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WERNER HURLIMANN, Winterthur

Semirekursive Berechnung von Gesamtschadenverteilungen
und exakte Stop Loss-Primien |

Einfiihrung

Kiirzlich hat J. Bertram in [4] eine allgemeine Methode zur Berechnung von
Gesamtschadenverteilungen, die negative Risikosummen beriicksichtigt, vorge-
stellt. Diese sogenannte FFT-Methode (FFT steht fiir «Fast-Fourier-Transfor-
mation») ist sehr elegant, theoretisch befriedigend, schnell und durchaus exakt in
der Praxis.

Ein gewisser Nachteil der FFT-Methode liegt im relativ hohen Bedarf an
Speicherkapazitit. Wohlverstanden, der begrenzte Computer-Arbeitsspeicher-
platz ist heutzutage kein echtes technologisches Problem mehr (z.B. virtuelle
Speichertechnik). Eine kleine Computer Konfiguration verfiigt aber nicht
immer um 640 KB Hauptspeicherkapazitit, die notig sind, falls man die FFT-
Methode mit z. B. 2'* Punkte berechnen will. Somit erscheint es wiinschenswert
eine Methode zu entwickeln, die jeder moderne Personal Computer schlucken
konnte. Rekursive Methoden (z. B. die Adelson-Panjer Rekursionsmethode zur
Berechnung der zusammengesetzten Poissonverteilung) bendtigen wenig Spei-
cher und sind exakt. Leider sind sie auf positive Risikosummen beschriinkt. Die
vorliegende Verallgemeinerung auf negative Risikosummen, genannt semire-
kursive Methode, beruht auf der Zerlegung der Einzelschadenverteilung in zwei
Verteilungen fiir positive und negative Risikosummen und anschliessend deren
Faltung. Infolge von Fehlerabschiitzungen, leistet unsere Methode in der Praxis
eine beliebige Genauigkeit. Sie bendtigt wenig Speicher und ist im Programmier-
aufwand freundlicher als die FFT-Methode. Fiir kleine Poissonparameter und
kleine negative Risikosummen ist sie auch von der Computerzeit her eine echte
Alternative zur FFT-Methode. Hat man praktische Anwendungen in Sicht (z. B.
Stop Loss-Primien, siehe Abschnitt 5), so braucht man nicht dic ganze
Verteilung zu rechnen (was hingegen bei der FFT-Methode geschehen muss) und
spart damit Computerzeit. Weiter ist die FFT-Methode nicht frei von numeri-
schen Schwierigkeiten, die bei der Implementierung auftreten konnen. Unsere
Praxis hat gezeigt, dass der schnelle FFT-Algorithmus von Schwarz (vgl. [8]) in
gewissen Fiillen numerisch unstabil und somit praktisch nicht mehr brauchbar
ist. Der viel langsamere Algorithmus von Cooley-Tukey (vgl. z.B. [9], S. 75) ist
numerisch stabiler und liefert zuverlissigere Resultate. Unsere semirekursive
Methode ist, was die Berechnung von Stop-Loss-Primien anbelangt, schneller
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als dieser letztgenannte in vielen praktischen Anwendungen. Schliesslich sei
noch erwihnt, dass man mit Hilfe des semirekursiven Algorithmus schwankende
Grundwahrscheinlichkeiten behandeln kann. Der Berechnungsprozess ist aber,
abgesehen von der Einfachheit, bedeutend langsamer als die entsprechende
FFT-Methode.

An dieser Stelle mochte ich Herrn E. Moor herzlich dafiir danken, dass er mir
seine Implementierung zur Adelson-Panjer Rekursion zeigte, was die Entste-
hung dieser Arbeit entscheidend beeinflusste.

