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D. Kurzmitteilungen

ROBERT F. TicHy, Wien

Bemerkung zu einem versicherungsmathematischen Modell

H.U. Gerber (2] hat das folgende Modell in der kollektiven Risikotheorie
cingefithrt. Die Zufallsvariable X (1) bezeichnet dabei das Kapital einer
Versicherungsgesellschaft zur Zeit t; der Verlauf eines Pfades ist stiickweise
linear mit X (1) = x + ct, wobei ¢ die Pramiendichte und x = xo das
Anfangskapital bezeichnet. Die Sprungstellen ¢; (Schadensfille) seien nach
Poisson mit Parameter A verteilt und die Sprunghdhen y = x; + ¢(tjy) — t;) —
Xi;1 = 0 (Schadenshéhen) nach einer vorgegebenen Verteilung F(y). Stets wird
c> 4 j'({ ydF (y) vorausgesetzt. Ferner wird angenommen, dass das Kapital
oberhalb einer vorgegebenen linearen Schranke b+ at (b > 00 <a < ¢) als
Gewinn (Dividenden) abgeschopft wird, d. h. die Hohe des Kapitals verlduft
entlang der linearen Schranke bis zum ndchsten Schadensfall.
Im Spezialfall exponentialverteilter Schadenshohen (F(y) =1 —e¢e ¥, y > 0)
hat Gerber [3] explizite Formeln fiir die Uberlebenswahrscheinlichkeit
U(x, b) der Versicherungsgesellschaft im betrachteten Modell (d. h. fir die
Wahrscheinlichkeit, dass X (f) stets > 0 ist) und fiir den Erwartungswert
der mit einem Faktor ¢ verzinsten Dividendenzahlungen angegeben. Im
allgemeinen Fall wurden in [2] Abschiatzungen und asymptotische Formeln
mit Martingalargumenten hergeleitet.
Es wird nun wie in [3] der Erwartungswert ¥ der mit ¢ verzinsten Dividenden
berechnet, und zwar wird angenommen, dass die Dividendenzahlungen auch
nach dem Ruin fortgesetzt werden. Dann ist V' = V (u) eine Funktion in
u = b — x. Aus dem Gesetz der vollstindigen Wahrscheinlichkeit ergibt sich
fur u > 0

Viu)y = (1 —odt)(1 — Adt) V (u — (c — a)dt) + Adt [ Viu+y)dF(y)

L3

0
und mit V (u — (¢ — a)dt) = V(u) — (¢ — a)dt V' (u)

(c—a)V'(u)+ 0+ AV —4i [ Vu+y)dF(y) =0. (1

L2

0
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Ein analoges Argument liefert die Randbedingung
V'(0) = —1. (2)

In [3] wurde gezeigt, dass die Integrodifferentialgleichung (1) mit Randbe-
dingung (2) genau eine stetige, beschrinkte Losung besitzt. Fir den Fall
F(y) = 1 —e ¥ wurde die Losung explizit bestimmt. Dies ist in einfacher
Weise auch fur den allgemeinen Fall moglich und liefert als Losung eine
Exponentialfunktion, was auch anschaulich zu erwarten ist. Man setzt an

Viu) = Ae " (3)

und erhilt durch Einsetzen in (1):

v 8

A(c —a)(—p)e ®“ + A0 + A)e *“ —iA fe e ¢V dF(y) =0.

0
Nun ist die Funktion
Glo) = (c — a)(—0) + (3 + 2) — f etV dF(y) (4)
0
fur 0 < p < oo stetig und es gilt
G0) =0 >0, lim G(g) = —c0. (5)

Q-

Daher existiert eine positive Nullstelle oy von G(g) und diese ist wegen der
eindeutigen Losbarkeit des Problems eindeutig bestimmt. Aus (2) ergibt sich
fir A =1/, also

1
Viu) = — e, (6)
Betrachten wir kurz das Beispiel der I'-Verteilung

d _ 1 JP—1 ,—y ,
dF(y) = C(P) y e 'dy (P>1). (7)
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Es zeigt sich, dass go die eindeutig bestimmte positive Losung der Gleichung

(5+).=EQ+])P+Q(C—G) (8)

1st.

