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B. Wissenschaftliche Mitteilungen

RAGNAR NORBERG, Oslo

A note on experience rating of large group life contracts

1 Introduction

Much of the existing literature on experience rating and credibility has been
written with a primary view to group insurance, such as group life assurance
and workmen’s compensation insurance. This was the case with Whitney’s
(1918) pioneering paper, from which credibility methods originated, Keffer’'s
(1929) paper which advanced matters related to the technique of conjugate
prior distributions, and also the works of Bailey (1945, 1950).

One principal purpose of group insurance is to reduce administration
expenses by recording only very summary data on the insurees. The point is
that for the group as a whole the amount of risk exposure will be large, so that
its risk level can be assessed from the claim files.

So far as this author knows, as yet only the most simple credibility formulas
have been applied to group life insurance. This paper presents an attempt to
work out more sophisticated tools for experience rating of group life treaties
by making the age distribution and the mortality law explicit parts of the
model framework. The basic model is presented in Paragraph 2. We consider
groups which are not too small, so that the deaths can be assumed to conform
with a Poisson process assumption.

In Paragraph 3 we work out an experience rating plan akin to the bonus
schemes well known from ordinary life insurance. The plan is based on
currently updated estimates of the total force of mortality for the whole group
and the distribution of ages at death.

In Paragraph 4 we attack the problem of experience rating by credibility
methods. Empirical credibility procedures involving estimation of structural
parameters are included.

In Paragraph 5 some of the methods are applied to data from the group of
municipal employees in the city of Oslo.

Mitteilungen der schweiz. Versicherungsmathematiker, Heft 1, 1987



18

2 The basic model

We consider a group life assurance treaty which has been in force throughout
the time period [0, ¢], ¢ being the present moment. The policy specifies

s(y), the sum payable by death at age y.

By time ¢ the insurer has observed

n(t), the group size at time 7, 0 <7 <¢{,

D (1), the number of deaths in [0, 7], 0 <t =<1,
and, if D(¢)>0,

Y;, the age at death by death No. j, j=1, ..., D(¢).
It is convenient to put

Y,=0.
The elements governing the course of deaths are

A, the age distribution of the group,

and
u, the force of mortality of the group,

which are both assumed to be independent of time. Thus, at time 7 there are
n(7){A(x +dx) — A(x)} group members at ages between x and x + dx, each
with a probability u(x)dr of dying before time 7 + dr. We introduce the
weighted force of mortality,

A= [ u(x)dA(x). (2.1)
0

A member chosen at random from the group at time 7 has probability 4 dt of
dying within time 7 + dt.

Assuming that the group is not too small, we may adopt the point of view of
collective risk theory and assume that the numbers of deaths { D(7); =0}
constitute a Poisson point process with intensity

n(r)i (2.2)

at time 7. Accordingly, D(t) is Poisson distributed with parameter N(¢)4,
where
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t
N(1) = [n(7)dr,

0
the amount of risk exposure up to time ¢, i.e. the total time at risk for all
persons in the group in [0, £].
The process { D(7); 7=0} is independent of Yy, Y, ..., which are mutually
independent and identically distributed (i.i.d.) with cumulative distribution
function (c.d.f.) given by

G(y)= Ofu(x) dA(x)A, 2.3)

It follows that the likelihood function of our observations D (t), Yy, ..., ¥Yp(y
is given by

4 N(H) A d
PHX0=¢(7ﬁ<h$n+@ﬁ=iiﬁiﬂ?m”ﬂdGUJ (2.4)
j=1 ! j=1

with the obvious interpretations of ﬂ?zl and ﬂ?zl as the certain event and
1, respectively.
The risk process arising from these assumptions is nonhomogeneous gene-

ralized Poisson with intensity given by (2.2) and claim size distribution F
given by

F(z)=P{s(Y;)<z}.
In connection with tarrification a basic quantity is

&= Ofs(x),u(x) dA(x), (2.5)

the annual per capita risk premium. Since G and A are related by (2.3), 7 may
also be expressed by G. By (2.3) we have

dA(y)zl——l——dG(y), (2.6)
u(y)
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and, as A is a probability distribution,

oC

A={O fﬁdcu)}l @7)

