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WERNER HURLIMANN, Winterthur

Allgemeine Lebensversicherungen: Uberschuss und Rentabilitiit

Einfiihrung

Ende der siebziger Jahre ist das Problem der Rentabilitdt von Lebensversiche-
rungen in Deutschland ergiebig diskutiert worden (z. B. Feilmeier [1979]). Die
bekannteste Methode, um die Rentabilitit und die Finanzierbarkeit der Uber-
schussbeteiligung nachzuweisen, ist das sogenannte “Verbandsverfahren”, das
von Gessner (1978) ausfiihrlich behandelt worden ist (siche auch Wolfsdorf
[1986], Kap. 8.8).

In dieser Arbeit schlagen wir einen alternativen LOosungsweg ein, um aus der
Sicht des Versicherers die Rentabilitdt von Lebensversicherungsbestinden zu
messen. Insbesondere beriicksichtigen wir die neuesten risikotheoretischen
Methoden und die Moglichkeit des Einsatzes von Rechenanlagen. Wir
hoffen weiter, dass unsere Uberlegungen als mathematische Grundlagen fiir
computerunterstiitzte Verwaltungssysteme in der Lebensversicherung dienen
konnen.

In Abschnitt 1 charakterisieren wir Lebensversicherungen durch wenige Ele-
mente, die es erlauben, das Lebensversicherungsgeschehen mit einer Aus-
scheideursache zu beschreiben. Danach interpretieren wir in Abschnitt 2 das
Versicherungsgeschehen auf zwei verschiedene Arten, die zu unterschiedli-
chen Primienzerlegungen in Spar-, Risiko- und Kostenkomponenten fiihren.
Es sind dies die bekannten Netto- und Bruttokomponenten, letztere auch
ausreichende Komponenten genannt. Diese Betrachtungsweisen sind nicht
unabhingig. Der Ubergang zwischen den Interpretationen ist durch Formeln
gewihrleistet, die Vermogensschiebungen darstellen. Wir erhalten ebenfalls
interessante Formeln fiir die Kosten 1. Ordnung, die nach Tarlfgrundlagen
geniigen, um eine Lebensversicherung durchzufthren.

Wir erinnern weiter daran, dass die Deckungskapitalien mit Hilfe von Rekur-
sionsformeln berechnet werden konnen (z. B. Wolfsdorf [1986], Kap. 4.2). In
Abschnitt 3 diskutieren wir ausfiihrlich ein additives Modell der “Technischen
Rechnung” eines Lebensversicherungsunternehmens, das auf die Zerlegung
des Versicherungsprozesses in Spar-, Risiko- und Kostenprozesse angewendet
wird. Insbesondere erhalten wir einfache Formeln fiir die Zerlegung des Net-
toergebnisses nach seinen Quellen Zins, Risiko und Kosten. In Abschnitt 4
diskutieren wir die Betriebsrechnung eines Lebensversicherungsunternehmens,
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insbesondere die Hauptfragen nach Rentabilitit und Ermittlung der Uber-
schiisse nach den Quellen Zins, Risiko und Kosten. Wir beschrinken uns
auf deterministische Zins- und Kostenprozesse und diskutieren den Risikobe-
reich anhand eines stochastischen Modellansatzes, der nach Modifikationen
auf Zins- und Kostenbereich moglicherweise anwendbar wire. [n Abschnitt 5
beriicksichtigen wir ein einfaches Modell der strukturierten Programmierung,
um die “Technische Rechnung” computergestiitzt zu generieren. Das Konzept
wird anhand von zwei numerischen Beispielen in Abschnitt 6 illustriert.

Zum Schluss mochten wir auf mogliche Verbesserungen und Weiterentwick-
lungen hinweisen. Kompliziertere Modelle, die die unterjihrige Zahlungsweise
und die unterjahrigen Versicherungsereignisse (Eintritt, Austritt usw.) beriick-
sichtigen, sind durch Erweiterung unseres Basismodells denkbar. Wiinschens-
wert ist ebenfalls ein Modell, das ein Uberschussbeteiligungssystem integriert.
Es wire dann von Interesse, dieses Modell mit dem herkommlichen “Ver-
bandsverfahren” zum Nachweis der Finanzierbarkeit eines Bestandes samt
Uberschussbeteiligung zu vergleichen. Schliesslich bleibt ebenfalls ein iiber-
greifendes Modell zu konstruieren, das imstande ist, die globale Rentabilitat
von verschiedenartigen Bestinden zu messen.

1 Zum Konzept der allgemeinen Lebensversicherung

Wir setzen voraus, dass der Leser mit den modernen Grundlagen der Lebens-
vesicherungsmathematik vertraut ist. Durch Algebraisierung der Lebensversi-
cherungstechnik streben wir danach, wesentliche Konzepte in einfacher und
klarer Weise darzustellen.
Unser Ausgangspunkt ist eine allgemeine Lebensversicherung, charakterisiert
durch folgende Elemente:

= ein Versicherungstarif (z. B. gemischte Versicherung, Altersrente, Risiko-
versicherung, Erlebensversicherung usw.),

- ein Eintrittsalter x,

- eine Versicherungsdauer n,

- Todesfallleistungen (T, ..., T,'), wobei T;* nach ¢ Jahren fillig wird,
falls der Versicherte im ¢-ten Versicherungsjahr stirbt.

- vorschiissige Rentenleistungen (R}, ..., RY), wobei R zu Beginn des t-ten
Versicherungsjahres fallig wird, falls der Versicherte zu diesem Zeitpunkt
lebt, und/oder

- nachschiissige Erlebensfallleistungen (EY, ..., EY), wobei E nach ¢ Jahren
fallig wird, falls der Versicherte diesen Zeitpunkt iiberlebt,
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S N.x N She 0 K, P
- Nﬁttopramleg (m, ", ..., m,*) und Kostenprimien (x;™, ..., 1), wobei
n, " und 7, " zu Beginn des t-ten Versicherungsjahres fillig werden,

falls der Versicherte zu diesem Zeitpunkt lebt.

Wir setzen nattirlich voraus, dass der Versicherungstarif die Rechnungsgrund-
lagen vorgibt, wie z. B. Sterblichkeiten, Kostensitze o, f,7 usw. Die obigen
Elemente sind die fundamentalen Grossen der Lebensversicherungstechnik. Wir
behaupten, dass sie geniigen, das Lebensversicherungsgeschehen mit einer
Ausscheideursache vollstindig zu beschreiben, sowohl aus theoretischer wie
aus rechnerisch praktischer Hinsicht. Diese Arbeit befasst sich aber nicht da-
mit, diese Behauptung mathematisch streng zu beweisen, sondern mochte die
Niitzlichkeit unserer Betrachtungen fiir eine moderne computerunterstiitzte
Lebensversicherungspraxis in konstruktiver Weise hervorheben. Ein kompli-
zierteres Berechnungsmodell fiir mehrere Ausscheideursachen (z. B. Tod und
Invaliditit) sollte ebenfalls in Reichweite sein (hierzu verwende man die Tech-
nik von Gerber [1986], Kap. 7).

Unseres Erachtens ist eine analoge Methode sogar in der Nicht-Lebensver-
sicherung denkbar. Dazu erweitere man das Konzept mit einer Losung des
Problems der Schadenreservierung: unbekannte Schadenhohen (stochastische
Natur der Leistungen), d. h. IBNER-claims (incurred but not enough reserved),
sowie verspitete Kenntnisnahme von Schiden, d.h. IBNR-claims (incurred
but not reported).

