Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: - (1987)

Heft: 2

Artikel: Technische Grundlagen der Invalidenversicherung

Autor: Gredig, Werner

DOI: https://doi.org/10.5169/seals-967154

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

WERNER GREDIG, Bern

Technische Grundlagen der Invalidenversicherung

1 Einleitung

Im Jahre 1984 wurde ein erster Versuch unternommen, mittels des Rentenregisters der eidgenössischen Invalidenversicherung (IV) Grundlagen im Bereich der IV zu erstellen. Es wurde die Wahrscheinlichkeit invalid zu sein bestimmt und damit eine Aktivitätsordnung hergeleitet [1]. In diesem Artikel wird nun mit Hilfe der Ausscheidewahrscheinlichkeit der Invaliden die Wahrscheinlichkeit invalid zu werden berechnet. Die daraus erstellten Grundlagen gelten für die Schweizer in der Schweiz (alle sind in der IV versichert) und können somit als Ergänzung zur Schweizerischen Sterbetafel verwendet werden.

2 Methode der Invaliditätsmessung

2.1 Die drei Grundwahrscheinlichkeiten

Zur Erstellung von Invaliditätsgrundlagen müssen zwei der drei folgenden Grundwahrscheinlichkeiten bekannt sein:

 $-i_x$: Wahrscheinlichkeit invalid zu werden

 $-j_x$: Wahrscheinlichkeit invalid zu sein

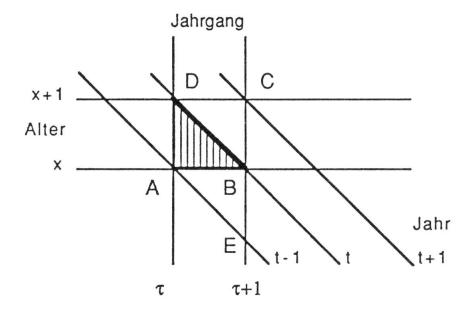
 $-\sigma_x^i$: Ausscheidewahrscheinlichkeit der Invaliden durch Tod oder Reaktivierung

Sie sind durch folgende Beziehung miteinander verknüpft:

$$l_{x+1} j_{x+1} = l_x j_x (1 - \sigma_x^i) + l_x (1 - j_x) i_x \left(1 - \frac{\sigma_x^i}{2} \right)$$
 (1)

Dies gilt unter der Annahme, dass die Invalidierung und das Ausscheiden der Invaliden gleichmässig über das Jahr erfolgen.

Die Formel besagt: Die Zahl der Invaliden im Alter x+1 ist gleich der Anzahl der nicht ausgeschiedenen Invaliden im Alter x, zuzüglich derjenigen, die im Alter x invalid werden und das Alter x+1 als Invalider erleben.


2.2 Berechnung von i_x

Bei den vorhandenen Daten des Rentenregisters lässt sich der Zeitpunkt des Eintritts der Invalidität nicht bestimmen, jedoch können σ_x^i und j_x ermittelt werden. Die abhängige Grösse i_x lässt sich durch Umformen von (1) und Division durch l_x berechnen, wobei p_x die Überlebenswahrscheinlichkeit des Gesamtbestandes ist (SM 1978/83):

$$i_{x} = \frac{p_{x} j_{x+1} - j_{x} (1 - \sigma_{x}^{i})}{(1 - j_{x}) (1 - \frac{1}{2} \sigma_{x}^{i})}.$$

2.3 Ermittlung von σ_x^i und j_x

Die Berechnung von σ_x^i basiert auf der Methode von Becker-Zeuner, welche auch bei der Schweizerischen Sterbetafel [2] verwendet wird. Es werden immer nur Personen des gleichen Jahrgangs τ mit erfülltem Alter x betrachtet. Zur Veranschaulichung dient das *Schema von Lexis*.

