoerg Kosten 28 676 28 676

Zur Ermittlung der Überschüsse und zur Beurteilung der Rentabilität dieses

Bestandes sind Brutto-Stop-Loss-Prämien zu berechnen.

Wir wählen hier das kollektive Modell der Risikotheorie und die FFT-
Methode. Für den Sicherheitszuschlag auf die Netto-Stop-Loss-Prämien gelte
a 0.15. In Anlehnung an die letzten statistischen Erhebungen in der
schweizerischen Kollektivversicherung (Niedermann [1987]) gelte qlJ l.2q
qx nach GRM80, als Sterblichkeit 2. Ordnung. Zur Illustration betrachten wir
nur den Bruttorisikoprozess. Wir wissen, dass der Selbstbehalt SBb Lösung
der Gleichung (4.11) ist:

-1 428 713 SBb + BSL(Fb,SBb) (6.1)

Durch Interpolation der Werte (Risikosummen auf 1000 gerundet)

BSL(Fb,-\ 550000) 125000, BSL(Fb,-\ 560000) 129000 kann man
sich Für SBb —1 555 000 entscheiden.

Mit (6.1) folgt damit BSL(Fb,SBb) 126 287. Der Bestand ist, mit der
gegebenen Sicherheit und Gewinnmarge (Wahl von a), risikotragend, falls der
Rückbehalt mit Risikoprozess mindestens 126287 ausmacht.

6.2 Gemischte Versicherungen

Das zweite klassische Beispiel behandelt die gemischte Versicherung mit
Schlussalter s 65 nach den Grundlagen GKM80 (analytische Formeln)
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und mit Kostensätzen a 0, ß 0.13, y 0.00165. Für die Sterblichkeiten
2. Ordnung gelte qlx 0.8qx, qx nach GKM80, und wiederum sei a 0.15

der Sicherheitszuschlag auf die Netto-Stop-Loss- Prämien. Die Beschreibung
der relevanten Prozeduren beschränkt sich nur noch auf die tariflichen
Gegebenheiten. Folgende Schritte (mit allgemeinem s, a, ß, y) sind zu beachten:

Compute VTarif:

n s — x,

1 ~ ^x-H-1 n-t+1 I /®x n

ye
^ _ äx+t n_t | /öx yfi t < n

\ 0 t n

BFu (1 + a)Va — ot, BVe (1 + oc)Ve — a

KVa a(Va — 1) KFe a(Fe-l)

Pr

Ps

^x+f_!(l-Fe) t < n

0 t n

vVe—Va t < n

v — Va t n

Pkr —vqx+t_xKVe

K
0 t <n
a(l ~qx+n-0 t n

PKs vKVe- KVa + vK

Ausser für die Kosten 1. Ordnung, Formel die mit (2.18) gewonnen wird, ist

die Herleitung der Formeln klassisch (z. B. Wolfsdorf [1986], 207).
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ComputelndSchema
Compute VTarif Versicherte, VTarif)

0 t < n

TL t n
EL

VA TL - VTarif.VA,
BVa TL- VTarif.BVA,
KVa TL- VTarif.KVa,
BS TL- VTarif.Ps,
Pks TL VTarif.Pks,

Ve TL- VTarif. Ve

BVe TL- VTarif.BVe
KVe TL- VTarif.KVe
Pr TL- VTarif.Pr
pkr TL- VTarif.Pkr

L

Pk Pks + kPkr,

TL IndT
0

S L — IndT Ve,

K TL- VTarif.K,

P Ps + Pr + Pk

t < n

t n

BS L- IndT BVe, KS BS

Keß K BestandSchema.Keff

(proportional zugewiesene effektive Kosten)
Numerische Ergebnisse sind in den folgenden Tabellen ersichtlich. Da a 0

stimmen Brutto- und Nettoprozess überein (keine stochastische Komponenten
im Kostenprozess).