Fiir die weitere Diskussion bendtigen wir noch folgende durchgehend
verwendete Bezeichnungen:

t das Versicherungsjahr der Beobachtung, zu Beginn dessen der
Versicherte mit Eintrittsalter x lebt

Ve das Nettodeckungskapital

Wi das Bruttodeckungskapital (auch ausreichendes Deckungskapital
genannt)

IVxK = .thB "th

das Kostendeckungskapital
nr = 4 k>
die Bruttoprimie
T die Bruttosparpriamie (auch ausreichende Sparprimie)

.’ die Sparpriamie



T, die Bruttorisikopramie (auch ausreichende Risikopriamie)
e die Risikoprimie

BK,x _ _x _BSx __BRx
T, =nf—m T —m,

die Bruttokostenpriamie (auch ausreichende Kostenprimie)

71:,K 2 die Sparkomponente der Kostenpramie
iRX die Risikokomponente der Kostenprimie
K} die Kosten 1. Ordnung, d. h. die nach Tarifgrundlagen Ende

des Jahres t fillig werdenden Kosten zur Verwaltung einer
allgemeinen Lebensversicherung

4., p, =1—gq, die Sterblichkeit bzw. die Uberlebenswahrscheinlichkeit

i, v=1/(14+1i) der technische Zins bzw. der dazugehorige Diskontierungs-
faktor

Im folgenden wird der Index x meistens weggelassen, und die Bezeichnungen
ebenfalls fiir Bestinde, d.h. Kollektive von allgemeinen Lebensversicherungen
zu demselben Versicherungstarif verwendet.

2 Zwei Interpretationen des Lebensversicherungsgeschehens

Die fundamentale Zerlegung der Priamien in Spar-, Risiko- und Kostenkom-
ponenten ist auf mindestens zwei Arten moglich, je nachdem wie der Geldfluss
gedeutet wird.

In einer ersten Interpretation kann man verlangen, dass der stochastische
Prozess des ausreichenden Geldflusses geniigt, die finanzielle Lage zu
beschreiben. Der Erwartungswert dieses Prozesses ist durch die Gleichung
des erwarteten Bruttogeldflusses gegeben:

(t—l VB 55 T — Rt)(l + i) o qx+t—lTr o Kr = px+z—l(cVB + Er) (2'1)

In Worten ausgedriickt, werden die verfiigbaren Einnahmen, abziiglich den
erwarteten Todesfallleistungen und den Ende Jahr fillig werdenden Kosten,
dem Kapital gleichgesetzt, das bei Erlebensfall vorhanden sein muss. Die

Auflosung dieser Gleichung nach der Bruttopridmie ergibt nach Umordnung
die Beziehung

=0 V?—, _VB+R +vE,+ 0K, +vq,, (T,—,VE—E) (2.2)

t
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aus der man die folgende Zerlegung in ausreichende Komponenten erhilt:

35 =o VB - VB4R +0E, (2.3)
H!BR =vq, (T, — xVB —E) (2.4)
5> =k, (2.5)

Dabei werden die Kosten 1. Ordnung residual bestimmt als
K, = (m, — 255 — aPR)(1 +1) (2.6)

Ausserdem liefert (2.1) Rekursionsformeln zur Berechnung der Bruttodek-
kungskapitalien, ndmlich:

1 .
w{(rfl VB + 7 Rr)(l + l) o Kr i S Tt} o Et

px+r—l

OVB = —0 (x : Abschlusskostensatz) 2.7)

VE —

t

In diesem Fall geniigt fiir die Definition einer allgemeinen Lebensversicherung
die Kenntnis der Bruttoprimien anstelle der Netto- und Kostenprimien,
um die Zerlegung in ausreichende Komponenten rechnerisch durchzufiihren.
Diese Interpretation hat also eine informationstheoretische Reduktion der
notwendigen Statistiken zur Folge. Ferner beachte man, dass im allgemeinen

nBS 4 aBR LV, mBK £k (2.8)

Beispiel 1:  Fiir eine lebenslanglich laufende Altersrente

T,=E =0, R =1,

t

gilt

und

V= (1)),

wobei 7, ein Verwaltungskostensatz fiir Rentenbeziiger ist. Durch Rechnung
erhilt man

ﬂtBR = “*qu+rfl(l + yz)axﬂ

ntBS == —nIBR — V2, ‘E[BK =7, (2.9)
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In dieser Deutung des Versicherungsgeschehens enthalten die Bruttospar-
pramien und die Bruttorisikoprdmien einen Kostenanteil. Daher sind die
dazugehorigen Spar- und Risikoprozesse keineswegs kostenneutral. Wie wir
spater sehen werden, besitzen die Hauptfragen eines Lebensversicherungsun-
ternehmens nach Uberschussermittlung und Rentabilitiit trotzdem verniinftige
Antworten. Mochte man aus betriebswirtschaftlichen, tariflich konstruktiven,
risikotheoretischen oder anderen Griinden echte Spar-, Risiko- und Kosten-
prozesse, so muss das Versicherungsgeschehen anders gedeutet werden.

In der zweiten Interpretation verlangt man, dass die stochastischen Prozesse
des Netto- und Kostengeldflusses, separat betrachtet, die finanzielle Lage
beschreiben. Die Erwartungswerte dieser Prozesse sind gegeben durch die
Gleichungen des erwarteten Netto- und Kostengeldflusses:

(V41" —R)1+i)—q. T, =pey,(V+E,) (2.10)
(t—lVK+an)(1+i)_Kt:px-H_] rVK (211)

Wie zuvor erhalten wir durch Umformungen die Beziehungen
ay =vV -, ,V+R+vE +vq,,, (T,—,V—E,) (2.12)

nf = V&~ V40K, —vq.,, , VE (2.13)

aus denen man folgende (Netto)Komponenten abliest:

S

nd =uV —,_,V+R, +E, (2.14)
) =g, (T, — V — E) (2.15)
a =p VK- _ VK 4K, (2.16)
e = —vg,,,; VX (2.17)
K, = (VX =nfR+i)— v X+ 281 +19) (2.18)

Man erhilt ebenfalls die folgenden Rekursionsformeln zur Berechnung der
Deckungskapitalien:

V= {(t—1V+nﬁV_Rt)(1 +i)—"qx+t—1Tt}_Er
px+t—1
OV =) (2.19)
1
VE = {(_ VE+250+i)-K,}
px-H—l

VK =—a (2.20)
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Hiermit iiberzeugt man sich, dass diese zweite Komponentenzerlegung voll-
stindig anhand des Informationsinhalts einer allgemeinen Lebensversicherung
durchgefiihrt werden kann. Diese zweite Interpretation ist im Einklang mit
der risikotheoretischen Standardliteratur, die meistens nur den Nettogeldfluss
ausfiihrlich behandelt.