$^{t-1}I_{x}$	= AB	Hauptgesamtheit der x -jährigen Invaliden im Jahr $t-1$
${}^tB_x^i$	= BD	Bestand der Invaliden mit erfülltem Alter x zu Beginn des Jahres t
$t-1 tA_X$	= ABCD	Hauptgesamtheit der ausgeschiedenen Invaliden durch Tod oder Reaktivierung im Alter x in den Jahren $t-1$ und t . Sie setzt sich aus zwei Grundgesamtheiten zusammen: ${}^{t-1 t}A_x = {}^{t-1}A_x + {}^tA_x = ABD + BCD$
$t-1 t$ E_X		Hauptgesamtheit der neuen Invaliden im Alter x in den Jahren $t-1$ und t , zusammengesetzt aus zwei Grundgesamtheiten: $t^{t-1/t}E_x = t^{t-1}E_x + t^tE_x = ABD + BCD$
$^{t-1}A_{x-1 x}$	A = AEBD	2. Hauptgesamtheit der ausgeschiedenen Invaliden des Jahrgangs τ im Jahre $t-1$ und Alter $x-1$ oder x
$^{t-1}E_{x-1 x}$		2. Hauptgesamtheit der neuen Invaliden

Die Wahrscheinlichkeit σ_x^i ist definitionsgemäss die Hauptgesamtheit der ausgeschiedenen Invaliden dividiert durch die Hauptgesamtheit der Invaliden, unter Berücksichtigung der Neuzugänge:

$$\sigma_{\scriptscriptstyle X}^i = \frac{{}^{t-1}{}^{l} A_{\scriptscriptstyle X}}{{}^{t-1} I_{\scriptscriptstyle X} + \frac{1}{2} \, {}^{t-1}{}^{l} E_{\scriptscriptstyle X}} \, .$$

Das $^{t-1}I_x$ ergibt sich aus der folgenden Gleichung:

$${}^{t-1}I_x = {}^tB_x^i + {}^{t-1}A_x - {}^{t-1}E_x. (2)$$

Aus den Grunddaten lassen sich der Bestand ${}^tB_x^i$ und die Grundgesamtheiten der Ausgeschiedenen bestimmen, jedoch nicht die Neuzugänge ${}^{t-1}E_x$. Um dieses Problem zu umgehen, wird in Formel (2) für das ${}^{t-1}E_x$ als Näherung der Ausdruck $\frac{1}{2}{}^{t-1|t}E_x$ eingesetzt. Daraus folgt:

$$\sigma_x^i = \frac{{}^{t-1|t}A_x}{{}^tB_x^i + {}^{t-1}A_x} \,. \tag{3}$$

Die Wahrscheinlichkeit j_x berechnet sich gemäss:

$$j_X = \frac{t-1}{t-1} \frac{I_X}{L_X} \,. \tag{4}$$

Zur Berechnung von $^{t-1}I_x$ wird in (2) für $^{t-1}A_x$ die Näherung $\frac{1}{2}{}^{t-1}A_{x-1|x}$ eingesetzt und $^{t-1}E_x$ wird durch $\frac{1}{2}{}^{t-1}E_{x-1|x}$ ersetzt (die Fehler heben sich ungefähr auf). Unter Verwendung von $^tB_x^i={}^{t-1}B_{x-1}^i-{}^{t-1}A_{x-1|x}+{}^{t-1}E_{x-1|x}$ führt dies zum bekannten Ausdruck

$$^{t-1}I_x = \frac{1}{2}(^{t-1}B_{x-1}^i + {}^tB_x^i).$$

 $^{t-1}L_x$ ist die Bevölkerung im Jahr t-1 mit dem mittleren Bestand

$$^{t-1}L_x = \frac{1}{2}(^{t-1}B_x + {}^tB_x).$$

3 Statistische Grundlagen

3.1 Der Bevölkerungsbestand

Es wurden die Bestände der Schweizer in der Schweiz nach erfülltem Alter am 1. Januar der Jahre 1979–83 verwendet (Quelle: Bundesamt für Statistik, Bevölkerungsbewegung).

3.2 Bestand der invaliden Personen

Die Bestände der Invaliden stammen aus dem zentralen Rentenregister der AHV/IV. Es wurde auf den Invaliditätsgrad der Rentner abgestützt, wobei Invalide mit einem Invaliditätsgrad zwischen 50 % und 66 % nur halb zählen.

3.3 Beobachtungszeitraum

Damit genügend Daten vorhanden sind, müssen mehrere Jahre zusammengefasst werden. Der Beobachtungszeitraum umfasst die Jahre 1979-83 (1978 konnte mangels Daten leider nicht berücksichtigt werden) und fällt somit mit jenem der Schweizerischen Sterbetafel 1978/83 zusammen. Für die Berechnung von i_x werden die p_x dieser Sterbetafel verwendet.