Im folgenden betrachten wir den Erwartungswert W (x, b) der mit é verzinsten
Dividendenzahlungen, die im Falle des Ruins abgebrochen werden. Ferner
betrachten wir ein etwas allgemeineres Modell, wie in [3] vorgeschlagen
wurde: ¢ = ¢ + 0 x soll linear vom Anfangskapital abhdangen:; d.h. durch
eine Verzinsung (mit dem Faktor #) bedingt, wird die Pramiendichte vom
Anfangskapital beeinflusst. Wie zuvor kann eine Integrodifferentialgleichung

ol ~

. |W X
(c+0x) — +a (T —(0+ AW+ 4 [ Wix—ybdF(y)=0 9)
0x ch ¢

0
fir 0 < x < b < o mit Randbedingung
oW
0x

= (10)
x—b
aufgestellt werden. Es wird nun der wichtige Spezialfall @ = 0 behandelt,
d. h. die lineare Schranke zur Abschopfung der Dividenden ist horizontal (fir
¢ = const siche [1] ).
Dazu wird W(x,b) = W(x)(b fest) gesetzt und es ergibt sich fur W(x) die
Integrodifferentialgleichung

(c+OX)W (xX)— O+ AW (x)+ 4 f W (x—y)dF(y) =0. (11)
0

Eine einfache Anwendung des Fixpunktsatzes von Banach zeigt (siche auch am
Ende der vorliegenden Note), dass (11) eine eindeutig bestimmte beschriankte
Losung (bei vorgegebenem W (0)) besitzt. Diese Losung W (x) besitzt daher
eine Laplace-Transformierte % (5).

Wegen

f Wix)e ™dx =5 7% (s) — W(0),
0



240

folgt aus (11):

—_~

c(sW (s) — W(0)) — ()(s% W (s) + vT/(s)) — (0 + AW (s)

+ AW (s)p(s) =0 (12)
mit (s je V' dF(y). Nun setzt man (0 # 0)
0
~ —cs+0+0+4A—A@(s ~ ¢
P(s) = : AU (13)
0s 0s

und erhilt als Losung von (12)

ﬁ/(s)z—W(O) exp (—f Ig(r)dt)-f@{t) exp (j‘ﬁ(u)du) dt.(14)
1 s 1

Da PT/(S) =0 (%) existiert die inverse Laplace-Transformation von ﬁ/(s), und
Riicktransformation liefert daher

Wix,b) = W(0,b) - G(x), (15)

wobei G(x) die inverse Laplace-Transformierte von

exp (ufﬁ(t)dt) -fé(z) exp (ff’(u)du) dt
1 1 1

bezeichnet.
Die Randbedingung (10) ergibt dann zusammen mit (15)

oW

_ =1 =W(0,b)  G'(b),
ox

x=h

d.h. W(0,b) = 1/G'(b).
Insgesamt hat man daher die explizite Formel
G(x)

Wi(x,b) = G’(h) (fir 0 =0 siche [1]). (16)
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Abschliessend sei bemerkt, dass eine einfache Anwendung des Fixpunktsatzes
von Banach zeigt, dass die Integrodifferentialgleichung (9) mit Randbedingung
(10) eine eindeutig bestimmte Losung besitzt. Man braucht dazu nur den
Integraloperator

(Ag)(x, b)
(b—x)/(c+0 x—a) XH(c+0 x)t
= f de Hton fg(x—i—(c-l—()x)t—y,b—f—at) dF(y)dt
0 0
* b+at
+ f A e Vo f g(b+at — y,b+ at)dF (y) dt
(b—x)/(c+0 x—a) 0
+c—+—()x—a - i+ 0) b—x
A+0 P e c+0x—a
sowie die Abschitzung
A
[CAg1 (X, B) — (Aga)(x, b)) € ——= llgr — &2l

zu beachten. Somit ist diese Losung von (10) + (9) im Falle a = 0 durch (16)
gegeben (insbesondere ist auch G'(b) # 0).