Beispiel 2: Fiur dieselbe laufende Altersrente wie zuvor erhalten wir mit
V =i, und VX =y,4,,, die Komponenten

R _ S _ R K.,R R K, K.R
Ty ==V 1 +V» n =-—1,, T, =YW, , n,t = —m,

t
K, =7y,(1+19)

Im allgemeinen bestehen zwischen der ersten und zweiten Interpretation
folgende Zusammenhangsformeln (Geldverschiebungen):

VE= V4 vk (2.21)
nlS =78 4 5P —aBK (2.22)
aBR — R 4 7R (2.23)

Bemerkung:  Es ist moglich, den Begriff allgemeine Lebensversicherung
und die dazugehorigen Interpretationen des Geldflusses auf unterjdihrige
Primienzahlungen und Leistungen sowie auf unterjihrige Versicherungsereig-
nisse (Deckungskapitalien zu einem gebrochenen Zeitpunkt) auszudehnen.
Die Techniken hierzu findet der interessierte Leser im Lehrbuch von Gerber
(1986).

3 Technische Rechnung fiir allgemeine Lebensversicherungen

Nach geringfiigigen Vereinfachungen ldsst sich das Nettoergebnis einer
Lebensversicherungsgesellschaft wie folgt darstellen:

Nettoergebnis = Primien
+ Zinsen
— Leistungen
— Kosten
— Erhohung Riickstellungen (3.1)
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Diese Gleichung wollen wir als additives Modell der technischen Rechnung
beniitzen, um den Gesamtprozess sowie die Spar-, Risiko- und Kostenprozesse
von allgemeinen Lebensversicherungen zu beschreiben.

Als Konsequenz dieses Modells diskutieren wir dann die Hauptfragen nach
Uberschussermittlung und Rentabilitiit.

Nebst den Annahmen, die dem Begriff allgemeine Lebensversicherung
zugrunde liegen, setzen wir voraus, dass der Stichtag mit dem Beginn
des Versicherungsjahres und mit ganzzahligem Eintrittsalter stattfindet.
Seit der Einfiihrung des BVG-Obligatoriums in der Schweiz ist diese
zusitzliche Annahme zumindest im Kollektivbereich iiberwiegend erfiillt.
Durch eine addquate Behandlung der Unterjdhrigkeit (vgl. hierzu Gerber
[1986], insbesondere 4.8, 6.6) kann diese Annahme aufgehoben werden.
Um einfache und klare Konzepte zu erhalten, verzichten wir hier auf den
allgemeinsten Fall.

Zur mathematischen Beschreibung bendtigen wir noch folgende Grossen:

Rk} = Riickkaufsleistung (Abfindungswert) des Versicherten x,
die nach ¢t Jahren fallig wird.

- { 1, bei Tod des Versicherten x im Jahr ¢
B 0, sonst

5 = { 1, bei Riickkauf des Versicherten x im Jahr ¢
B 0, sonst

1, bei Tod oder Riickkauf

Qx+! = Ex+! + 5x+£ = { 0 sonst

Die Variablen €,0,Q sind Zustandsindikatoren und werden als Zufallsvariablen
behandelt. Hiermit erhilt man die Zufallsvariable der individuellen zufiilligen
Leistungen als

LY = £ (T} — E7) + 6, REY (32)

Fiir ein festes Versicherungsjahr t betrachten wir nun einen Bestand von N
Versicherten mit Eintrittsalter x;, die sich im Beobachtungsjahr ¢, befinden,
und Anfang Versicherungsjahr t noch leben, i =1, ..., N.
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Die Bestandesgrdssen von Interesse, die durch Summation von individuellen
Grossen definiert werden, sind gegeben durch

n die Bruttopramien

ol die Bruttosparpriamien

n’ die Sparpramien

e die Bruttorisikopriamien

R die Risikopramien

nBK die Bruttokostenprimien

mh die Kostenpramien

k.S die Sparkomponente der Kostenpriamien
nfR die Risikokomponente der Kostenpramien
R die Rentenleistungen

E die Erlebensfallleistungen

L=3, L} die zufilligen Leistungen
SB - ZI(L?;J - QX,“FII' ) VB

i X .
die Bruttoschadensummen (auch ausrecichende Schadensum-

men)
§=7% (Lfi" —Q

X+t ’ t Vx,-)
die Schadensummen

SK =8B _§ die Schadensummen der stochastischen Komponente des Ko-

stenprozesses
K die Kosten 1. Ordnung
Keff die effektiven Kosten des Bestandes

VB, VB  die Bruttodeckungskapitalien zu Beginn, bzw. Ende des Versi-
cherungsjahres ¢

1V, vV die Nettodeckungskapitalien zu Beginn, bzw. Ende des Versi-
cherungsjahres ¢

1 FE ,VK die Kostendeckungskapitalien zu Beginn, bzw. Ende des
Versicherungsjahres ¢

Dabei sind die Grossen L, S8, S, ¥ natiirlich Zufallsvariablen. Zu beachten
ist, dass alle Bestandesgrossen, bis auf die effektiven Kosten, additiv definiert
sind. Findet man eine geeignete Verschliisselung, um die effektiven Kosten
des Bestandes auf die individuellen Versicherten umzuverteilen, so gelten die
Uberlegungen dieses Abschnittes ebenfalls fiir individuelle Versicherte. Wir
lassen die Kostenprobleme beiseite und betrachten lediglich eine proportionale
Umverteilung der effektiven Kosten, definiert durch

Keff;' = K. - Keff/K (3-3)



188

Der effektive Zins, der von der Versicherungsgesellschaft im Versicherungsjahr
erwirtschaftet wird, sei i,. Je nachdem wie das Lebensversicherungsgeschehen
interpretiert wird, ergeben sich verschiedene Darstellungen der technischen
Rechnung. Das Nettoergebnis zerlegen wir jeweils nach seinen Quellen Zins,
Risiko, Kosten.

Fiir jeden Prozess erhalten wir ein dem additiven Modell (3.1) dhnliches
Abrechnungsschema. Die sich ergebenden Abrechnungsschemas sind in den
Tabellen 1 bis 8 ersichtlich.

Die Herleitung der Ergebnisse sei im folgenden kurz erldutert. Nach
Umformung erhdlt man fir das Nettoergebnis in Tabelle 1:

(_ VE+a® —R)G,— )+ (_ VEP+n® —R)+)—,VBE-E

was nach (2.3) das gewiinschte Resultat liefert.

Die Tabelle 2 ist klar, und fiir die Tabelle 3 beachte man, dass 785(1 +i) = K
nach (2.5). Die Tabelle 4 erklirt man wie die Tabelle 1 mit Hilfe von
(2.14) an Stelle von (2.3). Die Tabelle 5 ist wiederum klar. Dagegen
braucht die Tabelle 6 eine ausfiihrliche Erkldarung. Analog zur Zerlegung des
Nettoprozesses in Spar- und Risikoprozess, zerlegen wir den Kostenprozess
in eine deterministische und stochastische Komponente wie in Tabelle 8. Das
deterministische Nettoergebnis Kosten ist dann nach Umformung gleich

(o VE A+ =)+ (o VE + 7)1+ — VK — Keff

was nach (2.16) die gewiinschte Darstellung liefert. Die stochastische Kompo-
nente erkldrt sich von selbst. Der Eintrag der Schadensumme

K _ i K
S - Z th'-f-[i ti VJC;‘
i

in der Position Kosten der stochastischen Komponente bedeutet Befreiung der
Kostenreserve bei Tod oder Riickkauf.
Die Tabelle 7 folgt durch Addition der Tabellen 1, 2, 3 bzw. 4, 5, 6.