From (2.5), (2.6), and (2.7) we gather

n=1 [ s(y)dG(y) (2.8)

= [swacwy [~ acw. 2.9)

3 Experience rating; a non-Bayesian approach

We now turn to the problem of rating the group. Our calculations will be on
a net basis, so that a loading for administration expenses will have to be added
to the premiums proposed here. The correct premium is & given by (2.5).
However, the age distribution A and (possibly) also the force of mortality u
are unknown, and so the insurer has to rely on some estimate of 7. As time
passes and risk experience is obtained, he will get steadily improved estimates
of A and u and, consequently, of 7. Thus, he will actually be exercising some
kind of experience rating. In our discussions of how to design a scheme for
experience rating we shall distinguish between the case where both A and u
are unknown and the case where only A is unknown.

Case 1. Both A and i are unknown.

In this case the intensity A defined by (2.1) and the distribution G defined by
(2.3) are functionally unrelated. From (2.4) it is seen that at time ¢ the number
of deaths, D(t), is sufficient for 4 and ancillary for G. It follows that inference
about A should be based on D(¢) and inference about G should be based on
the ages at death Y;, conditional on D(¢).

At time ¢ the optimal (uniformly minimum variance unbiased and maximum
likelihood) estimator of 4 is

A= D(1)IN(1). (3.1)
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An interval estimator based on the normal approximation is given by the
bounds

At =1, xa(e) {AIN(1))}"? (3.2)

where a(¢) is the upper ¢/2 point in the N (0, 1)-distribution. The confidence
level of this interval approaches 1 — ¢ as N(t) — . More refined asymptotic
bounds and also exact bounds for the case where N () is small are available,
see e.g. Sverdrup (1967).
Making no assumption concerning the shape of G, we estimate it by the empi-
rical c.d.f. G,, defined for D(¢)=1 by

A 1 Dz(:t)

G/(y)=—— ) I(Yi=Yy), 3.3

() o 5 (Yi<y) (3.3)

where I(A) is the indicator function of the event A. An asymptotic (1 —¢&)-
level confidence band for G is

Gi(y)<G(y)sGi(y) forally, (3.4)
with confines defined by

G7(y)={Gy) - B(e)/D()"*} v 0 (3.5)

and
Gi(y)={G(y)+B(e)/D(t)"*) A l. (3.6)

(Here a A b and a v b denote the smaller and the larger, respectively, of the
numbers a and b.) The constant S(&) may be picked from statistical tables,
e.g. the one in Owen (1962), which also provides exact bounds (3.4) for the
case where D (¢) is small. Billingsley (1968) gives the asymptotic relation

i (—1)**lexp{—2k*B%(e)) = &/2.
k=1

The product (47, A7) X (G 7, G7) forms a confidence region of (4, G) with
asymptotic (as N(t)— %) confidence level (1 — ¢)*. If (4, G) belongs to this
confidence region, x is between the bounds
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n;=4i; min [s(y)dG(y) (3.7)
G <G=G
and
at=1% max [s(y)dG(y). (3.8)
G, <G<G;

To find w7 (x7;), we have to maximize (minimize) the integral [s(y) dG(y)
subject to the constraint (3.4). Roughly speaking, we seek the function G
which allots as much mass as possible to those values of y where s(y) is large
(small). If s is monotone, the extreme values of [s(y)dG(y) are easily
obtained by the following lemma.

Lemma 3.9 Let G, and G, be c.d.f.-s satisfying
G1(y)=Gy(y) forally. (3.10)

Then the inequality
[s(y)dGi(y) <[s(y)dGa(y) (3.11)

is valid for each nonincreasing function s.

Proof: Let X be a random variable with a uniform distribution over [0,1].
For each i=1, 2 let Y;=G7'(X), where G;' is the quasi-inverse of G,
defined by G;'(x) =inf{y; G,(y)=x}. As is well known, Y; has G, as its
c.d.f. From (3.10) it follows that Y=Y, and, as s is nonincreasing,
s(Y1)<s(Y,). It follows that Es(Y;)<Es(Y,), which is just the asserted
inequality (3.11). O

On combining Lemma 3.9 with (3.7) and (3.8), we arrive at the following
result.