In den Formel (3) und (4) treten nun im Zähler und Nenner Summen über t = 1980 - 1983 auf:

$$\sigma_x^i = \frac{\sum_t t^{t-1|t} A_x}{\sum_t (t^t B_x^i + t^{t-1} A_x)} \qquad (3') \qquad \qquad j_x = \frac{\sum_t t^{t-1} I_x}{\sum_t t^{t-1} L_x} \qquad (4')$$

4 Berechnung der Grundlagen

4.1 Ausgleichung der rohen Werte

Die rohen j_x wurden mit einem Polynom 5. Grades ausgeglichen.

Bei den σ_x^i zeigte es sich, dass der Mittelwert über alle Alter eine gute Ausgleichung ist. Es fehlt ein linearer Trend und Polynome höheren Grades lassen sich anhand der Daten nicht rechtfertigen.

Für die Männer ergibt sich
$$\sigma_x^i = 0,0441, \quad 18 \le x < 65,$$
 für die Frauen ergibt sich $\sigma_y^i = 0,0321, \quad 18 \le y < 62.$

Dieses überraschende Resultat entsteht durch den entgegengesetzten Verlauf der Wahrscheinlichkeiten Tod und Reaktivierung.

4.2 Verwendung der Ausscheideordnung AHV VI bis

Für die Erstellung der Invaliditätsgrundlagen wird die neue Überlebensordnung AHV VI bis verwendet [3]. Bei dieser Tafel ist die Sterblichkeit der Schweizer Bevölkerung auf das Jahr 2011 extrapoliert. Die Wahrscheinlichkeiten i_x und j_x werden nicht verändert. Damit die Beziehung (1) weiterhin richtig ist, müssen neue σ_x^i berechnet werden. Aus (1) folgt:

$$1 - \sigma_x^i = \frac{p_x j_{x+1} - \frac{1}{2} (1 - j_x) i_x}{j_x + \frac{1}{2} (1 - j_x) i_x}.$$

4.3 Aktivitätsordnung und Ausscheideordnung der Invaliden

$$l_x$$
 Überlebensordnung der Tafel AHV VI bis mit $l_{18} = 100'000$ $I_x = l_x j_x$ Bestand der Invaliden $l_x^a = l_x - I_x$ Aktivitätsordnung .

Bei der Ausscheideordnung der Invaliden l_x^i ist es üblich $l_s^i = l_s$ zu setzen mit s = 65/62 für das Schlussalter der Männer bzw. Frauen. Die Ausscheideordnung lässt sich (mittels der neuen σ_x^i) anhand der Rekursionsformel

$$l_{x-1}^i = \frac{l_x^i}{1 - \sigma_{x-1}^i}$$
 berechnen.

Die Ergebnisse sind im Anhang in Tabelle 2 für die Männer und in Tabelle 3 für die Frauen zusammengestellt.

4.4 Vergleich mit den Tafeln EVK 1980

Zur Beurteilung der neuen Grundlagen stehen in Tabelle 1 für ausgewählte Alter Barwerte der Aktivenrenten, Invalidenrenten und der Anwartschaften auf Invalidenrente. Als Vergleich dienen die Tafeln EVK 1980. Damit der Einfluss der Invalidität nicht durch die verminderte Sterblichkeit von AHV VI bis in den höheren Altern verdeckt wird, wurde bei den Invalidenrenten die temporären Barwerte mit Schlussalter 65/62 berechnet.

Bei den Aktivenrenten ist kein wesentlicher Unterschied festzustellen. Bei den Invalidenrenten macht sich die Reaktivierung vor allem in den jüngeren Alter stark bemerkbar. Es muss jedoch erwähnt werden, dass die gesamte Wohnbevölkerung und die Arbeitnehmer des Bundes recht unterschiedliche Beobachtungsbestände sind.

Werner Gredig Bundesamt für Sozialversicherung 3003 Bern

Literaturhinweise

- [1] Streit, Toni/Gredig, Werner: Herleitung einer Aktivitätsordnung auf Grund der Erfahrung bei der IV. Mitteilungen der VSVM, Heft 2, 1984.
- [2] Schweizerische Volkssterbetafeln 1931 / 1941 und 1939 / 1944. Statistische Quellenwerke der Schweiz, Heft 232, Bern 1951.
- [3] Herzog, B.: Überlebensordnungen AHV VI und AHV VI bis. Mitteilungen der VSVM, Heft 2, 1987.