Bemerkung: Man beachte, dass im Gegensatz zur Tarifierung, beschrieben
in den Abschnitten 1 und 2, das Abrechnungsverfahren das Stornorisiko
beriicksichtigt.
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Tabelle 1: Bruttosparprozess

Priamien nBS

Zinsen (VB + 78BS — Ry,
Leistungen R+E+L—S5

Kosten =

Erhohung Riickstellungen VE— VB4 SE_ L
Nettoergebnis Zins - ((_1 VB +nBS — R)(i, —i)

Nettoergebnis Risiko —
Nettoergebnis Kosten —

Tabelle 2: Bruttorisikoprozess

Pramien bR
Zinsen nR g,
Leistungen ¥

Kosten —
Erhohung Riickstellungen o
Nettoergebnis Zins wOR (G, —d)
Nettoergebnis Risiko PR (1 +1i) — §P
Nettoergebnis Kosten o
Tabelle 3: Bruttokostenprozess

Priamien n?k
Zinsen n?K i,
Leistungen ‘

Kosten Keff
Erhohung Riickstellungen ‘“
Nettoergebnis Zins nPR (i, — 1)

Nettoergebnis Risiko o
Nettoergebnis Kosten K — Keff
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Tabelle 4: Sparprozess

Pramien

Zinsen

Leistungen

Kosten

Erhohung Riickstellungen
Nettoergebnis Zins
Nettoergebnis Risiko
Nettoergebnis Kosten

Tabelle 5: Risikoprozess

ﬂ:S
(,,V +7m5—=R)i,
R+E+L-S

IV#I*1V+S_L
(. V+7m —R)(i,— 1)

Priimien al

Zinsen ak i,
Leistungen S

Kosten .
Erhohung Riickstellungen —
Nettoergebnis Zins nR(i, —i)
Nettoergebnis Risiko 72 (1l 4+ —8
Nettoergebnis Kosten =

Tabelle 6: Kostenprozess

Primien n

Zinsen ( VE + 75,
Leistungen —

Kosten Keff

Erhohung Riickstellungen
Nettoergebnis Zins
Nettoergebnis Risiko
Nettoergebnis Kosten

tVK — VK +SK
(t—l VK + T[K)(ie - i)
nR(1 i) — K

K — Keff
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Tabelle 7: Gesamtprozess (1. und 2. Interpretation)

Pramien 7t

Zinsen (1 V®+7m— R,
Leistungen R+ E+L

Kosten Keff

Erh6hung Riickstellungen JFP = VPSR =L
Nettoergebnis Zins (. VE+7n—R)(i,—i)
Nettoergebnis Risiko nBR(1+i) — SP
Nettoergebnis Kosten K — Keff

Tabelle 8: Zerlegung des Kostenprozesses

Deterministische Stochastische
Komponente Komponente
Primien nK-S nkR
Zinsen (VK + 785, LA
Leistungen — —
Kosten Keff — SK 5K
Erhohung Riickstellungen V& — VK 45K —
Nettoergebnis Zins (_ VE+a85)6,—i) =583, —1)
Nettoergebnis Risiko — afR(1+i) — 8K
Nettoergebnis Kosten K — Keff

- Betriebsrechnungen, Uberschuss und Rentabilitiit

Damit der Versicherer wirtschaftlich erfolgreich sein kann, hat er Anspruch
auf angemessene Gewinnmargen, die z. B. bestandesspezifisch und nach
Uberschussquellen definiert sind. Die Rentabilitdt eines Bestandes, oder
allgemeiner einer Kollektion von Bestinden, wird durch die Realisierung
der Gewinnmarge beurteilt. Wir beschrinken uns auf die Definition von
moglichst einfachen und praktischen betriebswirtschaftlichen Kriterien fir die
Beurteilung der Rentabilitit eines einzigen Bestandes. Je nach Interpretation
des Versicherungsgeschehens ergeben sich unterschiedliche Kriterien. Wir
fordern, dass die einzelnen Prozesse selbsttragend sind, sei es in der Brutto-
oder Nettorechnung.
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Wir beginnen mit der Rentabilitidt in einem deterministisch angenommenen
Zins- und Kostenbereich. Modelle zur Ermittlung des effektiven Zinssatzes
und der effektiven Kosten sollen in dieser Arbeit nicht behandelt werden.
Die Gewinnmargen des Versicherers seien durch einen Zinsgewinnsatz i; mit
ic—i > 0, was einen Zinsriickbehalt definiert, und einen Kostenriickbehalt RB*
gegeben. Als Modell fiir das Bestandesergebnis eines Prozesses aus der Sicht
des Versicherers dient das additive Modell:

Bestandesergebnis = Riickbehalt — Uberschaden (4.1)
wobei wir definieren
Uberschaden = (Riickbehalt — Nettoergebnis) " (4.2)

mit (X)), der positive Teil von X. Die Terminologie “Uberschaden” stammt aus
der Interpretation des Risikoprozesses, der weiter unter detailliert behandelt
wird. Alternativ konnte man die klassischere Terminologie “Gewinn” fir
“Riickbehalt” und “Verlust” fiir “Uberschaden” verwenden.

Unter Zinsprozess verstehen wir die Uberlagerung der Uberzinsprozesse
(Zins iiber dem technischen Zins) fiir jeden einzelnen Spar-, Risiko und
Kostenbereich. Die Tabellen 3 und 7 liefern sofort:

Bestandesergebnis Zinsprozess

= (V2 + 71— R){(ig —i) — (ig —i,),)} (4.3)
Bestandesergebnis Bruttokostenprozess
= RBX — (Keff — K + RB®),

Im Normalfall, d. h. deterministischer Zinsprozess mit i < i, < i, und positiver
Zinstriger, ist ein Bestand immer zinstragend, d.h. rentabel im Zinsbereich.
Ein Bestand ist kostentragend (im deterministischen Fall und in der ersten
Interpretation), d. h. rentabel im Kostenbereich, falls das Bestandesergebnis
Bruttokostenprozess positiv ist. Die Beurteilung des Kostenbereiches fiir die
zweite Interpretation folgt spiter.

Der Risikobereich soll nun aufgrund der neueren risikotheoretischen Er-
kenntnisse behandelt werden. Die Beurteilung des Risikobereiches kann auf
folgende allgemeine Situation zuriickgefiihrt werden.

Am Ende des Versicherungsjahres stehen fiir einen gewissen Bestand
verfligbare Einnahmen P Schiaden X gegeniiber, die zufillig schwanken.
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Fir die Kompensation eines Schadens X > P stellt der Versicherer einen
Risikoriickbehalt R(X) in Rechnung, der durch das Nettoergebnis Risiko
P —X finanziert werden soll, d. h. mit 0 < R(X) < (P—X),. Dieser Riickbehalt
soll eine Risikogewinnmarge und einen Schwankungsausgleich enthalten. Dieser
letzte Zuschlag ist notwendig, weil nur endlich viele Jahre oder Vertriige zur
Verfugung stehen, um Verluste aufzufangen. Sei noch

U(X) = (RX) — (P — X)), (4.4)

die Zufallsvariable des Uberschadens, der nach Abzug des Nettoergebnisses
vom Riickbehalt entstehen kann. Die resultierende Zufallsvariable

Y = R(X)—U(X) (4.5)

beschreibt dann das Bestandesergebnis Risiko, das zur Beurteilung der Renta-
bilitdt im Risikobereich dient. Ein Bestand heisst risikotragend, d.h. rentabel
im Risikobereich, falls im Erwartungswert das Bestandesergebnis positiv ist
und die jahrlichen Schwankungen des Risikoergebnisses mit einer vorgegebe-
nen Sicherheitswahrscheinlichkeit auffingt (vgl. hierzu Bernhardt/Endres [1979],
203). Um dieses Kriterium in der Praxis verifizieren zu konnen, muss noch die
Funktion R(X) bestimmbar sein. Wir bemerken, dass das Bestandesergebnis
Risiko selbst ein Risiko ist, das mit Hilfe eines Primienkalkulationsprinzips
H tarifiert wird. Da der Riickbehalt R(X) die bestandesspezifische Selbstfi-
nanzierung dieses Risikos durch das Nettoergebnis Risiko garantieren soll, ist
keine Primie mehr notig, um das Risiko Y zu decken. In anderen Worten
verlangen wir, dass

HR(X)-U(X)) =0 (4.6)

wobei das Priamienprinzip H den Risikogewinnanteil des Versicherers und
den Schwankungsausgleich natiirlich enthalten (diese Forderung ist ebenfalls
in der Notiz Hiirlimann [1988]).

