Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: - (1985)

Heft: 2

Rubrik: Kurzmitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

D. Kurzmitteilungen

W. HARTMANN, Winterthur

Zur Prämienbemessung in der schweizerischen obligatorischen Berufsunfallversicherung

1 Einleitung

Das UVG übernimmt und präzisiert in Art. 92 die Zielsetzungen, welche sich die SUVA von Anfang an für ihre Prämienpolitik gegeben hat. Sie wurden am knappsten und klarsten in der Jubiläumsschrift «25 Jahre SUVA, Rückblick und Ausblick» formuliert: «Ziel der Prämienbestimmung muss sein, den Beitrag des Einzelbetriebes, soweit es der Umfang des Beobachtungsmaterials erlaubt, seinem individuellen Unfallrisiko anzupassen.»

Die Bestimmung des individuellen Risikos bietet in der obligatorischen Unfallversicherung für Grossbetriebe keine besonderen Schwierigkeiten. Für die viel zahlreicheren Mittel- und Kleinbetriebe stellt sich das Problem, wie trotz der grossen zufälligen Schwankungen der Jahresergebnisse, zuverlässige Schätzungen für den Erwartungswert und eine allfällige Risikoentwicklung gefunden werden können. H. Bühlmann, A. Gisler und W. S. Jewell haben in der Arbeit «Excess claims and data trimming in the context of credibility rating procedures» [1] eine elegante Lösung für dieses Problem entwickelt. In der vorliegenden Arbeit wird versucht, eine andere Methodik, welche auf die speziellen Verhältnisse in der SUVA-Berufsunfallversicherung zugeschnitten ist, zu begründen.

2 Die Komponenten, aus welchen sich die Nettoprämie zusammensetzt

Die Nettoprämie muss decken:

- 2.1 die Kosten der Berufsunfälle;
- 2.2 die Kosten der Berufskrankheiten;
- 2.3 die Amortisationsquote, sofern die Risikoeinheit einen signifikanten Prämienüberschuss oder ein signifikantes Prämiendefizit aufweist;
- 2.4 anteilsmässig: die nicht einzelnen Risikoeinheiten zuteilbaren Kosten (insbesondere von Berufskrankheiten), welche von der Risikogemeinschaft (Untergruppe oder Gefahrenklasse) zu tragen sind;

- 2.5 anteilsmässig: die Kosten von voraussehbaren, für die Risikogemeinschaft typischen Excess-losses, für welche die normalen Unfallkosten keinen Voraussagewert haben;
- 2.6 im Sinne einer Rückversicherungsprämie: anteilsmässig die Kosten von nicht voraussehbaren Excess-losses im SUVA-Gesamtbestand.

Diese Arbeit behandelt nur den Problemkreis 2.1.

3 Die Verteilungsfunktion der Unfallbelastung

Weil die Prämien in Promillen der versicherten Lohnsumme festzusetzen sind, muss auch die Unfallbelastung auf der gleichen Basis berechnet werden. Die Gesamtberufsunfallkosten sind eine Funktion zweier anderer stochastischer Variablen, der Unfallkosten und der Unfallhäufigkeit. Diese beiden Variablen können nicht von vornherein als voneinander unabhängig betrachtet werden. Wenn z. B., wegen einer personellen Änderung im Sanitätsposten, mehr leichte Verletzungen in ärztliche Behandlung überwiesen werden, so steigt die Unfallhäufigkeit in der SUVA-Statistik steil an, hingegen nehmen die mittleren Unfallkosten pro Fall entsprechend ab.

Die Wahrscheinlichkeit des Eintretens von Unfällen wird durch eine Poissonverteilung beschrieben. Die Unfallhäufigkeit im Jahresmittel nähert sich deshalb schon bei relativ kleinen Beständen einer Normalverteilung. Die Verteilungsfunktion der Unfallkosten weist eine starke Schiefe auf, sie kann durch eine log Normalverteilung oder durch eine Γ Verteilung dargestellt werden, womit aber noch nicht bewiesen ist, dass sie der einen oder anderen Verteilungsfunktion folgt. Über die Verteilungsfunktion der Risikosätze (Gesamtberufsunfallkosten, ausgedrückt in Promillen der versicherten Lohnsumme) können wir nur zwei Aussagen machen:

- 1. sie normalisiert asymptotisch;
- 2. sie weist bei kleinen Beständen eine mehr oder weniger grosse Schiefe auf.