Anhang

Männer (Schlussalter 65)

Alter	temporäre Aktivenrente		temporäre Invalidenrente		Anwartschaft auf	
	AHV/IV	EVK	AHV/IV	EVK	temporäre Inv AHV/IV	validenrente EVK
20 30 40 50 55 60	20,28 18,20 14,91 10,34 7,51 4,22	20,46 18,24 14,91 10,22 7,33 4,05	11,69 11,38 10,60 8,70 6,90 4,15	15,66 14,67 12,88 9,72 7,38 4,26	0,418 0,493 0,619 0,650 0,525 0,248	0,272 0,389 0,547 0,713 0,682 0,406
	7,22	4,03	4,15	7,20	0,240	0,400

Frauen (Schlussalter 62)

Alter	temporäre Aktivenrente		temporäre Invalidenrente		Anwartschaft auf	
	АНУЛУ	EVK	AHV/IV	EVK	temporäre Inv AHV/IV	validenrente EVK
20 30 40 50 55 60	20,24 17,88 14,35 9,31 5,99 1,91	20,13 17,67 14,08 8,98 5,79 1,88	13,33 12,63 11,17 8,14 5,56 1,87	15,50 14,38 12,35 8,67 5,79 1,92	0,260 0,273 0,289 0,201 0,109 0,015	0,274 0,361 0,465 0,472 0,284 0,043

Tabelle 2 Ordnungen und Grundzahlen für Männer

Alter	I_x	$I_{\scriptscriptstyle \chi}^a$	I_x^i	i	i
				$\hat{J}_{\scriptscriptstyle X}$	$i_{_{\scriptscriptstyle N}}$
18	100 000	99 352	648 446	0,00 648	0,00 210
19	99 897	99 073	619 971	0,00 824	0,00 176 0,00 150
20	99 758	98 800	592 684	0,00 960	0,00 150
21	99 588	98 527	566 530	0,01 065	0,00 128
22	99 399	98 262	541 483	0,01 144	0,00 110
23	99 218	98 025	517 567	0,01 202	0,00 096
24	99 051	97 818	494 745	0,01 244	0,00 085
25	98 899	97 640	472 961	0,01 273	0,00 077
26	98 759	97 482	452 159	0,01 293	0,00 072
27	98 631	97 342	432 296	0,01 307	0,00 068
28	98 515	97 217	413 328	0,01 317	0,00 067
29	98 411	97 107	395 218	0,01 325	0,00 067
30	98 317	97 007	377 918	0,01 333	0,00 067
31	98 231	96 913	361 390	0,01 341	0,00 070
32	98 147	96 821	345 595	0,01 351	0,00 074
33	98 066	96 727	330 499	0,01 365	0,00 078
34	97 984	96 630	316 071	0,01 382	0,00 083
35	97 902	96 529	302 283	0,01 403	0,00 090
36	97 818	96 419	289 108	0,01 430	0,00 096
37	97 731	96 303	276 521	0,01 462	0,00 105
38	97 642	96 176	264 495	0,01 501	0,00 115
39	97 548	96 038	253 006	0,01 548	0,00 126
40	97 447	95 884	242 031	0,01 604	0,00 140
41	97 336	95 710	231 546	0,01 671	0,00 156
42	97 210	95 508	221 528	0,01 751	0,00 174
43	97 065	95 274	211 953	0,01 845	0,00 196
44	96 899	95 002	202 803	0,01 957	0,00 222
45	96 711	94 690	194 063	0,02 090	0,00 254
46	96 501	94 332	185 718	0,02 248	0,00 289
47	96 272	93 929	177 755	0,02 434	0,00 333
48	96 027	93 477	170 160	0,02 655	0,00 383
49	95 763	92 971	162 920	0,02 915	0,00 443
50	95 475	92 399	156 018	0,03 222	0,00 512
51	95 154	91 745	149 438	0,03 583	0,00 592
52	94 791	90 992	143 165	0,04 007	0,00 684
53	94 375	90 126	137 183	0,04 502	0,00 790
54	93 902	89 133	131 477	0,05 079	0,00 912
55	93 367	88 000	126 037	0,05 749	0,01 053
56	92 770	86 715	120 851	0,06 526	0,01 211
57	92 111	85 276	115 911	0,07 421	0,01 396
58	91 396	83 671	111 208	0,08 452	0,01 604
59	90 622	81 892	106 736	0,09 633	0,01 841
60	89 780	79 920	102 485	0,10 982	0,02 109
61	88 856	77 733	98 442	0,12 518	0,02 414
62	87 836	75 308	94 592	0,14 263	0,02 758
63	86 711	72 632	90 926	0,16 237	0,03 149
64	85 477	69 695	87 440	0,18 464	0,03 593
65	84 131	66 489	84 131	0,20 970	

