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Björn Sundt, Oslo*

On Approximations for the Distribution
of a Heterogeneous Risk Portfolio

1 The Setup and Some Previously Studied Approximations

Let Xi, X2,..., JC/v be independent random variables taking integer values in the

range [0, 1 Ä], and introduce

/,(*) /V(A x). (/ 1,.. •, JV; x 0,1...., Ä)

It is assumed that/,0) is significant for all /, and we want to find the discrete
/V

density of the sum y X! A. that is,
i 1

3O0 PHy=y) ^ (y).

This density can of course be computed exactly by convoluting the/fs. However,

this task could be very time-consuming if A is large and if the xfs can take more
than a few values.

An often used approximation is to assume that y is the sum of a random number

« of independent and identically distributed random variables vvj,..., with

common density

/i(w) Pr(vv w), (w l,2,..., /?)

independent of«. One usually puts

Mw)=4 Z
A f l

with

A= z (1 -7i(0)),
» 1

and for the density

7r„ Pr(« «)

* The present research was performed while the author was staying at the Laboratory of Actuarial
Mathematics, University of Copenhagen.
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of « one usually applies the Poisson density

7t„ — e * (n 0,1,...)

(cf. Gerber (1979), Jewell and Sundt (1981)). This approximation gives exact

match for the first moment ofy, but Var y in the approximation is greater than
the exact value.

Jewell and Sundt (1981) suggested to replace the Poisson assumption by a

binomial one, that is,

where the parameters 7i and M are chosen so as to match exactly the mean and

approximately the variance ofy. The match of the variance is only approximate
as M has to be an integer. One gets

From Schwartz's Inequality we see that The compound binomial
approximation can of course be reformulated as an approximation to r/ by A***,

where the discrete density A: is given by

We see that if/j /independent of /, then A /, M 7V, and ry /"*, that is, the

approximation is exact, whereas the compound Poisson approximation is never

exact.

When considering the compound binomial approximation as A'"*, one must
admit that the approximation looks a bit unnatural. However, this does not
exclude that it could work well in practice. In the numerical example given by
Jewell and Sundt (1981) and reproduced in Section 5 of the present paper, the

approximation gives very satisfactory results.

z ^1 1

(1)
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2 A Natural Approximation

We introduce the "average" density

/M ~ I Jï(*)
yv i

and get

/'(w)
/« vv) -

-/(0)
A /V(l —/(0)).

Thus we see that the compound Poisson approximation depends on/,,...,/v
only through/ Therefore the approximation may be considered as consisting of
two steps:

JV

i) Approximate * / by/"*.
» 1

ii) Approximate /"* by a compound Poisson distribution with Poisson

parameter 2 and severity distribution /;.

A natural question now is ot course : Wouldn't it be better to omit the second step
and approximate y by/"*? We note that like //'* this approximation is exact in
the special case when/, =/i= =/y.
The approximation/" can be given a natural motivation related to the theory of
experience rating (ct. e.g. Norberg (1979)). We know that there are differences
between the policies, but consider them as random. To each policy / there is

connected a random parameter 7), containing the risk characteristics of that
particular policy. It is assumed that the conditional density

<Mx|0) /V(x, x|0; 0)

is independent o( t and that /7, are independent and identically
distributed; we denote their common distribution by (/. The unconditional
density of x, is

4>(x) /»r(jc, je) J </>(x|0)</C/(0),

and in the present model the density of/is
y(/) Pr(/=y) /"'(/).

In our original setup it was assumed that x, .,5/ were independent with
discrete densities/,,...It is now natural to interpret/(x) as r/>(x|0,), where 0,

denotes the value of Ö).
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A reasonable estimator of (/ is the empirical distribution t/ given by

and we estimate r/>(x) by

$(*)= 1 <M*|0)rft/(0)=-^ Z </>(*$)

and y(y) by

7 (j) <£"*(j0-

But then the value of /(x) is

77 Z ^(*|ö|) i Z/(*) /(*)•
iV j i iV j

Thus our estimate of y(y) is /**(y), which we previously suggested as

approximation to g(j>).

3 Recursive Computation

For the compound binomial approximation Jewell and Sundt (1981) recom-
mended that g should be computed by the recursive method

0(T)

(1 -«)*

1 — 7t

min(y,K)

z
x=l

(A/+1) 1

T

(T 0)

described by Panjer (1981). Insertion of (1) gives

'*(0)"
000

(y 0)
j min(y.R)

rL Z
*(0)

and in particular we see that

'/(Of

(M+l) — 1

T

/**O0
< min(>>,K)

— z
/(0) À (A+l) 1

T

C(x)é/(j> — x), (/=!,..., T/7?)

O 0)

/(x)/"*(x-y). 0 1,..., A*)
(2)

This recursive method for the computation of the /V-th convolution of a discrete

density/has been described by De Pril (1985), and it can be used to compute/^*
as an approximation to </.
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4 Associated Functions

We introduce the tail

y

(?(><)=/m/>>>)= X nW=i- E uW
X y + 1

and the stop-loss premium

00

GW=£(/-J')'= X G< (*) £/- X G<(*)

of the distribution of/. If the values of <:/ are known, we easily compute G''(y) and

G(>>) recursively by

and approximated values are found by inserting approximations to </(>>) in these

recursions.