1 Grundkenntnisse

In der Risikotheorie wird der Risikoprozess des Gesamtschadens fiir eine feste
Zeitdauer (z.B. 1 Jahr) durch folgende Zufallsvariable beschrieben:

N
X=Y Y, (1.1)
i=1
Dabei gibt N die Anzahl der Schiden an und Y; beschreibt die Schadensumme
fiir den i~ten Schadenfall. Es wird vorausgesetzt, dass NV zusammen mit den Y;ein
System unabhingiger Zufallsvariablen bilden und dass alle ¥; gleich verteilt sind.
Sind die Y; gemiiss der Einzelschadenverteilungsfunktion H (x) verteilt und ist py
die Wahrscheinlichkeit dafiir, dass & Schadenereignisse auftreten, so ist die
Verteilungsfunktion von X, genannt Gesamtschadenverteilung, gegeben durch

F(x)=Y pH™*(x), (1.2)
k=0

wobei H'™ die k-te Faltungspotenz von H ist.
In dieser Arbeit interessieren wir uns hauptsichlich fiir den Fall, dass N Poisson
verteilt ist, mit Parameter 4, d.h.

p =e—"‘£
k k"

kelN (1.3)
Weiter behandeln wir nur diskret arithmetische Verteilungen H(x). Als Anwen-
dung haben wir die Stop Loss-Deckung vor Auge. Ist ¢ der Selbstbehalt, so ist die
Stop Loss-(Netto)Primie SL(F, ) als Erwartungswert des Uberschadens defi-
niert durch

SL(F,0)= , (k=) f(k), (1.4)

k>t

wobei f die zu F gehorige Wahrscheinlichkeitsdichtefunktion ist.
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[n dieser Arbeit werden folgende Bezeichnungen festgehalten. Kleine lateinische
Buchstaben f,g,... verwenden wir fiir Wahrscheinlichkeitsdichtefunktionen.
Die entsprechenden grossen Buchstaben F,G,. .. stehen fiir die zugehorigen
Verteilungsfunktionen. Eckige Klammern werden fiir Intervalle von ganzen
Zahlen beniitzt. Zum Beispiel bedeutet [, b] die Menge der ganzen Zahlen x mit
agx<bh.

2 Die semirekursive Methode

Gegeben sei eine diskrete Einzelschadenverteilungsfunktion H(x) (positive und
negative Risikosummen seien zugelassen), die sich aus zwei Verteilungsfunk-
tionen zusammensetzt (nicht unbedingt Einzelschadenverteilungsfunktionen)
d.h.

H(X):'ClHl(X)"'Csz(X), Cl+(,'2"-= ; (21)

Gesucht ist ein numerisches Verfahren zur Berechnung der zusammengesetzten
Poissonverteilung mit Poissonparameter A

0 /’{k
F(x)= — e T AH™(x
k;) P (x) (2.2)
fiir den Fall, dass die Verteilungen
B 6] Al _’hH'k
F= Y e "B, di=de, i=12, (23)

rekursiv berechenbar sind.

Aus praktischen Griinden behandeln wir im folgenden nur den interessanten
Fall, wo H, ausschliesslich positive und #, negative Risikosummen zulisst. Die
Verteilungen Fy, F, werden mit Hilfe der Rekursionsformel von Adelson-Panjer
berechnet.

Darstellung als Faltungsprodukt

Es seien iy, iy , 1), die charakteristischen Funktionen von H, H ,H,und{,{,, ¢,
diejenigen von F, Fy, I, . Fr die charakteristische Funktion { der zusammenge-
setzten Poissonverteilung F erhalten wir

(= e 4 — e erbiteala) = (A1 + A2)

= ptt¥1— Ay 2W2— A2
=tV A phaba 4 =(1+ G, (24)



178

Aus der Wahrscheinlichkeitstheorie wissen wir, dass falls die charakteristische
Funktion einer Verteilung das Produkt der charakteristischen Funktionen von
gegebenen Verteilungen ist, so ist die urspriingliche Verteilung identisch mit dem
Faltungsprodukt der gegebenen Verteilungen.

Somit gelten die Beziehungen

F=F\ xF, (2.5)
fiir die Verteilungsfunktion F, respektiv
T=hxhs (2.6)

fiir die zugehorige Wahrscheinlichkeitsdichtefunktion.