Theorem 3.12 An interval estimator of sz, with asymptotic confidence level
not less than (1 —¢)?,is (77, m}) defined by (3.7) and (3.8). If the sum func-
tion s is nonincreasing, the bounds are

wi =47 [s(y)dGi(y), (3.13)

where A7 are defined by (3.2) and G 7 by (3.5) and (3.6).

A great variety of experience rating procedures can be proposed on basis of
the theory in this paragraph. We shall describe one which in a sense conforms
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with the principles of rating in ordinary life insurance, by which the technical
bases include security loadings that serve as a buffer in case of unfavourable
changes in the basic data. Under normal circumstances these loadings create
a reserve fund which is to be allotted to the policyholders in accordance with
some bonus scheme.

The experience rating plan we propose is as follows. As a part of the under-
writing procedure, the parties agree on some initial per capita annual
premium, 77§. This premium should be composed of an a priori assessment of
7 (i.e. of A and u), made as realistic as possible, and a security loading. As
time passes and risk experience is obtained, the premium is adjusted in the
following manner. At time ¢ a “safe® value of the annual per capita premium
is the upper confidence bound, 7}, defined by (3.8). The corresponding
premium for the period (¢,  + 1) due at time =0, 1, ..., is

t+1
at [ (1+i) " n(r)dr, (3.14)

T=1

where i is the annual rate of interest. If, moreover, the premiums paid in
former periods are adjusted annually to the current safe level, the bonus
pavable to the group attime t=1, 2, ..., is

(t_1—x7) ff A+ " "n(r)dr I(x} -1 =x}). (3.15)
=0

The factor I(w}_,=x7) ensures that negative bonus allotments cannot
occur.

The expression (3.15) needs not converge to zero as {—>%; it may even
diverge to infinity. One should, therefore, modify the rule to make it behave
well also for large values of . One could, for instance, close the bonus allot-
ments after some time 7, which may be either fixed in advance or dependent
on the development of the confidence bounds (3.7) and (3.8). One possibility
is to let the bonus payments fall in as soon as 7 is sufficiently accurately esti-
mated, say when ] — 7 <c.

Case 2. A is unknown, whereas x is known

In this case 4 and G are related by (2.7), and an estimator of 7, which makes
use of the fact that u is known, may be obtained by inserting an estimator of
G in (2.9). We readily get the following result.
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Theorem 3.16 An interval estimator of 7z, with asymptotic confidence level
not less than (1 —¢)?,is (7, #}) defined by

1
7,= min fs(y) dG(y)/ max j—dG(y) (3.17)
G <G<G} Gi<G=GiJ u(y)
and
1
a7 = max fs(y)dG(y)/ min ——dG(y). (3.18)
Gi=sG=G? Gi<G=GiJ u(y)

If s is nonincreasing and u is nondecreasing, the confidence bounds are

at= f s(») dG3(y)/ J rly)dcm). (3.19)

The scheme for rating and bonus allotments defined by (3.14) and (3.15),
may be applied without modifications to this case.

4 Experience rating by credibility methods

We now switch to the Bayes or empirical Bayes setting, by which the
unknown parameters are viewed as random variables. As in the previous
paragraph we also here distinguish between two cases.

Case 1. Both A and u are unknown.

The unknown random risk parameter characterizing the group is (4, GG). (The
parameter (u, A) appears to be more “basic” than (4, G) since the mapping
(u, A)— (4, G) defined by (2.1) and (2.3) is not one-to-one. However, being
interested in the risk premium, which by (2.8) depends only on (4, G), we
may equally well take (4, G) as risk parameter.)

Concerning the distribution of (4, G), usually termed prior (distribution), we
make the convenient assumption that 4 and G are independent. Beyond this
we do not want to be very specific as regards the shape of the prior and, there-
fore, resort to credibility estimators, which depend only on certain first and
second order prior moments.