It has been shown by Bühlmann et al. (1977) that the stop-loss premiums found

from the compound Poisson approximation are always greater than or equal to
the exact values. As this result in particular holds for identically distributed ./'s,
we have that the compound Poisson approximation always gives stop-loss

premiums greater than or equal to those found from the approximation/^*.
Furthermore, the stop-loss premiums found from the compound Poisson

approximation are always greater than or equal to the ones found from the

approximation //'*. This can be seen in the following way. Consider /V/

independent and identically distributed claim amounts with common discrete

density A\ We approximate the aggregate distribution of these claim amounts by

the compound Poisson distribution with Poisson parameter

By the above mentioned result from Bühlmann et al. (1977) the stop-loss

premiums of this compound distribution are greater than or equal to those of
A;*'*. It is easily seen that A' A and and thus the proposition is proved.

A' M(1 -£(()))

and discrete severity density

*>
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In the numerical example in Section 5 the stop-loss premiums found from/"* are

always greater than or equal to the exact ones, and it is tempting to conclude that
this approximation always gives an upper bound to the exact stop-loss
premiums. However, such a result does not hold in general as can be seen from
the counter-example with A 2 displayed in Table I.

7a6/e 7

/.(>>) AW GW

exact /""-approximation

0 0.5714 0.5 1.0714 1.0714
1 0.2857 0.5 0.3571 0.3584
2 0.1429 0 0.0714 0.0663
3 0 0 0 0.0051
4 0 0 0 0

5 A Numerical Example

To illustrate the approximations we use a numerical example due to Gerber

(1979) and studied by Jewell and Sundt (1981). We consider a portfolio
consisting of TV 31 policies, and the random values x) are either 0 or a «face

value» Cj with probability 1 —and ^ respectively, as shown in Table 2.

7nWe2. Number of policies with indicated r/,- and Cj

<?/ face values Cj

1 2 3 4 5

0.03 2 3 1 2 —

0.04 1 2 2 1

0.05 2 4 2 2

0.06 2 2 2 1

In Table 3 we show the average density /, and in Table 4 Vary for the exact

distribution and the three approximations.
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7«£/<? 5. Average density/

.X 0 1 2 3 4 5

31/M 29.60 0.06 0.35 0.43 0.36 0.20

7~hè/e 4

Exact and approximated variance of j7 (differing digits underlined)

Exact value Approximations

Poisson

Vary 15.3003 16.0900 15.4397 15.3146

Furthermore, we have A =1.4, M 26, and 71 0.0538462.

By the recursive method (2) we computed the density g (y) for the approximation
/"*. From these values we found the tail G/y) and the stop-loss premium G(y).
The computed values are given in Tables 5-7, Appendix, compared to the

corresponding values taken from Jewell and Sundt (1981) for the exact
distribution, the Poisson approximation, and A/'*. In Figures 1-3, Appendix, we

show the percentage error in each approximation for the function of interest.
Like the other two approximations, /"* does not give a particularly good
approximation to r/ ; it fluctuates above and below the exact density in about the

same manner as A:**. When ranking the three approximations to t/(j>) for the

different y's, we see that /"'(y) tends to be the second best approximation,
whereas the compound Poisson approximation and A/'*(>>) alternate having the

first and third place.

For the tail G'(y), the general impression is that //'* gives the best approxi-
mation, and that the approximation based on /"* performs better than the
compound Poisson approximation. However, this ranking does not hold
uniformly; for _y 6, the compound Poisson is best and /</'* worst.
For the stop-loss premiums G(y), the compound Poisson approximation always
gives the greatest error, but as pointed out in Section 4, it has the advantage that
it is analytically shown that it will always give an upper bound for the exact stop-
loss premium. Except for y ^2 A/'* gives smaller errors than /"*.
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6 Conclusion

In the present paper we have discussed /"* as approximation to r/ as an

alternative to the compound Poisson approximation and /c*'*. It is argued that

/"* has a better intuitive appeal than the two other approximations. We have not

performed any profound analytical comparison of the three approximations. It
is of course dangerous to base any firm conclusions on one single numerical
example. However, for approximations to G' and G, it is the impression that/**
usually performs better than the compound Poisson approximation, but worse
than &***.
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Appendix
7«We J

Exact values and approximations to total sum density
(differing digits underlined)

g(y) Pr(y=y}

Approximations

y
Exact
result Poisson jN* M*

k

0 0.23819 0.24660 0.23869 0.23714

l 0.01473 0.01480 0.01500 0.01204

2 0.08773 0.08675 0.08795 0.08818

3 0.11318 0.11122 0.11282 0.11323

4 0.11071 0.11040 0.11220 0. 11256

5 0.09633 0.09286 0.09471 0.09507

6 0.06155 0.06101, 0.06259 0.06291

7 0.06902 0.06543 0.06700 0.06732

8 0.05482 0.05458 0.05567 0.05589

9 0.04315 0.04132 0.04187 0.04197

10 0.0301 1 0.03058 0.03069 0.03072,

11 0.02353 0.0232), 0.02322. 0.02322.

