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BiorN SunDT, Oslo*®

On Approximations for the Distribution
of a Heterogeneous Risk Portfolio

I The Setup and Some Previously Studied Approximations
Let %, X;,. .., Xy be independent random variables taking integer values in the
range [0, 1,..., R], and introduce
fl(.X:):-“ P]'(.f[':.,t). (!':'1,. ey N; _Y:O’ ] ey R)
It is assumed that £0) is significant for all i, and we want to find the discrete
N

density of the sum y= ) x;, that is,
i=1

P

gy)=Pr(y=y)= (N )(y)

This density can of course be computed exactly by convoluting the f;’s. However,
this task could be very time-consuming if N is large and if the ¥;’s can take more
than a few values.

An often used approximation is to assume that y'is the sum of a random number
7 of independent and identically distributed random variables i, ,. . ., Wy with
common density

h(w)y=Pr(w=w), (w=1,2,...,R)

independent of 7. One usually puts

h(“’)—" Z fi(w)

:—1

with

2

A= 3 (=)
and for the density
n,= Pr(n=n)

* The pres'ent rese‘:arch- was performed while the author was staying at the Laboratory of Actuarial
Mathematics, University of Copenhagen.
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of i one usually applies the Poisson density
T,=—e * (n=0,1,...)

(cf. Gerber (1979), Jewell and Sundt (1981)). This approximation gives exact
match for the first moment of y, but Var y in the approximation is greater than
the exact value.

Jewell and Sundt (1981) suggested to replace the Poisson assumption by a
binomial one, that is,

M
n,,=(n)rc"(l - (n=0,1,..., M)

where the parameters m and M are chosen so as to match exactly the mean and
approximately the variance of y. The match of the variance is only approximate
as M has to be an integer. One gets

N 2
i5)
i=1

..
]
—_

From Schwartz’s Inequality we see that M<N. The compound binomial
approximation can of course be reformulated as an approximation to g by k™",
where the discrete density k is given by

k(x)={1 i (1)
wth(x). - (x=1,2,...,R)

We see that if f;= findependent of i, then k= f, M= N, and g= /™", that is, the
approximation is exact, whereas the compound Poisson approximation is never
exact.

When considering the compound binomial approximation as k™", one must
admit that the approximation looks a bit unnatural. However, this does not
exclude that it could work well in practice. In the numerical example given by
Jewell and Sundt (1981) and reproduced in Section 5 of the present paper, the
approximation gives very satisfactory results.

M*
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2 A Natural Approximation
We introduce the “average” density

. f 2 .
/ (x)= [\_f i; Ji(x)

and get
S
"0
A=N(1-£(0)).

Thus we see that the compound Poisson approximation depends on f;,. .., fy
only through /. Therefore the approximation may be considered as consisting of

two steps:
N

i) Approximate x f; by fV".

i=1
ii) Approximate ./N by a compound Poisson distribution with Poisson
parameter A and severity distribution A,

A natural question now is of course: Wouldn’t it be better to omit the second step
and approximate g by f¥'? We note that like k™" this approximation is exact in
the special case when fi=fy=...= f.

The approximation /™" can be given a natural motivation related to the theory of
experience rating (cf. e.g. Norberg (1979)). We know that there are differences
between the policies, but consider them as random. To each policy i there is
connected a random parameter 0; containing the risk characteristics of that
particular policy. It is assumed that the conditional density

p(x 0;=0)

is independent of i and that 0,,0,,. .. ,0y are independent and identically
distributed; we denote their common distribution by U. The unconditional
density of X; is

()) = Pl'(fg =X

P(xX)=Pr(x;=x)=| ¢(x

and in the present model the density of y is

YW =Pr(y=y)=¢p"(y).

0)dU(0),

[n our original setup it was assumed that X, ..., Xy were independent with
discrete densities f1,. . ., fy. Itis now natural to interpret £;(x) as ¢ (x]0,), where 0,
denotes the value of 0.
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A reasonable estimator of U is the empirical distribution U given by

0{A) = #{i: Biea),

and we estimate ¢(x) by
" N N
b0 =T dEIA0O = ¥, I
j=1

and y(p) by
T =" ().