Robert F. Tichy

Institut fur Analysis,

Technische Mathematik und Versicherungsmathematik
TU Wien

Wiedner Hauptstrasse 8§ — 10

A-1040 Wien
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ErRHARD KREMER, Hamburg

An improved approximation of the ultimate ruin probability

A very old problem of risk theory is the calculation of the probability
of ruin for the risk business. First results go back to Lundberg (1909)
and Cramér (1955). In the past twenty years those classical results were
generalized into many directions and more generalized models were developed
(sce Janssen (1981)). Only recently the numerical evaluation of the classical
formulas for the ruin probability became of interest for the risk theorists. For
example Beekman gave an interesting expansion (Beekman (1985)), De Vylder
a simple, but crude approximation (De Vylder (1978)), and Goovaerts/ De
Vylder (1984) a numerical discretization method. Also the author gave a
contribution (Kremer (1987)), pointing at the possibility of applying some
renewal theoretical approximation formulas. Already Seal (1983) discussed
a method similar to one of the author’s (1987) approximate results. Seal’s
method (3) is based on a renewal equation for the nonruin probability, whereas
the author’s three methods were based directly on the renewal equation for
the ruin probability. Seal showed in an example that his method (3) based on
Bartholomew’s (1963) result is too crude. The author uses in his (1987) paper
a refinement of Bartholomew’s (1963) result, published by Deligioniil (1985).
Let us now follow Seal’s approach replaced by Deligoniil’s (1985) instead of
Bartholomew’s (1963) result. The renewal equation for the nonruin probability
U (u) with finite initial surplus u > 0 is given by:

u

U) = U0) + f Uu—y) - h(y) dy,

0

where the density h is defined according:

1 o ,
hiy) = (~ FU))
U

with the distribution function F of a single claim and the corresponding
mean:

u= f() (1—F(y)dy= fo xF (dx)

Mitteillungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 2, 1987
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The renewal equation holds for the classical compound Poisson risk model
(see Gerber (1980)) with yearly premium:

c=0+A) 4 4
where u is defined above, 4 is the mean claims number and A the security
loading. It is well-known that with the solution @ of:

u

D) = f (1~ —y)) - h(y) dy

0

one has in our special situation (see Kohlas (1975)):

Uu) = U(0) - [1 + D] |. (1)

According to Deligoniil’s result (1985) we have the approximation:

u

B
®(u) ~ 4. -u— H.(u) + f (1 — H.(u—y)) “ [h(y) + A (I:I((i; )] dy (2)

0

with:

H(y) = f W) dt,
0

H.(y) = A. - f (1—H(1)) dt,

0

x -1
Ae = [f I-h(t)dt] .
0

Finally 1t is known that:

!U(O) A

R &

(see Gerber (1980)). According to the numerical results of Deliginiil’s paper
(1985) one expects that the approximation method (1) - (3) is much more
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precise than Seal’s method (3). Obviously the method is easier to evaluate
than the corresponding method (4.3) - (4.7) in Kremer (1987).

Prof. Dr. E. Kremer

Universitat Hamburg

Institut flir Mathematische Statistik
Bundesstrasse 55

[D-2000 Hamburg 13
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Addendum to “‘Hierarchical Credibility Revisited” by
H. Biihlmann and W.S. Jewell, Bulletin 1, 1987

In the bibliography reference number 3 should read

Norberg, R. (1980) instead of Norberg, R. (1975)

We also should have mentioned

Norberg, R. (1986): Hierarchical Credibility: Analysis of a Random Effect
Linear Model with Nested Classification, SAJ 204-222 (No.3-4).

H. Biihlmann and W. S. Jewell
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