Tabelle 3 Ordnungen und Grundzahlen für Frauen

Alter	I_{y}	I_y^a	I_y^i	j_{y}	i_j
18	100 000	99 423	384 086	0,00 577	0,00 155
19	99 960	99 251	371 792	0,00 710	0,00 131
20	99 917	99 101	359 890	0,00 816	0,00 112
21	99 871	98 972	348 371	0,00 900	0,00 096
22	99 825	98 861	337 224	0,00 965	0,00 081
23	99 780	98 768	326 437	0,01 014	0,00 072
24	99 738	98 689	316 002	0,01 052	0,00 063
25	99 700	98 623	305 907	0,01 080	0,00 057
26	99 666	98 569	296 141	0,01 101	0,00 053
27	99 634	98 520	286 692	0,01 118	0,00 052
28	99 604	98 475	277 548	0,01 133	0,00 050
29	99 574	98 432	268 702	0,01 146	0,00 053
30	99 544	98 388	260 140	0,01 161	0,00 054
31	99 516	98 344	251 856	0,01 177	0,00 059
32	99 487	98 296	243 840	0,01 197	0,00 063
33	99 458	98 243	236 082	0,01 221	0,00 069
34	99 426	98 183	228 575	0,01 250	0,00 076
35	99 391	98 114	221 310	0,01 285	0,00 084
36	99 351	98 034	214 281	0,01 326	0,00 092
37	99 306	97 942	207 478	0,01 374	0,00 102
38	99 256	97 836	200 895	0,01 430	0,00 111
39	99 201	97 720	194 526	0,01 493	0,00 122
40	99 142	97 590	188 365	0,01 565	0,00 134
41	99 079	97 448	182 406	0,01 646	0,00 145
42	99 011	97 292	176 644	0,01 736	0,00 160
43	98 936	97 118	171 073	0,01 837	0,00 172
44	98 851	96 927	165 686	0,01 947	0,00 188
45	98 757	96 713	160 478	0,02 069	0,00 204
46	98 650	96 477	155 443	0,02 203	0,00 220
47	98 531	96 217	150 575	0,02 349	0,00 240
48	98 399	95 929	145 870	0,02 510	0,00 261
49	98 253	95 614	141 324	0,02 686	0,00 284
50	98 094	95 270	136 933	0,02 879	0,00 309
51	97 922	94 895	132 691	0,03 091	0,00 336
52	97 734	94 487	128 595	0,03 323	0,00 367
53	97 531	94 041	124 640	0,03 578	0,00 401
54	97 313	93 559	120 823	0,03 858	0,00 439
55	97 082	93 038	117 141	0,04 166	0,00 481
56	96 836	92 474	113 589	0,04 505	0,00 528
57	96 572	91 860	110 164	0,04 879	0,00 579
58	96 285	91 190	106 863	0,05 291	0,00 636
59	95 972	90 457	103 683	0,05 746	0,00 699
60	95 631	89 656	100 624	0,06 248	0,00 769
61	95 262	88 782	97 684	0,06 802	0,00 847
62	94 859	87 826	94 859	0,07 415	

Zusammenfassung

Anhand der Daten der Invalidenversicherung (IV) werden die Wahrscheinlichkeiten, invalid zu sein, und die Ausscheidewahrscheinlichkeiten der Invaliden bestimmt und daraus die Wahrscheinlichkeiten, invalid zu werden, berechnet. Mit diesen Grundzahlen und der neuen Überlebensordnung AHV VI bis werden technische Grundlagen erstellt, gültig für die gesamte Schweizerbevölkerung.

Résumé

Les données de l'assurance-invalidité (AI) permettent de déterminer les probabilités suivantes: être invalide et sortir de la catégorie des invalides. Ces données permettent de calculer les probabilités de devenir invalide. On utilise ensuite ces nombres de base ainsi que le nouvel ordre de survie AHV VI^{bis} pour produire des bases techniques, valables pour toute la population suisse.

Summary

On the basis of datas from the Swiss disability insurance, it is possible to evaluate the probability to be disabled and the probability of exit of the disabled persons, from which the probability of disablement is calculated. These and the new life table AHV VI^{bis} are the basis used to produce technical bases for the whole swiss population.