Der semirekursive Algorithmus

Die Dichte A(x) der Einzelschadenverteilungsfunktion A (x) lisst sich schreiben
als

h(x)=cyhy(x)+c h,(x) (2.7)
wobel
o= h(x), =) hx) (2.8)
x=20 x<0

und die A;’s definiert sind durch

E&Q’ i 0 , x=0
m@={ ¢ 7L m={hx) . (2.9)

6 , x<0 Cy

Wie bereits erwiahnt, sind die Wahrscheinlichkeitsdichtefunktionen

% k
fix)=) -;;t—"e_'l"h?‘"(,\f), i=1,2, (2.10)
k=0

nach Adelson-Panjer rekursiv berechenbar (vgl. z.B. [6]).
Setzen wir

my=max {h; (x)*0}, my= —min {hy(x)=+0}, (2.11)

so gelten die Rekursionsformeln fiir £, (x), resp. f;(x):
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fi(@)=eH @D

“min (x,my)

f)== ) jhfilx—)) fir x>0, Ay;=24h()

X j=1
f2(0)=e"* (2.12)

i we'] min (—.x,mz) . ‘ o
jz(x)zﬁ;— Yo Jhpfa(—x—=)) fir x<0, Ay;=lh,(—))

J=1
Die semirekursive Methode besteht aus zwei Schritten:

[. Schritt

Zunichst wird f;(x) im Intervall [ -7"2,0], 72 geniigend gross, nach Adelson-
Panjer gerechnet und in einem Vektor gespeichert. Die Grenze 72 kann dabei so

gewihlt werden, dass die Genauigkeit der Rechenanlage voll ausgeniitzt wird

(wenn moglich doppelte Genauigkeit), um f,(x) moglichst klein ausserhalb von
[ - 72,0] zu machen (siche Diskussion in Abschnitt 5).

2. Schritt

Mit Hilfe des abgespeicherten Vektors f;(x) werden f; und die Faltung f; s f,
miteinander rekursiv gerechnet, fi nach Adelson-Panjer.
Es bleibt noch zu zeigen, wie man die Faltung £, s £, rekursiv rechnen kann, falls
f>(x) aufgerufen werden darf. Im diskreten Fall, wird f=f,sf, mit der
Faltungssumme berechnet:

=Y AL, =0, i€[-T2,0], xe[-T2 0 (2.13)

i+tj=x

Die Bedingung i=x —j€[—1772,0] fiihrt zur Formel

x+T2

f= Y AWAGK—=), xe[-T2 o[ (2.14)

J = max(0,x)

Die Herleitung der gewiinschten Rekursionsformeln geht iiber eine Folge von
reellwertigen Hilfsfunktionen g¢,(y), y€[0,7T2], neN, die folgendermassen
definiert sind:

go(y) =0, yel0, 72]
a1 =gu(y =D +fi(0) fo(—y+1), ye[l,T2] (2.15)
grl-+—l(0):0v nelN
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Eine routineméssige Rechnung zeigt, dass f=/f; s f; wie folgt gewonnen wird:
Sn—=T2)=g,(T)+f1(n) f2(—-T2), neNl. (2.16)

Man tberzeugt sich, dass die Formeln (2.15) und (2.16) mit Hilfe eines
Hilfsvektors g(y) (anstelle der Folge g,(»)) rekursiv vollzogen werden konnen.

3 Numerisches Beispiel

Die numerische Illustration erfolgt anhand einer einfachen Einzelschadenver-
teilung. Wie solche Verteilungen im allgemeinen gewonnen werden, kann in [2]
nachgelesen werden. Der ausschliesslich fiir Lebensversicherung interessierte
Leser konsultiere z. B. [6]. Zusammenfassend ist unser Beispiel beschrieben
durch folgende Parameter und Tabellen:

Poissonparameter: 4 =2
Diskretisierungsschritt fiir die Risikosummen: d=2500
T2=100

Tabelle 1
Einzelschadenverteilung H(x)

x=Risikosumme/fd —15 -1l -6-3 1 4 5 7 10 14 20 25 35 50 80

Dichte 100 A(x) 1 2 511 24 7 8 7 10 6 7 6 3 2 |

Erwartungswert E{X}=40000

Tabelle 2
(Auszug aus dem Computer Output)

Selbstbehalt Gesamtschadenverteilung: Netto Stop Loss-Primie
F (Selbstbehalt)

— 20000 0.03029 60324
— 10000 0.06547 50761
0 0.26330 41765
10000 0.39779 35090
20000 0.49827 29497
30000 0.57868 24788
40000 0.63817 20798
50000 0.69532 17337