Es sei vorweggenommen, dass die Gleichung (4.6) nicht immer 13sbar sein
muss, wie auch R(X) konkret aussicht. Das heisst, es gibt Bestinde, die a
priori nicht risikotragend sind. Dies ist zum Beispiel intuitiv einleuchtend bei
sehr kleinen Bestinden. Die Marge P —E (X) geniigt nicht mehr, um Losungen
von (4.6) zu garantieren. In der Literatur sind bisher folgende Wahlen fiir den
Risikoriickbehalt am hiufigsten getroffen worden:

R(X) = min(B, (P — X),), B = const. (4.7)

Was einen konstanten Abzug vom Nettoergebnis Risiko bedeutet,
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oder
R(X)=g(P —X),, 0<g<l (4.8)

was ein proportionaler Abzug ist (Bernhard/Endres [1979]).

In der weiteren Diskussion behandeln wir nur den Fall (4.7), der bei schaden-
freiem Verlauf grosse Uberschiisse liefert. Wir wihlen ein translationsinvari-
antes Pramienkalkulationsprinzip (d. h. H(X + C) = H(X) + C fir konstantes
C), zum Beispiel das Streuungsprinzip H(X) = E(X) + ac(X), a > 0. Durch
Nachrechnen erhilt man

H(R(X) -=U(X)) = H(B — (X — (P —B)),)
=B—-H((X — (P —B)),)

Die Forderung (4.6) liefert somit
B = H(X — (P — B)),), (4.9)

was die Konstante B als eine Brutto-Stop-Loss-Priimie zur Prioritit P — B
mit implizit definiertem B identifiziert (siche auch Bernhard/Endres [1979],
Hiirlimann [1988]).

Dieses allgemeine Resultat soll nun auf die Lebensversicherung angewendet
werden. Wir benotigen folgende Risikogrossen mit ihren Bezeichnungen:

SBB Selbstbehalt des Bruttorisikoprozesses

SBR Selbstbehalt des Risikoprozesses

SBX Selbstbehalt der stochastischen Komponente des Kostenprozesses
FB Verteilungsfunktion der Bruttoschadensumme S?

FR Verteilungsfunktion der Schadensumme S

Fk Verteilungsfunktion der Schadensumme im Kostenprozess S*

Fir die Verteilungsfunktion F einer Zufallsvariablen X sei weiter
BSL(F,SB) = E[(X —SB),] +ac[(X —SB),] (4.10)

die Brutto-Stop-Loss-Primie zum Selbstbehalt SB (Streuungsprinzip). Nach
den neuesten Erkenntnissen konnen diese Primien sowohl im individuellen
wie im kollektiven Modell mit Hilfe einer Rechenanlage exakt oder zumindest
approximativ sehr genau gerechnet werden. Fiir das kollektive Modell
beniitzt man die Adelson-Panjer-Rekursion (Panjer [1981]) bzw. deren
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Verallgemeinerungen auf negative Risikosummen (Hiirlimann [1985], Sundt
[1986]) oder die FFT-Methode (FFT: schnelle Fourier Transformation,
Bertram [1981/83], Hiirlimann [1986]). Im individuellen Modell beniitzt man
das exakte, aber langsame Verfahren von De Pril [1986] oder andere
schnelle und gute Approximationsmethoden (Kornya [1983], De Pril [1987],
Bemerkung von Reimers [1987], Goovaerts/van Heerwaarden | Kaas [1988],
diese letzte Methode ist allgemeiner im Nicht-Leben-Bereich anwendbar). Die
verwendeten Grundlagen sind nun, in Kontrast zu den Tabellen 1 bis 7, nicht
mehr tarifliche Grundlagen, sondern Sterblichkeiten 2. Ordnung.

Die eingefiihrten Selbstbehalte seien nun implizit als Losungen, falls sie
existieren, der folgenden Gleichungen definiert (Begriindung durch Formel
(4.9)):

BSL(F®,SB®) = n®R(1 + i) — SB?, (4.11)
BSL(FR,SB®) = n®(1 + i) — SBX, (4.12)
BSL(FR SBX) = n®R(1 +i) — SBX, (4.13)

Die Berechnung aller Bestandesergebnisse nach Modell (4.1) in den verschie-
denen Interpretationen liefert zusammengefasst:

Bestandesergebnis Zinsprozess

= (V7 =Rl — 1) — (ig — i)} (4.14)
Bestandesergebnis Bruttorisikoprozess .
= BSL(F®,SB®?) — (s® —SB®), (4.15)
Bestandesergebnis Risikoprozess
= BSL(F®,SB®)— (S —SB¥), (4.16)
Bestandesergebnis Bruttokostenprozess
' =RBX —(Keff— K + RBX), (4.17)

Bestandesergebnis Kostenprozess
= RBX — (Keff— K + PB"),
+ BSL(FX,sBX) — (s —sB¥), (4.18)

Die Uberschiisse der verschiedenen Prozesse, gegeben durch die additive
Modellgleichung

Uberschuss = (Nettoergebnis — Riickbehalt) (4.19)

lassen sich ebenfalls berechnen.
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Man erhalt:

Uberschuss Zinsprozess

=(_VEB+n—R)i,—ig), (4.20)
Uberschuss Bruttorisikoprozess

= (SB® - %), (4.21)
Uberschuss Risikoprozess

= (SBR—198), (4.22)
Uberschuss Bruttokostenprozess

= (K — Keff — RB"), (4.23)
Uberschuss Kostenprozess

= (K — Keff— RBX), + (SB* —8%), (4.24)

Zusammenfassend haben wir fiir Bestinde von allgemeinen Lebensversiche-
rungen einen allgemeinen Weg aufgezeigt, um die Rentabilitdt zu messen und
die Uberschiisse zu ermitteln. Die Frage der Rentabilitit und Uberschiisse
eines ganzen Portefeuilles von verschiedenen Lebensversicherungsprodukten
fiir eine Lebensversicherungsgesellschaft sollte unseres Erachtens auf den be-
handelten Spezialfall zuriickfiihrbar sein. Fiir kostenneutrale Beurteilungen ist
die zweite Interpretation des Lebensversicherungsgeschehens (Nettoprozesse
und Kostenprozess selbsttragend) vermutlich vorzuziehen.