Eine weitere Komplikation für die mathematisch-statistische Erfassung besteht in der risikogerechten Indexierung der Kosten. Die Indices der Löhne, der Heilkosten, der Barwerte von Invalidenrenten und Hinterbliebenenrenten, entwickeln sich recht unterschiedlich. Änderungen in den Arzt- und Spitaltarifen, im versicherten Maximum der Löhne, in den Rechnungsgrundlagen der Renten und in der Gerichtspraxis führen zu Unstetigkeiten. Schliesslich ist darauf hinzuweisen, dass die SUVA in den meisten Gefahrenklassen den Betrieb grundsätzlich zusammen mit seinem Büro als Ganzes einreiht und soweit als möglich auf die Bildung mehrerer Betriebsteile, die verschiedenen Gefah-

renklassen zugeteilt werden, verzichtet. Wir haben es deshalb meistens mit risikomässig inhomogenen Beständen zu tun.

In Anbetracht der geschilderten Situation müssen wir uns damit begnügen, erwartungstreue Schätzwerte zu suchen, ohne die Verteilungsfunktion der Grundgesamtheit zu kennen.

4 Der Medianwert als erwartungstreue Schätzung des Risikosatzes

Für die meisten Betriebe des SUVA-Bestandes liegen die Versicherungsergebnisse für eine längere Zeitreihe vor. In Anbetracht der grossen strukturellen Änderungen in Industrie und Gewerbe wird man sich zweckmässigerweise auf eine Zeitreihe von 20 bis höchstens 30 Jahren beschränken.

Falls es sich bei den Risikosätzen um eine normal verteilte Variable handeln würde, so wäre das arithmetische Mittel die erwartungstreue und effiziente Schätzung für den Erwartungswert, der Medianwert hingegen nur eine erwartungstreue.

Da wir Normalverteilung nicht voraussetzen dürfen und die genaue Verteilungsfunktion nicht kennen, ist es nicht möglich, eine erwartungstreue und effiziente Schätzung vorzunehmen. Der Medianwert hat aber den Vorteil, dass er robust ist. Das bedeutet, dass er vom zufälligen Auftreten oder Fehlen eines Excess-losses in der Zeitreihe viel weniger beeinflusst wird als das arithmetische Mittel.

Der Medianwert hat den weiteren Vorteil, dass er einen Test ermöglicht, ob eine signifikante Risikoveränderung innerhalb der Beobachtungsperiode stattgefunden hat. Dieser Test der runs above and below the median [2] setzt nicht Normalverteilung voraus und ist deshalb hier ohne Vorbehalt anwendbar.

Neben den Numeri der Risikosätze betrachten wir auch deren Logarithmen. Die logarithmische Transformation ändert nichts an der Lage des Medians, wohl aber an derjenigen des arithmetischen Mittels. Das mit Hilfe der Logarithmen errechnete arithmetische Mittel liegt oft zwischen den Unbestimmtheitsgrenzen des Medians. Wir ziehen daraus den Schluss, dass die Verteilungsfunktion der Logarithmen für praktische Zwecke als symmetrisch angenommen werden darf. Damit dürfte es auch gerechtfertigt sein, mit der logarithmischen Normalverteilung zu arbeiten.

5 Grenzen der Anwendbarkeit des Modelles

Wenn sich ein einziger Beobachtungswert in der Zeitreihe dem Wert 0.0% nähert, so nähert sich die logarithmische Transformation dem Wert $-\infty$. Dann entfällt offensichtlich die Symmetrie in der Verteilungsfunktion der Logarithmen.

Der mathematisch nicht versierte Versicherungsfachmann wird sich bei praktischen Versuchen mit der dargelegten Methode daran stossen, dass in gewissen Fällen nicht der Prämienbedarf herauskommt, der sich buchhalterisch retrospektiv als notwendig erwiesen hat. Wegen der Schiefe der Verteilungsfunktion der Unfallkosten ist bei einem kleineren Bestand ein einziger, sehr schwerer und entsprechend teurer Unfall, der sich in der letzten 20-Jahre-Periode ereignet hat, für die nächsten 20 Jahre nicht zu erwarten. Bei der buchhalterischen Berechnung des Risikosatzes: Unfallkosten geteilt durch versicherte Lohnsumme, erscheint dieser einzige extrem teure Fall mit seinem vollen Gewicht. Bei der Berechnung des Risikosatzes mit dem mathematischen Modell erhält der einzige, extrem teure Fall aber nur das Gewicht, das ihm nach seiner Wiedereintretenswahrscheinlichkeit zukommt.