But then the value of ¢(x) is

1 N 1 N

— 0)=— 1(x)= f(x).

¥ L 0= % =10
Thus our estimate of y(y) is fV'(y), which we previously suggested as
approximation to g(y).

3 Recursive Computation

For the compound binomial approximation Jewell and Sundt (1981) recom-
mended that g should be computed by the recursive method

(1—m)™ (y=0)
g)=1( = ™Y X ,
o x; (M+1);—1 h(x)g(y—x), (y=1,2,...,MR)
described by Panjer (1981). Insertion of (1) gives
k(0)™ (y=0)
_l q mineR ,
907) o [(M+ 1)5} 1] k(X)g(y—x), (r=1,..., MR)
and in particular we see that
S(0)Y : (y=0)
M=y 1 " ¢ v &
' — N+1D = =1 | f(x) fM(x—p). =1,...,NR
70) xgl [( ) e }J‘(Y)f (x—=p). (» )

This recursive method for the computation of the N-th convolution of a discrete
density fhas been described by De Pril (1985), and it can be used to compute /'
as an approximation to g.
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4 Associated Functions

We introduce the tail

y

G(y)=Pr(y>y)= ), gx)=1->3 g(x)

x=y+1 x=0

and the stop-loss premium

¥l

G=EG-y)"=2 GCX)=E- ) G(x)
=y x=0

xX=y

of the distribution of y. If the values of g are known, we easily compute G°(p) and
G (y) recursively by

) 1 fp=—1)
G =
) {G"(y*l)“'g(y) (y=0,1....)
., . _|Ey (y=0)
G(y) =< =
() {G(y—l)—Gc(}"‘“'])w (y=1,2,...)

and approximated values are found by inserting approximations to ¢ () in these
recursions.

[t has been shown by Biihlmann et al. (1977) that the stop-loss premiums found
from the compound Poisson approximation are always greater than or equal to
the exact values. As this result in particular holds for identically distributed x;’s,
we have that the compound Poisson approximation always gives stop-loss
premiums greater than or equal to those found from the approximation f*".
Furthermore, the stop-loss premiums found from the compound Poisson
approximation are always greater than or equal to the ones found from the
approximation k*’. This can be seen in the following way. Consider M
independent and identically distributed claim amounts with common discrete
density k. We approximate the aggregate distribution of these claim amounts by
the compound Poisson distribution with Poisson parameter

A=M( —k(0))
and discrete severity density

k(w)
h(w)=——"—. =
(w) [—k(0) w=1,2,..., R)
By the above mentioned result from Bithlmann et al. (1977) the stop-loss
premiums of this compound distribution are greater than or equal to those of

kM Tt is easily seen that A’= /4 and A’ =h, and thus the proposition is proved.
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In the numerical example in Section 5 the stop-loss premiums found from /" are
always greater than or equal to the exact ones, and it is tempting to conclude that
this approximation always gives an upper bound to the exact stop-loss
premiums. However, such a result does not hold in general as can be seen from
the counter-example with N =2 displayed in Table 1.

Table 1
y S L) G(»)
exact fV.approximation

0 0.5714 0.5 1.0714 1.0714

1 0.2857 0.5 0.3571 0.3584

2 0.1429 0 0.0714 0.0663

3 0 0 0 0.0051

4 0 0 0 0

5 A Numerical Example

To illustrate the approximations we use a numerical example due to Gerber
(1979) and studied by Jewell and Sundt (1981). We consider a portfolio
consisting of N =31 policies, and the random values x; are either 0 or a «face
value» ¢; with probability 1 —¢; and ¢; respectively, as shown in Table 2.

Table 2. Number of policies with indicated ¢; and ¢;

4 face values ¢;

1 2 3 4 5
0.03 2 3 1 2 e
0.04 - 1 2 2 |
0.05 - 2 4 2 %
0.06 - 2 2 2 1

In Table 3 we show the average density f, and in Table 4 Var y for the exact
distribution and the three approximations.
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Table 3. Average density f

X 0 1 2 3 4 5
31 f(x) 29.60 0.06 0.35 0.43 0.36 0.20
Table 4

Exact and approximated variance of y (differing digits underlined)

Exact value Approximations
Poisson i M
Var y 15.3003 16.0900 15.4397 15.3146

Furthermore, we have A=1.4, M =26, and n=0.0538462.