23

The credibility estimator of A based on D (¢) is (see e.g. Norberg (1979))

AL U S

= , Ao, 4.1
{ N(t)+x N(t)+x ' (*.1
where
A.() = J4,
and
% = FEA/VarA.

The credibility estimator of G basedon Y}, ..., Y (), conditional on the value
of D(t)>0, is

- D (t ,
G=-20 4,2 g, (4.2)
D(t) +a D(t) +a«
where
G()= EG,

a=EVar(Y/G)/VarE(Y/G),

and é .1s the empirical ¢.d.f. defined by (3.3). From (4.2) we obtain the credi-
bility estimator of [s(y)dG(y),

By = )4 —
Js(y)dc;f(y)— D(t)+aJs(y)de(y)+ D(I)+afs(y)dG0(y)
_ D@ _ o
"D ta D(r)mjs(”dcﬂ(”’ (4.3)

where s, is defined for D (¢) >0 by

1 2O

:Y—, = mj§1 S(YJ,').

Credibility estimators are Bayes solutions, with respect to quadratic loss, in
the restricted class of linear estimators. The estimator 4 is unrestricted Bayes
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in the particular case where 4 has a gamma prior (see e.g. De Groot (1970),
Ch. 9). Ferguson (1972) introduced the so-called Dirichlet process and
proved that if G has a Dirichlet prior, the credibility estimators G, and
{s(y)dG,(y) are unrestricted Bayes. See also Zehnwirth (1977, 1978).

On inserting the estimators defined in (4.1) and (4.3) into (2.8), we obtain an
estimator of 7,

=T, f OB (4.4)

Note that even if 2 ,and G, are exactly Bayes, 77, will not in general be a Bayes
estimator of m,. It is, however, consistent as N () — < since both Z,and G,
are consistent.

Two interpretations are possible for the prior distribution. Which to choose
depends on the situation at hand.

In the first place the prior may be viewed as a summary expression of our
subjective, prior to data beliefs concerning the value of (4, G). Then the
constants » and « in (4.1) and (4.2) measure our faith in the prior values 4,
and G as compared to the sample values ) and G,. For instance, if we choose
a = 50, it means that after 50 deaths we consider G and G, as equally trust-
worthy estimates of GG. This purely Bayesian approach is appropriate when
the group is unique in the sense that we have no statistical information from
similar group assurance treaties.

In the second place the prior may be given a frequency interpretation, in
which case we shall speak of it as the structural distribution. This point of
view is appropriate if the treaty may be regarded as picked at random from a
population of similar treaties. This situation is referred to as the empirical
Bayes case since it allows for estimation of the structural parameters 4, »,
Gy, and a from the claims records of a sample of treaties.

Suppose we have data from [/ independent treaties, and let us equip with
subscript i all quantities originating from the i-th treaty. We adopt the
convention that an estimator is denoted by the parameter symbol marked
with an asterisk. A wide class of estimators of structural parameters is given
by the defining relations (4.5)—(4.9) below. The w;; and wg, are weights
normed such that )[_;w;;=) {_;wg =1. For the sake of simplicity we
drop the indices ¢;, writingii, G, ... etc. instead of 4,;, G, ... The estimators
are of the form
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Ao* = Z Wuftz‘, (4-5)

! I !
(Vard)*=(1- % szu)_l[ Y wiu{di—A*}2=Ap* ¥ wii(l—w/li)/Nf];

i=1 =1 =1

b (4‘6)
Gi= L WGiéi: (4.7)
i=1
{EVar(Y/G)}*= )Y wgi % (Yi— }_/-i)zl(Di_ 1), (4.8)
i; Di>1 F=1
1 -1 I e

{(VarE(Y/G)}* = (1 -y wé,-) [ wai(Y.i—Y.)?

b=l i=1 (4.9)

- {E\]T:ll'(Y/C;)}))= i WGj(]- - WGi)/Di:I:

f=i
with Y_; defined for all i with D, >0 by

— Di
Y.,‘= Z Y},/DI
j=i

and Y.. defined when Y /_, D;>0 by
S— 1 —
Y.= Z wGiY-i ;
=1

The weights should be measures of amounts of statistical information, and as
such we propose to take the relative amounts of risk exposure