Wir glauben, dass diese Zusammenhänge am anschaulichsten dargestellt werden können, indem man ein geeignetes Beispiel aus der Praxis nimmt und darin die Zahlen variiert. In unserem Beispiel hat sich in der 20-Jahre-Periode 1963/82 ein Todesfall ereignet. In Anbetracht des nicht sehr grossen Betriebsumfanges handelt es sich um ein seltenes Ereignis, dessen Wiedereintretenswahrscheinlichkeit klein ist.

Wie schlecht sich der buchhalterisch berechnete Risikosatz zur Schätzung des Erwartungswertes eignet, kann durch Variation der Zahlen deutlich gemacht werden.

In der Tabelle auf der Seite nebenan sind ausgewiesen:

- die versicherte Lohnsumme für die Jahre 1963-1982;
- die Nettobelastung für jedes Jahr dieser Periode in Franken und in Promille der versicherten Lohnsumme;
- der log der Nettobelastungen (Promillesätze).
 Buchhalterisch berechnet man für die Periode 1963/82 einen Nettorisikosatz von 5,73 ‰.

Effektive Erfahrungswerte des Betriebes 519-12146

Jahre	Lohnsmme Fr.	Nettobelastung Fr.	Nettobelastung	
			%00	log
63	1 602 872	7 700	4,80	0,681
64	1 918 446	22 719	11,84	1,073
65	2 015 214	17 142	8,51	0,930
66	2 032 903	7 905	3,89	0,590
67	2 213 059	29 785	13,46	1,129
68	2 359 000	6 854	2,91	0,464
69	2 526 000	4 615	1,83	0,262
70	2 583 000	135 183	52,34	1,719
71	3 021 000	15 330	5,07	0,705
72	3 214 000	18 803	5,85	0,767
73	3 431 400	10 625	3,10	0,491
74	4 058 500	10 965	2,70	0,431
75	4 333 300	37 870	8,74	0,942
76	4 250 400	19 543	4,60	0,663
77	4 249 400	4 350	1,02	0,009
78	4 377 600	12 463	2,85	0,455
79	4 600 800	2 230	0,49	-0.310
80	5 136 900	9 963	1,94	0,288
81	5 484 500	5 878	1,07	0,029
82	5 660 500	16 042	2,83	0,462
1963/82	69 068 794	395 965		11,770

arithmetisches Mittel log = 0,589

entsprechender Numerus = 3,88%

Das arithmetische Mittel der Logarithmen beträgt 0,589, entsprechend einem Numerus 3,88‰. Diese Zahl stellt die mathematische Schätzung des Erwartungswertes dar.

Wir nehmen als Variante 1 an, der tödlich verunfallte Werkstattchef habe nicht, wie dies tatsächlich zutraf, eine 49jährige Witwe, ohne Kinder hinterlassen, sondern keine rentenberechtigten Hinterbliebenen. Die Nettobelastung aus der ganzen Beobachtungsperiode 1963/82 reduziert sich in diesem Fall um Fr. 127 140, auf Fr. 268 825, der Risikosatz auf 3,89 ‰.

Das arithmetische Mittel der Logarithmen reduziert sich auf 0,5272 entsprechend einem Numerus von 3,37‰.

Wir stellen fest, dass der Risikosatz durch diese einzige zufällige Schwankung um 32% abgenommen hat, die mathematische Schätzung des Erwartungswertes aber nur um 14%.

Als Variante 2 nehmen wir an, die Witwe sei nur 29 Jahre alt, habe zwei kleine Kinder, und es seien noch Ascendenten vorhanden. Den versicherten Lohn (Fr. 21 000, entsprechend dem Maximum) lassen wir unverändert. Der Barwert

der HR beträgt nun Fr. 256 459, statt der Fr. 127 140 im Fall, der sich tatsächlich ereignet hat.

Die Gesamtbelastung für die Periode 1963/82 erhöht sich dementsprechend auf Fr. 525 284, der Risikosatz auf 7,61 ‰.

Das arithmetische Mittel der Logarithmen erhöht sich auf 0,6031, entsprechend einem Numerus von 4,01.

Wir stellen fest, dass der Risikosatz durch diese einzige zufällige Schwankung um 32,8% zugenommen hat, die mathematische Schätzung des Erwartungswertes aber nur um 3,4%.