Andererseits ist durch die Ermittlung der Uberschiisse die Uberschussbe-
teiligung noch nicht festgelegt. Obwohl durch unsere Methode der totale
Uberschuss eines Bestandes dem Versicherungsnehmer zuriickerstattet wer-
den kann, ist aus verschiedenen Griinden (z. B. Aufsichtsbehorde) denkbar,
dass dies nicht der Fall sein muss. In diesem Fall sind weitere Uberlegungen
zu unserem Modellansatz notwendig.

Beispiel 3: Wir diskutieren kurz den behandelten Abzug (4.7) ohne Ge-
wihrung einer Uberschussbeteiligung im Risikobereich. Das Ergebnis Risiko
des Versicherers ldsst sich auf zwei Arten darstellen, als das Nettoergeb-
nis Risiko oder als die Differenz Riickbehalt abziiglich Uberschaden. Mit
SB = P — B, Schaden X mit Verteilungsfunktion F, ergibt dies die Gleichung

P—-X=BSL(F,SB)—(X—S8B), (4.25)
mit SB als Losung der Gleichung
BSL(F,SB)+SB=P (4.26)
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Durch Einsetzen folgt
(X—SB), =X —SB (4.27)

Nimmt man an, dass X nur positive Werte annimmt (positive Risikosummen),
so bedeutet dies, dass SB = 0 sein muss. In diesem Fall gilt

_P—EX)

o (X) (4.28)

BSL(F.0) = E(X) + ac(X),

Der Parameter a muss natiirlich so festgelegt sein, dass die Sicherheit
und der Gewinn des Versicherers fiir den betrachtcten Bestand “gerade”
genugen. Die Tarifierung ist damit mit dem Streuungsprinzip dquivalent. Als
typisches Lebensversicherungsprodukt zu diesem Beispiel gilt die Stop-Loss
Riickversicherung, wobei X folgendermassen interpretiert wird: X = (S—7),,
S der Gesamtschaden des Bestandes, 7 die Prioritit.

3 Computerunterstiitzte Berechnungen

Die Begriffe und Konzepte dieser Arbeit sind so entwickelt worden, dass sie auf
kleinere Rechenanlagen (Personal Computer) mit relativ geringem Aufwand
implementierbar sind. Wir skizzieren einen moglichen Weg zur erfolgreichen
Realisierung unserer Konzepte.

Das Leitmotiv der strukturierten Programmierung, das in den siebziger Jahren
vorgeschlagen worden ist, beruht auf dem vereinfachten Berechnungsmodell:

Programm = Datenstruktur + Algorithmen (5.1)

das von Wirth [1975] popularisiert worden ist. Hohere Programmiersprachen,
die diesem Paradigma folgen, sind z. B. PASCAL und MODULA-2. Fiir
eine Realisierung auf PC’s ist z. B. das effiziente Programmiersystem TURBO
PASCAL 4.0 verfiigbar.

Abgesehen von den Stop-Loss-Berechnungen, fiir die es zur Zeit verschiedene
gute effiziente Algorithmen gibt, bereiten die anderen Berechnungen keine
arithmetischen Schwierigkeiten. Wie schon erwiihnt, ist die Berechnung der
Stop-Loss-Primien in letzter Zeit in der Literatur ergiebig diskutiert worden.
Deshalb konzentrieren wir uns in dieser Arbeit ausschliesslich auf die
bestandesspezifische computerunterstiitzte Erzeugung der Tabellen 1 bis 7.
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‘Eine elegante Losung hingt gemiss (5.1) von einer geeigneten Wahl der
Datenstruktur ab. Der Zustand einer allgemeinen Lebensversicherung fir
einen Versicherten in einem bestimmten Versicherungsjahr ist beschrieben
durch einen Datensatz (= Datenstruktur “record”):

VersicherteDaten = (g, x,n,t, RL,EL, TL, RkL,IndT, IndRk) (5.2)

wobei die (neu eingefiihrten) Variablen folgende Bedeutung haben:

g : Geschlecht, RL =Rj, EL=E!, TL =T}, RkL = Rk},
IndT =¢€.,, IndRk=24_,, wobei:t die Ende Versicherungsjahr
abgelaufenen Jahre seit dem Eintritt zdhlt.

Die bestandesspezifischen Daten konnen in einer Datei (= “file”) oder in einer
indizierten Tabelle (= “array”) gespeichert werden, wobei jeder Eintrag von
der obigen Datenstruktur ist. Einfachheitshalber nehmen wir an, dass diese
Daten durch folgende strukturierte Variable dargstellt sind:

BestandDaten: array[l ... AnzVMax) of VersicherteDaten, (5.3)

wobei AnzVMax eine Konstante, die die speicherbedingte maximale Anzahl
von Versicherten angibt. Durch die flexible Verwendung einer Datei muss diese
Konstante iibrigens nicht festgesetzt werden. Das Element Versicherungstarif
einer allgemeinen Lebensversicherung wird durch eine Variable VTarif vom
folgenden Datentypus (= “record”) beschrieben:

Tarif = (Ps, Pr,Pks,Pkr,Va,Ve,BVa,BVe,KVa,KVe, K) (5.4)
mit

P = 7:,S’x, Pr= n,R’x, Pks = ntK’S‘x, Pkr = nIK'R'x, Va=,,V,,

Ve =,V,, BVa=r_lV_,CB, BVe:thB, KVazl_leK, KVe =

thKs K = KF.

Zur Berechnung von VTarif aufgrund von VersicherteDaten, dies geschehe in
einer Routine namens ComputeV Tarif, benotigt man nebst mathematischen
Formeln versicherungstechnische Grundlagen wie z. B. Sterblichkeiten, Bar-
werte usw. Diese werden in Variablen ¢q,,d, usw. mit Hilfe von geeigneten
Tabellen Tafeln einmal generiert, z. B. durch eine Prozedur Generate Tafeln,
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und dann zur stindigen Verwendung bereitgehalten. Danach bendétigt man
eine Routine, sagen wir ComputelndSchema, zur Berechnung eines individuel-
len Abrechnungsschemas mit Hilfe der Prozedur ComputeV Tarif und aufgrund
von VersicherteDaten. Dieses individuelle Abrechnungsschema entspricht einer

Variablen IndSchema vom Datentypus (= “record”):

Schema = (P, Ps, Pr, Pk, Pkr, Pks,
Va, Ve, BVa, BVe, KVa, KVe,
S, BS, KS.
L, RL, EL, TL, RkL,
K, Keff)

mit den (neu eingefiihrten) Bezeichnungen

Pk = Pks + Pkr(= n;™),
P = Ps+ Pr+ Pk(= ),

S:Lf—Qx—H'le’
BS =LF=Q ..~ VF,
KS = BS -8,

L=L

Anschliessend werden aufgrund der konkreten BestandDaten das bestandesspe-
zifische Abrechnungsschema, Variable Bestandschema vom Datentypus Schema,
in ComputeBestandSchema durch Abrufen der Prozedur ComputelndSchema
generiert. Die so erhaltenen Informationen werden schliesslich dem Bentitzer
mit Hilfe von geeigneten Druckprozeduren zuginglich gemacht. Ubersichts-
halber sei die wesentliche algorithmische Struktur des Verfahrens durch fol-
genden Programmausschnitt dargestellt:
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PROGRAMM
CONST
TYPE

VAR

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

{ Hauptprogramm }

Abrechnungsschema;