60000 0.73862 14484
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Tabelle 2 (Fortsetzung)

Selbstbehalt Gesamtschadenverteilung: Netto Stop Loss-Primie

F (Selbstbehalt)

70000 0.79133 12148

80000 0.82393 10188

90000 0.85874 8531
100000 0.87917 7181
110000 0.89322 6028
120000 0.90923 5037
130000 0.92948 ‘ 4214
140000 0.94043 3545
150000 0.94969 2979
160000 0.95598 2501
170000 0.96082 2083
180000 0.96622 1713
190000 0.97058 1390
200000 0.97690 1110

4 Rechenaufwand der semirekursiven Methode

Fin geeignetes Mass fiir den Rechenaufwand eines Algorithmus ist hier gegeben
durch die Anzahl reeller Multiplikationen (vgl. [5], S. 117). Interessiert man sich
fiir die Werte der Verteilung F im Intervall [—72, T1] (T2 wie in vorigen

Abschnitten), so folgt mit Hilfe der Methode aus Abschnitt 2:

Anzahl reeller Multiplikationen = 72 s pm, — 22! )

2
+ 11 sem, P i
2
+(T2+1)T1

4.1)

wobei my, resp. my den absoluten Betrag der minimalen, resp. maximalen
Risikosumme bedeutet. Im Vergleich dazu benétigt die FET-Methode ([5], S.

121):
Anzahl reeller Multiplikationen =4 n(,logn +,log (s + 1))

(4.2)

wobei s =m, +m; + 1 und n=2", re N, die Anzahl Punkte zur Berechnung der

FFT ist.
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Es diirfte nun nicht allzu schwierig sein, Vergleichskriterien aufzustellen (vgl.
z.B. [5], wo der Fall T1=0 behandelt wird). Wir bemerken nur, dass bei der
Berechnung von Stop-Loss Pramien mit Selbstbehalt in der Hohe der erwarteten
(z.B. positiven) Schadenbelastung, der Wert von 7'1 noch ziemlich klein sein
sollte, um die FFT-Methode im Rechenaufwand zu schlagen.

5 Fehlerabschiitzungen und exakte Stop-Loss-Priimien

Es ist wohlbekannt, dass Stop-Loss-Pramien fiir diskret arithmetische Vertei-
lungen rekursiv berechnet werden kénnen (z. B. [6] fiir positive Risikosummen).
Die Erweiterung auf negative Risikosummen ist naheliegend. Die Verteilung F
der Zufallsvariable X habe die Eigenschaft, dass f(—72) verschwindend klein
ist. Die Existenz von

Y kf(k)~E{X} (=Erwartungswert von X) (3:1)
k=-T2
wird vorausgesetzt. Die folgende Rekursionsformel folgt sofort aus der
Definition von SL (F, t):

SL(F,t+1)=SL(F, t) - :V; fk)+ Z f(k)=SL(F, t) —1 +F(2).
k=-T2 k=—-T2
(5.2)

Als Anfangswert nehmen wir

SL(F,—-T2)= Y kf(k)+T2- ) [f)=E{X}+T2. (5.3)
k=-T2 k=—-T2

Wir diskutieren im folgenden die Genauigkeit der semirekursiven Methode und
geben anschliessend eine Fehlerabschitzung fiir die Berechnung von Stop-Loss-
Priamien mit Hilfe unseres Algorithmus. Fiir eine Grosse a bezeichnet & eine
Approximation von a, &,=(d—a)/a den relativen Fehler und 4,=d—a den
absoluten Fehler. ‘
Die Bezeichnungen des Abschnitts 2 gelten durchwegs.
Wir betrachten folgende Grossen und deren Approximationen aus der semire-
kursiven Methode:
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F5(00)= ,gon(_x)=1’ F,(o0)= Z fa(—x),

x+T2

f@W= % AOLE=D JO= T [i()hE=),
j=max(0,x J=max(0,x)
Fio= 5 f), Fo= Y [, (5.4)
x=—T2 x==T2