Als Variante 3 nehmen wir an, dass sich der Todesfall im Jahre 1981 statt im Jahre 1970 ereignet habe. Alter und Familienverhältnisse der Witwe übernehmen wir, wie im tatsächlichen Fall von 1970. Da aber das versicherte Maximum von Fr. 21 000 auf Fr. 46 800 erhöht worden ist und neue Rentenbarwerttafeln anzuwenden sind, erhöht sich der Barwert der HR auf Fr. 290 121, die Belastung 1963/82 auf Fr. 558 946. Der Risikosatz 1963/82 erhöht sich auf 8,09 ‰.

Das arithmetische Mittel der Logarithmen erhöht sich auf 0,612, entsprechend einem Numerus von 4,10.

Wir stellen fest, dass der Risikosatz durch diese einzige zufällige Schwankung um 41,2% zugenommen hat, die mathematische Schätzung des Erwartungswertes aber nur um 5,7%.

Als Variante 4 nehmen wir wiederum an, dass sich der Unfall im Jahre 1981, statt im Jahre 1970 ereignet habe; Alter der Witwe und die übrigen familiären Verhältnisse übernehmen wir aus der Variante 2.

Der Barwert der HR erhöht sich dementsprechend auf Fr. 596716 und die Belastung 1963/82 auf Fr. 865541. Der Risikosatz 1963/82 erhöht sich auf 12,53 ‰.

Das arithmetische Mittel der Logarithmen erhöht sich auf 0,6278, entsprechend einem Numerus von 4,24%.

Wir stellen fest, dass der Risikosatz durch diese einzige zufällige Schwankung um 119% zugenommen hat, die mathematische Schätzung des Erwartungswertes aber nur um 9,3%.

Zu prüfen ist noch die Frage, ob die mathematische Schätzung nicht systematisch zu tiefe Schätzungen für den Erwartungswert ergibt. Um das zu prüfen, verteilen wir den Betrag von Fr. 127 140 der im Jahre 1970 für den Todesfall belastet wurde, gleichmässig auf alle 20 Einzeljahre (je Fr. 6357). Die Gesamtbelastung bleibt damit unverändert (Fr. 395 965).

Der buchhalterisch berechnete Risikosatz für die Periode 1963/82 beträgt dementsprechend unverändert 5,73 ‰, hingegen erhöht sich die mathematische Schätzung des Erwartungswertes auf 5,63 ‰.

Zusammenfassend kann somit festgestellt werden, dass die mathematische Schätzung des Erwartungswertes sehr robust ist, d. h. selbst durch massive Zufallsschwankungen wenig beeinflusst wird und dass sie erwartungstreu ist. Der buchhalterisch berechnete Risikosatz erweist sich demgegenüber, selbst im 20-Jahres-Mittel und basierend auf einer versicherten Lohnsumme von immerhin 69 Millionen Franken, als sehr zufallsabhängig und damit für die Festsetzung risikogerechter Prämiensätze ungeeignet.

Prof. W. Hartmann Technikumstrasse 82 8400 Winterthur

Bibliographie

- [1] H. Bühlmann, Zürich/Alois Gisler, Winterthur/W. S. Jewell, Berkeley: Excess Claims and Data Trimming in the Context of Credibility Rating Procedures. Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, Heft 1/1982, S. 117–147.
- [2] A. Hald: Statistical theory with engineering applications, chapter 13, statistical control. Wiley, New York 1952.

Replik der SUVA zum vorstehenden Artikel von W. Hartmann

Nach Auffassung des Verfassers handelt es sich um eine Studie über die mathematisch-statistische Schätzung des Erwartungswertes für das Risiko von kleinen und mittleren Betrieben. Die Schweizerische Unfallversicherungsanstalt (SUVA), welche die obligatorische Unfallversicherung seit 1918 durchführt, ist an allen wissenschaftlichen Arbeiten auf diesem Gebiete interessiert. Sie dankt Herrn Professor Hartmann, dass er ihr seine Studie zur Einsichtnahme überlassen hat. Da die SUVA eine andere Methode zur Prämienbemessung anwendet, legt sie indessen Wert auf die Feststellung, dass sie nicht in allen Teilen mit den in diesem Artikel dargelegten Ideen übereinstimmt. Schliesslich hat sich der Verfasser nicht mit einem nur die SUVA betreffenden Problem auseinandergesetzt, denn seit dem 1. Januar 1984 sind auch andere Versicherer (private Versicherungsgesellschaften, Krankenkassen und öffentliche Unfallkassen) an der Durchführung der schweizerischen obligatorischen Unfallversicherung beteiligt.

R. Zufferey