I
W,{,':N,'/ Z Nk
k=1

and
I
Wgi= Di/ Z Dy,
k=1

i=1, ..., I. In order that (4.9) be well defined we should always take wg; =0
if D;=0. The estimators defined in (4.5)—(4.9) are easily shown to be
unbiased.
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Case 2. A is unknown, whereas u is known

Following the ideas of Paragraph 3, we may now, as an alternative to the
above approach, base our estimate of 7 on relation (2.9). Enter the credibility
estimator G, defined in (4.2) into (2.9). The resulting estimator is not Bayes,
but consistent under weak assumptions. We do not elaborate on this method.

5 An application to real data

In this closing paragraph we apply our methods to the data presented in Table
1, which stems from the group of employees in the municipality of Oslo. A
group life contract for this group has been in force since May 1, 1978, and the
table includes all deaths incurred in 1978, 1979 and 1980. The table also speci-
fies the sum function s in units of the basic amount of the National insurance
scheme. The number n(7) of insured persons at risk was constantly equal to
31500 throughout the period.

Entering the data into the formulas (3.1), (3.2), (3.3), (3.5), and (3.6), we
obtain the following point estimates and accompanying upper and lower
asymptotic 95 % confidence bounds.

For the N(1)=(8/12) 31500 = 21000 risk years exposed during 1978 we find
):1 =0.00205, A7 = 0.00144, 1T =0.00266, and G, and G7 as shown in Fig. 1,
which gives [s(y)dG1(y)=1.849 and 2.459. Inserting these values into
(3.13), we obtain 7| = 0.00266 and 77 = 0.00654.

For N(2) = (20/12) 31500 = 52500 risk years exposed during 1978 and 1979
we find 4, = 0.00232, A5 = 0.00191, A = 0.00273, and G, and G5 as shown in
Fig. 2, which gives [s(y)dG3(y)=1.893 and 2.262. Hence we obtain the
bounds 75 =0.00362 and z3 =0.00618, which are narrower than those
obtained after the first year.

For N(3) = (32/12) 31500 = 84000 risk years exposed during the years 1978
1980 we find 4;=0.00237, A5 =0.00204, A% =0.00270, and G; and G5 as
shown in Fig. 3, which gives [s(y)dG3(y)=1.974 and 2.264. This gives
73 =0.00403 and 73 = 0.00611.

Finally we employ the results in Paragraph 4 to accomplish a credibility
analysis of the data in Table 1. Let us take the position that we have no prior
information concerning the composition of the group beyond the fact that it
is a sample from the work-force. Then it seems reasonable to base the a priori
risk assessment on group life mortality statistics, if available.
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Let m be the force of mortality and / the corresponding decrement function for
insurees with group life coverage. Further, let y’ be the (average or “typical®)
age of entrance into the work-force and y” the age of retirement. Then, accor-
ding to this mortality law, the proportion of people at age y or less is

V' Ay)vy Y
[ Ilx)dx/ [ I(x)dx. (5.1)
Y Y

On inserting m for u and the expression (5.1) for A(y) in (2.1) and (2.3), we
obtain the prior mean values

y

" V" "
o= m(x)l(xydx! [ i(x)ydx={I(y")— 1)}/ [ I(x)dx  (5.2)
y y

’

y

and
Ay vy

Gow)= | m()ix)dx/{l(y") = 1(y")}

=[1(y") = Uy Ay vy N/H{IG) — L")} (5.3)

In our example we take m to be the Gompertz-Makeham function fitted to
mortality data for Norwegian group life treaties by The Statistical Bureau of
the Norwegian Life Insurance Companies. It is given by 10°m(y) = 0.2897
+0.0204 - 10> Further we put y’ =18 and y”=72. The corresponding
prior mean values in (5.2) and (5.3) are 4o = 0.00552 and G as shown in Fig.
4, the latter giving[3:s(y) dGo(y) = 1.862. On entering these values together
with the sample estimates )11 and G, t=1, 2, 3, into formulas (4.1), (4.2),
and (4.3) with » =50.000 and «=50, we obtain the premiums 7,=
Ao H:s(y) dGy(y)=0.01028, 7, =0.00897, 7, = 00782, and 73 = 0.00733.