Flo)= Y. f(x). Floo)=1,

x=~T2

Y kf(k), E=E{X})=Y kf (k).
fk=—1T2 k=— oo
Wir bemerken, dass der Erwartungswert E sich exakt aus der Einzelschadenver-
teilungsfunktion berechnen lasst gemiss =1 Z xh(x). Die ganze positive Zahl
T2 sei nun so gewilhlt, dass

Fy(c0)=1—¢
H(—0)<fo(=T2)=6 firalle x>T72, (5.5)

wobei ¢ und J beliebig kleine vorgegebene positive reelle Zahlen sind. Natiirlich
gilt 72=T2(e, 0). Wir leiten zunichst einige Abschéitzungen her. Wir haben

0 0
F(o0)= —Zn Z(O )fl(l)fz(x_])" Z LG Y filk)
- J=max(0,x k==T2=j
> ;Ofl () k_Z” (k)= Z fi() Fy(c0) =1 —s. (5.6)
Somit gilt
1—e<F(0)<1. (5.7)

Der absolute Fehler in der Wahrscheinlichkeitsdichte f(x) ldsst sich leicht
abschitzen durch

Arwl=| 2 fDAG=D|IS Y L)< (5.8)
j=x+T2+1 j=x+T2+1

Fiir den absoluten Fehler in der Verteilungsfunktion F(x) hat man

X

g 2

k=-T2

Arw|<(x+T2+1)0 (5.9

X
|Am)l=‘ Z Af(k)
k=—-T2
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-T2
Zur Abschitzung von Ay=E—FE= Y  kf (k) bendtigen wir folgende Grossen

k=—c

Ee=1 ¥ xhixy= Z kfi(k)  (=Erwartungswert von Fy)

x=20

E._=A Z xh(x)= Z kf;(k)  (=Erwartungswert von F,) (5.10)

x<0 k=—w
0
Y kfy(k) (=Approximation von E_).
k=-T2

Diese Ausdriicke sind exakt berechenbar, £_ mit Hilfe der Adelson-Panjer
Rekursionsformel fiir f;,. Durch Rechnung erhalten wir

3 k| L sk
SORVI AT
- ~T2-j ~T2-j
mj‘;ojﬁ(/) k_Z_m fall)+ Z A k_);w kf (k) (5.11)
Es folgt
|46 <E4 e+ —iz kfy(k)|=Ee+|dg_| (5.12)

. N I , 4 : .
Die Grosse 7 wird uns interessieren. Fiir diese gilt

LRy, wobel ., w=—t Tl (5.13)
]

'A ; E,_8+|AE_|

Wir wenden uns nun zum Fehler in der Stop-Loss—Préimié. Aus den Gleichungen
(5.2), (5.3) folgt mit (5.4), dass

x—1

SL(F,x)=SL(F, —T2)+ Y (F(t)—F())

t=—-T2

=1
=E+T2-F(0)+ Y F(t)—(T2+x)F(0)
t=—-T2
=i,

—E—xF(0)+ Y F(1) (5.14)

t=—-T2
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Berechnen wir SL(F, x) in der Praxis geméss

o B o x—1r
SL(F,x)=E—xF(c0)+ > F(1), - (5.15)
t=—T2
so folgt

e
ASL(I“,_I-)ﬁE_E"”X(l _F(OO))~+- Z A_)"(t)
t=-T2

x—1
=Ag—x(1 —F(o)+ Y A (5.16)

t=—T2

Schitzen wir dies ab:

x—1
IASL(I".x)ISle|+Elx[+ 2. |Af(r)|
t=-T2

x—1

+ Y (t+T2+1)5 (5.17)

t=~T2

SVIE|+S

X

Nach Ausrechnung der Summe in der Abschitzung erhalten wir

[ st e, < VIE|+ x| +3{e+ T2 +x -+ 72)] 5 (5.18)
In der Praxis interessiert man sich fiir den Pridmiensatz SL(? Q Pl sl

endlichen Bereich k< x<k,E. Setzen wir

k=max {|k,|, |k,|}

: L |(x+T2) +x+ T2
c=c(g,d0)= max - -
( kiE<x <kl 2 |E] (5.19)

so folgt fiir den absoluten Fehler im Stop-Loss-Primiensatz:

ASL(F,X)

<v+ke+c(e, 9)0. (5.20)