By the recursive method (2) we computed the density ¢ () for the approximation
/N, From these values we found the tail G°(p) and the stop-loss premium G ().
The computed values are given in Tables 5-7, Appendix, compared to the
corresponding values taken from Jewell and Sundt (1981) for the exact
distribution, the Poisson approximation, and k™", In Figures 1-3, Appendix, we
show the percentage error in each approximation for the function of interest.
Like the other two approximations, /" does not give a particularly good
approximation to g; it fluctuates above and below the exact density in about the
same manner as k™. When ranking the three approximations to g(y) for the
different y’s, we see that f¥*(y) tends to be the second best approximation,
whereas the compound Poisson approximation and A" (p) alternate having the
first and third place.

For the tail G°(y), the general impression is that &M gives the best approxi-
mation, and that the approximation based on f™" performs better than the
compound Poisson approximation. However, this ranking does not hold
uniformly; for y =6, the compound Poisson is best and k™" worst.

For the stop-loss premiums G ( y), the compound Poisson approximation always
gives the greatest error, but as pointed out in Section 4, it has the advantage that
it is analytically shown that it will always give an upper bound for the exact stop-
loss premium. Except for p<2 k™" gives smaller errors than /™",
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6 Conclusion

In the present paper we have discussed /™" as approximation to g as an
alternative to the compound Poisson approximation and &A™, It is argued that
/™ has a better intuitive appeal than the two other approximations. We have not
performed any profound analytical comparison of the three approximations. It
is of course dangerous to base any firm conclusions on one single numerical
example. However, for approximations to G¢ and G, it is the impression that /™
usually performs better than the compound Poisson approximation, but worse
than &™".
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Appendix
Table 5
Exact values and approximations to total sum density
(differing digits underlined)
gly) = pr{y=y}
Approximations
Exact _ N* M
Y result Poisson £ k
0 0.23819 0.24660 0.23892 0.23714
1 0.01473 0.014§2 0.01500 0.01504
2 0.08773 0.08675 0.0872? 0.08818
3 0.11318 0.11122 0.11282 0.113l§
4 0.11071 0.110&9 0.11220 0.11256
5 0.09633 0.09286 0.09471 0.09507
6 0.06155 0.06191 0.06259 0.06291
7 0.06902 0.06543 0.06700 0.06732
8 0.05482 0.05458 0.05567 0.05589
9 0.04315 0.04132 0.04187 0.04197
10 0.03011 0.03Q§§ 0.030§g 0.03021
11 0.02353 0.02321 0.023&5_ 0.023ll
12 0.01828 0.018}&_ 0.0189& 0.01797
13 0.01251 0.01315 0.01273 0.01265
14 0.00871 0.00922 0.00872 0.00B@Q
15 0.00591 0.00650 0.00605 0.00539
16 0.00415 0.004§9 0.00412 0.00411
17 0.00272 0.00318 0.002§§_ 0.00271
18 0.00174 0.00212 0.00lgﬂ 0.00172
19 0.00112 0.00131 0.00112‘ 0.00112
20 0.00071 0.00022 0.0007§ 0.00072
-6 -6 -6 r
30 3.09434-10 8.63294.10 4.57655-10 3.98500-10
-9 -9 -9 -9
40 3.53514-10 36.4155 .10 9.89290-10 7.37055-10
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Table 6

Exact values and approximations to tail
(differing digits underlined)