A comment is in order concerning the choice of the prior means given by (5.1)—
(5.3). Actually the age distribution will be given by formula (5.1) only if the
pattern of entries and decrements of the group conforms with the scheme of a
stationary closed population. From Figures 3 and 4 it is readily seen that G does
not agree with the mortality experience for the group. The observed ages at
death are on the average significantly lower than could be expected under the
stationary population hypothesis. This may be explained by the strong growth in
the staff of municipal employees during the post-war period, which has effected
a shift to the left in the age distribution. Prior information of this kind might, of
course, have been taken into account to produce a more judicious choice of G,,.
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Table 1

Claims record for the years 1978, 1979, and 1980 for 31500 insured employees in the municipality
of Oslo

Age at Sum Number of deaths at age y by time ¢,
death t=1 t=2 t=3
y s(y) (Dec. 31, 1978) (Dec. 31,1979) (Dec. 31, 1980)
18 ) 1
24 1 2
5 1 1
6 3
¥
8 1
9 1 2 2
30 2 2
1
2 1 1 1
3
4 1
3 2
6 3.00
7
8 1 2
9 1 1 1
40 2 2
1 1
2 1 2 4
3 1 2
4 3 3
5 1 3 3
6 1 2 2
7 1 2
8 1 1 1
9 2 3 4
50 | 1 3 5
1 2.85 2 8
2 2.70 2 3 5
3 2.55 1 1 5
4 2.40 1 3 7
5 2.25 2 7 9
6 2.10 2 9 12
7 1.95 4 6 10
8 1.80 3 5 9
9 1.65 1 3 10
60 2 7
1 2 11 14
2 2 7 11
3 6 6
4 3 6 11
5 1.50 3 6 8
6 1 3
7 1 6 7
8 2 3
9 1 3 3
70 2 2
o 1 1 1

D(1)=43 D(2)=122 D(3)=199
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Figure 1

Empirical c.d.f. (:71 and asymptotic 95 % confidence band for G based on 43 deaths incurred
during 1979 amongst employees in the municipality of Oslo
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Figure 2

Empirical c.d.f. Gz and asymptotic 95 % confidence band for G based on 122 deaths incurred
during 1978 and 1979 amongst employees in the municipality of Oslo
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Empirical c.d.f. é; and asymptotic 95 % confidence band for G based on 199 deaths incurred
during 1978, 1979, and 1980 amongst employees in the municipality of Oslo
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The c.d.f. Gy given by (5.3) with mortality given by 10°m(y) = 0.2897 + 0.0204 - 10%%445>
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Abstract

The risk process of a group life treaty is assumed to be of generalized Poisson type. Experience
rating is discussed within a non-Bayesian as well as in an (empirical) Bayes framework. Two
situations are considered: first the one where both the age distribution and the mortality law of
the group are unknown and, second, the one where only the age distribution is unknown.

Zusammenfassung

Unter der Annahme, dass der Risikoprozess einer Gruppen-Lebensversicherung vom Typ
zusammengesetzt-Poisson ist, wird die Erfahrungstarifierung diskutiert, und zwar in einem nicht-
Bayesschen als auch in einem (empirischen) Bayesschen Rahmen. Es werden zwei Situationen
untersucht: die eine, in der Altersverteilung und Sterblichkeitsgesetz unbekannt sind, die
andere, in der lediglich die Altersverteilung unbekannt ist.

Résumé

L’évolution du risque d’un contrat d’assurance-vie de groupe est supposé étre de type poisson-
nien composé. L’auteur traite de la tarification expérimentale dans un cadre non-Bayesien,
également dans un cadre Bayesien empirique. Il considere deux situations: lorsque sont incon-
nues premiérement la distribution des ages et la loi de mortalité du groupe, secondement seule-
ment la loi de distribution des dges.
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