AnzVMax = ... ;

Tafeln = ... ;

VersicherteDaten = ... ;

Tavif = ... ;

Schema = ... ;

AnzV: INTEGER;

BestandDaten: ARRAY [l ... AnzVMax]| OF VersicherteDaten;
VTarif: Tarif;

IndSchema, BestandSchema: Schema;

d, . aex.,...: Tafeln;

Generate Tafeln;

{generiert die versicherungstechnischen Grundlagen }
ReadBestandDaten;

{liest die bestandesspezifischen Daten }

Compute V Tarif ( Versicherte: VersicherteDaten; VAR VTarif: Tarif);
{berechnet den Versicherungstarif fiir einen Versicherten }
ComputelndSchema ( Versicherte: VersicherteDaten; VAR Indschema:
Schema);

{berechnet ein individuelles Abrechnungsschema fiir einen Versicherten!
Compute BestandSchema;

{ berechnet ein bestandesspezifisches Abrechnungsschema |
WriteBestandSchema;

{ Druckprozedur }

BEGIN
Generate Tafeln;
ReadBestandDaten;
ComputeBestandSchema;
Write BestandSchema;
END.

Im nédchsten Abschnit werden die Prozeduren

ComputeV Tarif, ComputeIndSchema und ComputeBestandSchema
anhand von illustrativen Beispielen nédher erldutert.
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6 Numerische Beispiele

Das allgemeine Konzept dieser Arbeit sei anhand von zwei speziellen Versi-
cherungstarifen inklusive numerische Auswertungen illustriert. Die Methode
wurde in PASCAL implementiert.

6.1  Laufende Altersrenten

In der heutigen Tarifierungspraxis werden immer hdufiger anwartschaftliche
Versicherungen von laufenden Renten auseinandergehalten. Dafiir gibt
es sowohl statistische Griinde (z.B. Niedermann [1987], 188) wie auch
risikotheoretische Motivationen (z.B. Hiirlimann [1986], “Two inequali-
ties ...”). Deshalb ist es erwiinscht, Bestinde von laufenden Renten separat
zu untersuchen. '

Als Spezialisierung unserer allgemeinen Lebensversicherungen betrachten wir
lebenslingliche laufende Altersrenten mit vorschiissigen jihrlichen Zahlun-
gen ohne Todesfallleistungen (Beispiele 1, 2). Mit einem Kostenansatz 7y,
beschreiben wir nun die relevanten Formeln zur computerunterstiitzten Be-
standesberechnung. Die Gréssen g, @, nach (GRM80, analytische Formeln)
werden in Tafeln gespeichert. Einfachheitshalber sollen keine Riickkdufe statt-
finden, d. h. es gilt stets IndRk = 0. Die Variablen q..d,, 1,0, i, BestandDaten,
BestandSchema und AnzV (= Anzahl Versicherte) sind global definiert. Der
Komponente BestandSchema.Keff werden zu Beginn die effektiven Kosten des
Bestandes zugewiesen. Die anderen Komponenten von BestandSchema werden
zu 0 initialisiert. Fiir die einzelnen Prozeduren erhalten wir im wesentlichen:

ComputeV Tarif
Der Variablen ¥ Tarif werden in Abhiingigkeit von g, x,¢ (Komponenten von
Versicherte) folgende Werte zugeteilt

Va=a

Ve=a

x+t—1>

X+t

Pr = —vq,., Ve,
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ComputelndSchema

Der Variablen IndSchema werden in Abhingigkeit von g, x, t, RL, IndT
(Komponenten von Versicherte),via der Hilfsvariablen V Tarif, wie folgt Werte
zugeordnet :

ComputeV Tarif( Versicherte, V Tarif)

Va=RL:- VTarif.Va, Ve = RL - VTarif.Ve,

(beachte die PASCAL-Schreibweise fiir Komponenten vom Typ RECORD)
BVa=(1+y,)-Va, BVe=(l1+y,) Ve, KVa=1y,-Va, KVe=y,Ve,
Pr = RL - VTIarif.Pr, Ps= —Pr, Pkr=y,Pr, Pks=—Pkr, Pk=0,
P=0, S=—-IndT-Ve, BS=(1+y,)'S, KS=7v,-S, K =RL Tarif.K,
Keff = K - BestandSchema.Keff

(proportional zugewiesene effektive Kosten)

ComputeBestandSchema
Die Variable BestandSchema wird gestiitzt auf BestandDaten, wie folgt
algorithmisch berechnet:

FOR j :=1 TO AnzV DO BEGIN

ComputeIndSchema( BestandDaten [j], IndSchema)

P = P+ IndSchema.P, ... (andere additive Zuweisungen)
END

Mit Hilfe von geeigneten Druckprozeduren konnen die Tabellen 1 bis 7 erzeugt
werden. Nach nochmaliger Anwendung der Prozedur ComputelndSchemq
und proportionaler Umverteilung der effektiven Kosten auf die Versicherten
konnen sogar individuelle Tabellen 1 bis 7 erzeugt und gedruckt werden. Die
Ergebnisse der numerischen Auswertungen sind in den folgenden Tabellen
zusammengefasst. Wir rechneten mit i, = 0.05, y, = 0.02.
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Tabelle 9:
Versicherte Daten fiir einen Bestand von 500 laufenden Altersrenten
Anzahl g X t RL IndT Risikosummen
Versicherte Tod
5 1 65 3 12 000 1 — 118428
5 1 65 6 6 000 1 - 49002
5 1 65 9 24 000 1 - 152220
5 | 65 12 10000 1 - 43117
120 1 65 1 24 000 0 - 262854
120 1 65 5 18 000 0 - 157425
120 1 65 10 12000 0 — 68355
120 1 65 15 6000 0 — 11663
Tabelle 10:
Technische Bruttorechnung: laufende Altersrenten
Sparen Risiko Kosten Gesamt
Pramien 1211479 - 1360679 149 200 0
Zinsen 3002424 - 68034 7460 2941850
Leistungen 9274 338 — 1814338 7460 000
Kosten 125000 125000
Erh6hung Riickst. - 6261 405 - 6261405
Nettoerg. Zins 1200970 - 27214 2984 1176 740
Nettoerg. Risiko 412839 412839
Nettoerg. Kosten 28676 28 676
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Tabelle 11:
Technische Nettorechnung: laufende Altersrenten
Sparen Risiko Kosten Gesamt
Primien 1333999 - 1333999 0 0
Zinsen 2943553 - 66700 64997 2941850
Leistungen 9238763 - 1778763 7460000
Kosten 125000 125000
Erhohung Riickst. ~ 6138632 - 122773 - 6261405
Nettoerg. Zins 1177421 - 26680 25999 1176 740
Nettoerg. Risiko 404 744 8095 412839
Nettoerg. Kosten 28 676 28 676

Zur Ermittlung der Uberschiisse und zur Beurteilung der Rentabilitit dieses
Bestandes sind Brutto-Stop-Loss-Pramien zu berechnen.