Cly) = pri{voy}
Approximations
Exact
* *

v result Poisson N kM

0 0.76181 0.75340 0.76131 0.76286

1 0.74707 0.73861 0.74631 0.74782

2 0.65934 0.65185 0.65837 0.65964

3 0.54615 0.54063 0.54555 0.54651

4 0.43544 0.43023 0.43334 0.43395

5 0.33912 0.33737 0.33864 0.33888

6 0.27757 0.27637 0.27605 0.27597

7 0.20855 0.21094 0.20904 0.20865

8 0.15373 0.15636 0.15337 0.15276

9 0.11058 0.11504 0.11150 0.11079

10 0.08048 0.08446 0.08081 0.08008

11 0.05695 0.06115 0.05766 0.05696

12 0.03866 0.04281 0.03962 0.03899

13 0.02615 0.02966 0.02689 0.02635

14 0.01744 0.02044 0.01813 0.01769

15 0.01153 0.01394 0.01208 0.01173

16 0.00738 0.00934 0.00789 0.00762

17 0.00467 0.00617 0.00506 0.00485

18 0.00292 0.00404 0.00321 0.00306

19 0.00181 0.00263 0.00202 0.00192
20 0.00110 0.00169 0.00126 0.00118

-6 -6 -6 -6
30 3.49840-10 12.4621-10 5.76662-10 4.87524-10
-9 -9 -9 -9

40 3.10833-10 45.5298.10 10.37457-10 7.42541-10
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Table 7

Exact values and approximations to stop-loss premiums
(differing digits underlined)

- ~ +
Gly) = El(y-y) ]
Approximations
Exact N* M*

¥ result Polisson £ k

0 4,49000 4.49000 4.,49000 4.49000

1 3.72819 3.73660 3.72869 3.72714

2 2.98112 2.99799 2.98237 2.97932

3 2.32179 2.34614 2.32401 2.31968

4 1.77563 1.80551 1.77846 1.77317

5 1.34019 1.37527 1.34512 1.33922

6 1.00106 1.03790 1.00648 1.00034

7 0.72350 0.76153 0.73044 0.72437

8 0.51495 0.55059 0.52139 0.51572

9 0.36122 0.39423 0.36802 0.36296
10 0.25064 0.27919 0.25652 0.25217
11 0.17017 0.19472 0.17572 0.17209
12 0.11322 0.13357 0.11806 O+ 11513
13 0.07456 0.09076 0.07844 0.07614
14 0.04840 0.06110 0.05155 0.04979
15 0.03096 0.04065 0.03342 0.03210
16 0.01943 0.02671 0.02134 0.02037
17 0.01205 0.01737 0.01346 0.01276
18 0.00738 0.01120 0.00840 0.00791
19 0.00446 0.00716 0.00519 0.00485
20 0.00265 0.00453 0.00316 0.00223
30 7.25353-10_6 29.7953-10—6 12.7‘2764-10"6 10.5809-10_6

-9 -9 -9 -9

40 5.72441-10 101.020-10 20.92164-10 14.6686:10
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Figure 1
Percentage error in approximations to density g(y) versus y
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Figure 2
Percentage error in approximations to complementary distribution
G°(y) versus y
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Figure 3
Percentage error in approximations to stop-loss premium G () versus y

(70.8%)

(19.2%)
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Abstract

We consider N independent risks Xy, ..., Xy with discrete densities

fix)=Pr(x;=x) (x=0,1,...,R)

N N
and approximate the discrete density of > X by the N-th convolution of J=N"" Z fi. This
i=1 i=1
approximation is compared to two previously studied approximations. A numerical example is
given.

Zusammenfassung

Wir betrachten N unabhingige Risiken X|,. .., Xy mit diskreten Dichten

[()=Pr(fi=x) (x=0,1,...,R)

N N
und approximicren die diskrete Dichte von ), X; durch die N-te Faltung von f=~ "' Y f. Diese
i=1 i=1
Approximation wird mit zwei frither untersuchten Approximationen verglichen und es wird ein
numerisches Beispiel angefiihrt.

Résume

L article considére N risques indépendants Xy,..., Xy a densités discretes

fix)=Pr(fi=x) (x=0,1,...,R)

N
et établit une approximation de la densité discréte de )’ X; par la convolution d’ordre N de
=
. 1
f=N_l Z fi. Cette approximation est ensuite comparée a deux estimations étudiées par le passé.
i=1

L’auteur présente un exemple numérique.



u
o e - ’
' = = i .
"
: .
. .
. i
2 [P v ERT ] . ¥ e ke ¢ i
il
. P [ . i
. ¥

i

R ETE

B




	On approximations for the distribution of a heterogeneous risk portfolio