Tabelle 12: Versichterte Daten für einen Bestand von 802 gemischte Versicherungen

mit Schlussalter 65

Anzahl
Versicherte

g X t TL IndT Risikosummen
Tod

1 1 25 20 100000 1 63 131

1 1 40 20 150000 1 40272
100 1 25 1 200000 0 197 225

100 1 25 10 100000 1 84071
100 1 35 5 180000 0 158975
100 1 35 15 120000 0 72 222
100 1 45 10 120000 0 69 155

100 1 45 20 100000 0 0
100 1 55 5 60000 0 32 876
100 1 55 10 50000 0 0
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Tabelle 13:

Technische Nettorechnung: gemischte Versicherungen

Sparen Risiko Kosten Gesamt

Prämien 2 805 872 211 767 927 765 3 645 404

Zinsen 1 538 552 10 588 31 388 1 580 528

Leistungen 15 146 597 103 403 15 250000
Kosten 320000 320000

Erhöhung Ruckst - 11417 594 - 11417 594

Nettoerg. Zins 615421 4 235 12 555 632211

Nettoerg. Risiko 114717 114717

Nettoerg Kosten 326598 326 598

Die Untersuchung wird durch Angabe der Brutto-Stop-Loss-Prämie
vervollständigt. Es ist (4.12) zu lösen:

222 355 SBr + BSL{FR, SBR)

Man erhält BSL(FR, 100000) 121000,BSL{FR, 110000) 113 000 und
entscheidet sich für SBR 105 000,BSL(FR, 105 000) 117 355.

Werner Hürhmann
Allgemeine Mathematik
Winterthur-Leben
8400 Winterthur
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Zusammenfassung

Die Arbeit untersucht Möglichkeiten, um aus der Sicht des Versicherers die Rentabilität

von Lebensversicherungsbestanden zu messen Das Lebensversicherungsgeschehen mit einer
Ausscheideursache wird anhand des Begriffs einer allgemeinen Lebensversicherung auf zwei

verschiedene Arten interpretiert. Es ergeben sich zwei unterschiedliche additive Zerlegungen
der technischen Rechnung in Spar-, Risiko- und Kostenprozesse Als Konsequenz analysieren

wir die Hauptfragen nach Überschussermittlung und Rentabilität Der Risikobereich wird

unter Berücksichtigung der neueren stochastischen Modelle ausführlich behandelt Schliesslich

zeigen wir, gestützt auf ein einfaches Modell der strukturierten Programmierung, einen Weg, um

numerische Ergebnisse ohne grossen Aufwand zu erzeugen. Zwei numerische Beispiele runden

die Untersuchung ab.

Resume

L'article est consacre ä la mesure de la rentabihte d'un portefeuille d'assurances-vie du point
de vue de l'assureur. Le processus de l'assurance-vie a une cause de simstres est interprete de

deux mameres differentes ä l'aide de la notion d'assurance-vie generahsee. II en resulte deux

decompositions additives differentes du compte de pertes et profits en processus epargne, risque
et coüts. Les resultats obtenus permettent d'aborder les questions pnncipales de la determination
des excedents et de la rentabihte La composante risque est traitee de maniere approfondie en

tenant compte des modeles aleatoires les plus recents Finalement l'auteur propose une methode
basee sur un modele simple de programmation structuree pour engendrer sans grand effort des

resultats numeriques. Deux exemples numenques arrondissent cette recherche

Summary

We investigate possibilities to measure the profitability of life insurance portfolios from the point
of view of the insurer. The life insurance process with one claim event is interpreted in two
different ways using the notion of a generalized life insurance. One obtains two different additive

decompositions of the profit and loss account in savings, risk and cost processes As a consequence

we analyse the main questions of the determination of the surplus and the profitability The risk

component is comprehensively dealt with taking into account the more recent stochastic models

Finally we exhibit a way, based on a simple model of structured programming, to generate
numerical results without great effort. Two numerical examples illustrate this investigation
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