12 0.01828 0.0183£ 0.01804 0.01797

13 0.01251 0.01315 0.01273 0.01265

14 0.00871 0.00922 0.00872 0.00866

15 0.00591 0.00650 0.00605 0.00596

16 0.00415 0.00460 0.00419 0.00411

17 0.00272 0.00318 0.00283 0.00277

18 0.00174 0.00212 0.00184 0.00179

19 0.00112 0.00141 0.00112 0.00112
20 0.00071 0.00094 0.00076 0.00072

30 3.09434-10~k 8.63294-10 ^ 4.57655-10
®

3.98500-10
^

40 3.53514-10"^ 36.4155 .10"® 9.89290-10
®

7.37055-10
®



y

o

i
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

30

40

TV/We 6

Exact values and approximations to tail

(differing digits underlined)

Exact
result

G (y) Pr{y>y}

Approximations

Poisson m* M*

0.76181

0.74707

0.65934

0.54615

0.43544

0.33912

0.75340

0.73861

0.65185

0.54063

0.43023

0.33737

0.7613J.

0.74631

0.65837

0.54555

0.43334

0.33864

0.76286

0.74782

0.65964

0.54651

0.43395

0.33888

0.27757

0.20855

0.15373

0.11058

0.08048

0.27637

0.21094

0.15636

0.11504

0.08446

0.27605

0.20904

0.15337

0.11150

0.08081

0.27597

0.20865

0.15276

0.11079

0.08008

0.05695

0.03866

0.02615

0.01744

0.01153

0.06115

0.04281

0.02966

0.02044

0.01394

0.05766

0.03962

0.02689

0.01813

0.01208

0.05696

0.03899

0.02635

0.01769

0.01173

0.00738

0.00467

0.00292

0.00181

0.00110

0.00934

0.00617

0.00404

0.00263

0.00169

0.00789

0.00506

0.00321

0.00202

0.00126

0.00762

0.0048JS

0.00306

0.001J32

0.00118

3.49840-10 12.4621•10 5.76662-10 -6 4.87524-10

3.10833-10-9 45.5298-10 -9 10.37457-10 -9 7.42541•10
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7aWe 7

Exact values and approximations to stop-loss premiums
(differing digits underlined)

G(y) E[ (y-y) *]

Approximations

y

Exact
result Poisson jN* M*

k

0 4.49000 4.49000 4.49000 4.49000

l 3.72819 3.73660 3.72869 3.72714

2 2.98112 2.99799 2.98237 2.97932

3 2. 32179 2.34614 2.32401 2.31968

4 1 .77563 1.80551 1.77846 1 77317

5 1.34019 1.37527 1.34512 1.33922

6 1.00106 1.03790 1.00648 1.00034

7 0.72350 0.76153 0.73044 0.72432

8 0.51495 0.55059 0.52139 0.51572

9 0.36122 0.39423 0.36802 0.36296

10 0.25064 0.27919 0.25652 0.25217

11 0.17017 0.19472 0.17572 0. 17209

12 0. 11 322. 0.13357 0.11006 0.11512

13 0.07456 0.09076 0.07844 0.07624

14 0.04840 0.06110 0.05155 0.04979

15 0.03096 0.04065 0.03342 0.03210

16 0.01943 0.02671 0.02134 0.02037

17 0.01205 0.01737 0.01346 0.012 7 6_

18 0.00738 0.01120 0.00840 0.00792

19 0.00446 0.00716 0.00519 0.00485

20 0.00265 0.00453 0.00316 0.00293

30 7.25353-10"^ 29.7953-10
®

12.72764-10 ^ 10.5809-10
®

40 5.72441-10"^ 101.020-10~^ 20.92164-10"^ 14.6686:10"^
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figure /
Percentage error in approximations to density g(y) versus

%
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F/pwre 2

Percentage error in approximations to complementary distribution
C'(.v) versus _y
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/ugi/re J

Percentage error in approximations to stop-loss premium G(.y) versus
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Abstract

Wo consider /V independent risks x, x„ with discrete densities

/,(*) (x 0,l,
-V N

and approximate the discrete density of £ x, by the AMh convolution of/=AT' X ./• This
i=l ;=1

approximation is compared to two previously studied approximations. A numerical example is

given.

Zusammenfassung

Wir betrachten /V unabhängige Risiken x,,... ,x„ mit diskreten Dichten

/:(x) /V(x; x) (x 0, 1 R)

iV N

und approximieren die diskrete Dichte von £ x, durch die rV-te Faltung von /'= iV
" ' £ ,/i. Diese

i 1 i 1

Approximation wild mit zwei früher untersuchten Approximationen verglichen und es wird ein
numerisches Beispiel angeführt.

Résumé

L'article considère IV risques indépendants x, à densités discrètes

/,(x) /'/-(.v, x) (x 0, 1 R)

N

et établit une approximation de la densité discrète de £ x, par la convolution d'ordre /V de
i 1

N

/=iV * £ yi. Cette approximation est ensuite comparée à deux estimations étudiées par le passé.
i 1

L'auteur présente un exemple numérique.
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