Mit wachsendem 72 = T2 (e, 6) wird in der Praxis wohl ¢(e, )9 gegen 0 streben,
so dass Stop-Loss-Primien beliebig genau approximiert werden kénnen. Somit
ist die Konvergenz des semirekursiven Verfahrens begriindet. Ubrigens kann
unser Abschitzungsverfahren der FFT-Methode angepasst werden. Eine Notiz
hierzu erscheint im «Scandinavian Actuarial Journal».
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6 Schwankende Grundwahrscheinlichkeiten

Fiir manche praktische Probleme der Risikotheorie ist es nicht zweckmassig
anzunehmen, dass die erwartete Anzahl Schiden fiir eine feste Zeitperiode
konstant sei. Man denke etwa an saisonbedingte und 0konomisch bedingte
Schwankungen dieses Parameters. Eine Einfithrung zu diesem Thema findet
man z.B. in [2].

Wir nehmen an, dass die erwartete Anzahl Schiden fiir eine feste Zeitperiode
gleich AZ ist, wobei Z eine Zufallsvariable mit Erwartungswert 1 ist. Nimmt man
an, dass die Anzahl Schiden Poisson verteilt ist, so ist die Wahrscheinlichkeit P,
dafiir, dass & Schadenereignisse eintreten gegeben durch

T » A (_A'.qy_(

Pk=j(.

dU(q), (6.1)
o k!

wobei U(g) die Wahrscheinlichkeit dafiir ist, dass Z<gq ist.

Fiir praktische computerunterstiitzte Untersuchungen geniigt es meistens eine
diskrete Verteilung U(g) zu betrachten. Wir beschrinken uns hier auf diesen
Fall. Es seien endliche viele ¢;’s vorgegeben mit

Ulg)=w;, i=1,...,n. (6.2)
Die zusammengesetzte Poissonverteilung mit Parameter Ag sei gegeben durch
0 2 k
Fiu(x)=Y e (_1:1')_ H*(x). (6.3)
k=0 -

Die Gesamtschadenverteilung mit Grundwahrscheinlichkeiten P, (die soge-
nannte gemischte zusammengesetzte Poissonverteilung, in Englisch «mixed
Poisson») ist dann gleich

F(x)=Y PH*(x)=) wF;(x) (6.4)
k=0 i=1
wobei 4; = Ag; gesetzt wurde. Da F;, semirekursiv berechenbar ist, ist es auch F.
Der einzige Nachteil des Verfahrens liegt im n-fachen Aufwand an Computer-
zeit. In diesem Fall sollte die entsprechende FFT-Methode wohl vorgezogen
werden.

Werner Hiirlimann
Allgemeine Mathematik
Winterthur-Leben

8400 Winterthur
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Zusammenfassung

Eine Verallgemeinerung der Adelson-Panjer Rekursionsformel zur Berechnung der zusammenge-
setzten Poissonverteilung im Falle beliebiger Risikosummen wird vorgestellt. Das Verfahren wird
auf die «exakte» numerische Gewinnung von Stop-Loss-Primien angewendet. Anhand von
Fehlerabschiitzungen, die auf einer Rechenanlage durchgefiihrt werden konnen, wird die Kon-
vergenz der Methode erliutert. Schliesslich bemerken wir noch, dass schwankende Grundwahr-
scheinlichkeiten beriicksichtigt werden kénnéen,

Résumé

L’auteur présente une généralisation a des sommes de risque quelconques de la formule de récurrence
d’Adelson-Panjer pour le calcul de la distribution de Poisson composée. Le procédé permet d’obtenir
des valeurs numériques exactes pour les primes «stop loss». A ['aide d’évaluations des erreurs
d’approximations, qui peuvent étre effectuées sur un ordinateur, I'article explique la convergence de
la méthode. L’auteur remarque finalement qu’il est possible de traiter le cas de la variation des
probabilités de base.

Summary

A generalization to the case of arbitrary risk sums of the Adelson-Panjer recursion formula for
computing the Compound Poisson distribution is presented. The procedure is applied to obtain
“gxact” numeric values for the stop loss premiums. With the aid of error bounds which could be
implemented on a desk computer, we show the convergence of the method. Finally we remark that it
is possible to take into account also the variation of the basic probabilities.
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