Wir wihlen hier das kollektive Modell der Risikotheorie und die FFT-
Methode. Fiir den Sicherheitszuschlag auf die Netto-Stop-Loss-Primien gelte
a = 0.15. In Anlehnung an die letzten statistischen Erhebungen in der
schweizerischen Kollektivversicherung (Niedermann [1987]) gelte qy = 1.2¢,,
g, nach GRMS0, als Sterblichkeit 2. Ordnung. Zur Illustration betrachten wir
nur den Bruttorisikoprozess. Wir wissen, dass der Selbstbehalt SB® Lisung
der Gleichung (4.11) ist:

—1428713 = SB® + BSL(F?,SB?) (6.1)

Durch Interpolation der Werte (Risikosummen auf 1000 gerundet)
BSL(FB,—1550000) = 125000, BSL(F®,—1560000) = 129000 kann man
sich fiir SB? = —1 555000 entscheiden.

Mit (6.1) folgt damit BSL(FB,SBP) = 126287. Der Bestand ist, mit der
gegebenen Sicherheit und Gewinnmarge (Wahl von a), risikotragend, falls der
Riickbehalt mit Risikoprozess mindestens 126 287 ausmacht.

6.2  Gemischte Versicherungen

Das zweite klassische Beispiel behandelt die gemischte Versicherung mit
Schlussalter s = 65 nach den Grundlagen GKMBS80 (analytische Formeln)
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und mit Kostensidtzen « = 0, f = 0.13, y = 0.00165. Fiir die Sterblichkeiten
2. Ordnung gelte ¢! = 0.8¢,, ¢, nach GKM80, und wiederum sei a = 0.15
der Sicherheitszuschlag auf die Netto-Stop-Loss- Pramien. Die Beschreibung
der relevanten Prozeduren beschrinkt sich nur noch auf die tariflichen
Gegebenheiten. Folgende Schritte (mit allgemeinem s, a, f3, 7) sind zu beachten:

ComputeV Tarif:

n=s—2Xx,

Va=1- Aytt—1:n—tH1 /ax n)

Vez{l_ax+t:m/ax:m [<n
0 =i

BVa=(1+a)Va—a, BVe=(14+a)Ve—«
KVa=aVa—1) |, KVe=0a(Ve—1)

P { UGy 11— Fe) t<n
0 t=n

{vVe—Va t<n
Ps=

v—Va t=n

Pkr = —vq,,, KVe

_L v ) 0 t<n
K_l—-ﬁ(Pr+PS+ﬂ a)(l+l)+{0ﬂ(1—qx+n_1) )

PKs=vKVe— KVa+ vK

Ausser fir die Kosten 1. Ordnung, Formel die mit (2.18) gewonnen wird, ist
die Herleitung der Formeln klassisch (z. B. Wolfsdorf [1986], 207).
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ComputelndSchema
ComputeV Tarif ( Versicherte, VTarif)

0 t<n
ELz{
T l=n

VA =TL- VTarif.VA, Ve =TL- VTarif.Ve
BVa =TL- VTarif.BVA, BVe = TL- VTarif.BVe
KVa=TL- VIarif.KVa, KVe = TL- VTarif.KVe
BS = TL- VTarif.Ps, Pr = TL: VTarif.Pr
Pks = TL- VTarif.Pks, Pkr = TL- VIarif.Pkr

Pk = Pks+ kPkr, P = Ps+ Pr+ Pk
TL-IndT t<n
- { 0 i+ 3
S=L—1IndT -Ve, BS=L—1IndT -BVe, KS=BS-S§
K =TL- VTarif.K, Keff=K - BestandSchema.Keff

(proportional zugewiesene effektive Kosten)

Numerische Ergebnisse sind in den folgenden Tabellen ersichtlich. Da o = ()
stimmen Brutto- und Nettoprozess iiberein (keine stochastische Komponenten
im Kostenprozess).

Tabelle 12: Versichterte Daten fiir einen Bestand von 802 gemischte Versiche-
rungen mit Schlussalter 65

Anzahl g % t TL IndT Risikosummen
Versicherte Tod

1 1 25 20 100 000 1 63131

1 1 40 20 150 000 1 40272
100 1 25 1 200000 0 197225
100 1 25 10 100 000 1 84071
100 1 35 5 180000 0 158975
100 1 35 15 120000 0 72222
100 1 45 10 120000 0 69155
100 1 45 20 100 000 0 0
100 1 53 5 60 000 0 32876
100 1 55 10 50000 0 0
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Tabelle 13:
Technische Nettorechnung: gemischte Versicherungen
Sparen Risiko Kosten Gesamt
Priamien 2805872 211767 927765 3645404
Zinsen 1538552 10 588 31388 1 580528
Leistungen 15146 597 103 403 15250000
Kosten 320000 320000
Erhohung Riickst. - 11417594 - 11417594
Nettoerg. Zins 615421 4235 12555 632211
Nettoerg. Risiko 114717 114717
Nettoerg. Kosten 326598 326 598

Die Untersuchung wird durch Angabe der Brutto-Stop-Loss-Pramie vervoll-
stindigt. Es ist (4.12) zu losen:

222355 = SBR + BSL(FR, S BY)

Man erhilt BSL(FR, 100000) = 121000, BSL(F®, 110000) = 113000 und
entscheidet sich fiir SBR = 105000, BSL(FR, 105000) = 117 355.

Werner Hiirlimann
Allgemeine Mathematik
Winterthur-Leben

8400 Winterthur
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Zusammenfassung

Die Arbeit untersucht Moglichkeiten, um aus der Sicht des Versicherers die Rentabilitit
von Lebensversicherungsbestinden zu messen. Das Lebensversicherungsgeschehen mit einer
Ausscheideursache wird anhand des Begriffs einer allgemeinen Lebensversicherung auf zwei
verschiedene Arten interpretiert. Es ergeben sich zwei unterschiedliche additive Zerlegungen
der technischen Rechnung in Spar-, Risiko- und Kostenprozesse. Als Konsequenz analysieren
wir die Hauptfragen nach Uberschussermittlung und Rentabilitit. Der Risikobereich wird
unter Beriicksichtigung der neueren stochastischen Modelle ausfiihrlich behandelt. Schliesslich
zeigen wir, gestiitzt auf ein einfaches Modell der strukturierten Programmierung, einen Weg, um

numerische Ergebnisse ohne grossen Aufwand zu erzeugen. Zwei numerische Beispiele runden
die Untersuchung ab.

Résumé

Larticle est consacré a la mesure de la rentabilit¢ d’un portefeuille d’assurances-vie du point
de vue de I'assureur. Le processus de I'assurance-vie a une cause de sinistres est interprete de
deux manieres differentes a l'aide de la notion d’assurance-vie généralisée. Il en resulte deux
decompositions additives differentes du compte de pertes et profits en processus épargne, risque
et couts. Les resultats obtenus permettent d’aborder les questions principales de la détermination
des excedents et de la rentabilite. La composante risque est traitée de maniére approfondie en
tenant compte des modéles aléatoires les plus récents. Finalement l'auteur propose une meéthode
basée sur un modele simple de programmation structurée pour engendrer sans grand effort des
réesultats numeriques. Deux exemples numériques arrondissent cette recherche.

Summary

We investigate possibilities to measure the profitability of life insurance portfolios from the point
of view of the insurer. The life insurance process with one claim event is interpreted in two
different ways using the notion of a generalized life insurance. One obtains two different additive
decompositions of the profit and loss account in savings, risk and cost processes. As a consequence
we analyse the main questions of the determination of the surplus and the profitability. The risk
component is comprehensively dealt with taking into account the more recent stochastic models.
Finally we exhibit a way, based on a simple model of structured programming, to generate
numerical results without great effort. Two numerical examples illustrate this investigation.
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