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Werner Hürlimann, Winterthur

Semirekursive Berechnung von Gesamtschadenverteilungen
und exakte Stop Loss-Prämien

Einführung

Kürzlich hat J. Bertram in [4] eine allgemeine Methode zur Berechnung von
Gesamtschadenverteilungen, die negative Risikosummen berücksichtigt, vorge-
stellt. Diese sogenannte FFT-Methode (FFT steht für «Fast-Fourier-Transfor-

mation») ist sehr elegant, theoretisch befriedigend, schnell und durchaus exakt in

der Praxis.

Ein gewisser Nachteil der FFT-Methode liegt im relativ hohen Bedarf an

Speicherkapazität. Wohlverstanden, der begrenzte Computer-Arbeitsspeicher-

platz ist heutzutage kein echtes technologisches Problem mehr (z. B. virtuelle

Speichertechnik). Eine kleine Computer Konfiguration verfügt aber nicht

immer um 640 KB Hauptspeicherkapazität, die nötig sind, falls man die FFT-
Methode mit z. B. 2'* Punkte berechnen will. Somit erscheint es wünschenswert

eine Methode zu entwickeln, die jeder moderne Personal Computer schlucken

könnte. Rekursive Methoden (z. B. die Adelson-Panjer Rekursionsmethode zur
Berechnung der zusammengesetzten Poissonverteilung) benötigen wenig Spei-

eher und sind exakt. Leider sind sie auf positive Risikosummen beschränkt. Die

vorliegende Verallgemeinerung auf negative Risikosummen, genannt semire-

kursive Methode, beruht auf der Zerlegung der Einzelschadenverteilung in zwei

Verteilungen für positive und negative Risikosummen und anschliessend deren

Faltung. Infolge von Fehlerabschätzungen, leistet unsere Methode in der Praxis

eine beliebige Genauigkeit. Sie benötigt wenig Speicher und ist im Programmier-
aufwand freundlicher als die FFT-Methode. Für kleine Poissonparamcter und

kleine negative Risikosummen ist sie auch von der Computerzeit her eine echte

Alternative zur FFT-Methode. Fiat man praktische Anwendungen in Sicht (z. B.

Stop Loss-Prämien, siehe Abschnitt 5), so braucht man nicht die ganze

Verteilung zu rechnen (was hingegen beider FFT-Methode geschehen muss) und

spart damit Computerzeit. Weiter ist die FFT-Methode nicht frei von numeri-

sehen Schwierigkeiten, die bei der Implementierung auftreten können. Unsere

Praxis hat gezeigt, dass der schnelle FFT-Algorithmus von Schwarz (vgl. [8]) in

gewissen Fällen numerisch unstabil und somit praktisch nicht mehr brauchbar

ist. Der viel langsamere Algorithmus von Cooley-Tukey (vgl. z. B. [9], S. 75) ist

numerisch stabiler und liefert zuverlässigere Resultate. Unsere semirekursive

Methode ist, was die Berechnung von Stop-Loss-Prämien anbelangt, schneller
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als dieser letztgenannte in vielen praktischen Anwendungen. Schliesslich sei

noch erwähnt, dass man mit Hilfe des semirekursiven Algorithmus schwankende

Grundwahrscheinlichkeiten behandeln kann. Der Berechnungsprozess ist aber,

abgesehen von der Einfachheit, bedeutend langsamer als die entsprechende
FFT-Methode.
An dieser Stelle möchte ich Herrn E. Moor herzlich dafür danken, dass er mir
seine Implementierung zur Adelson-Panjer Rekursion zeigte, was die Entste-

hung dieser Arbeit entscheidend beeinflusste.

1 Grundkenntnisse

In der Risikotheorie wird der Risikoprozess des Gesamtschadens für eine feste

Zeitdauer (z.B. 1 Jahr) durch folgende Zufallsvariable beschrieben:

Jf= I F, (1.1)
i l

Dabei gibt A die Anzahl der Schäden an und F) beschreibt die Schadensumme

für den /-ten Schadenfall. Es wird vorausgesetzt, dass /V zusammen mit den F) ein

System unabhängiger Zufallsvariablen bilden und dass alle F) gleich verteilt sind.

Sind die Fi gemäss der Einzelschadenverteilungsfunktion A/v) verteilt und ist

die Wahrscheinlichkeit dafür, dass /r Schadenereignisse auftreten, so ist die

Verteilungsfunktion von À", genannt Gesamtschadenverteilung, gegeben durch

co

F(x) X A #**(*). (1-2)
/c 0

wobei //*' die Ar-te Faltungspotenz von 7/ ist.

In dieser Arbeit interessieren wir uns hauptsächlich für den Fall, dass A Poisson

verteilt ist, mit Parameter A, d.h.

77, Are DM (1.3)
A:

Weiter behandeln wir nur diskret arithmetische Verteilungen //(x). Als Anwen-
dung haben wir die Stop Loss-Deckung vor Auge. Ist / der Selbstbehalt, so ist die

Stop Loss-(Netto)Prämie FF(F, /) als Erwartungswert des Überschadens defi-
niert durch

SL(F,0=E (* — /)/(*), (1.4)
fc>f

wobei /die zu F gehörige Wahrscheinlichkeitsdichtefunktion ist.
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In dieser Arbeit werden folgende Bezeichnungen festgehalten. Kleine lateinische
Buchstaben /, verwenden wir für Wahrscheinlichkeitsdichtefunktionen.
Die entsprechenden grossen Buchstaben F, (7,... stehen für die zugehörigen
Verteilungsfunktionen. Eckige Klammern werden für Intervalle von ganzen
Zahlen benützt. Zum Beispiel bedeutet [«, />] die Menge der ganzen Zahlen x mit
a<x</>.

2 Die semirekursive Methode

Gegeben sei eine diskrete Einzelschadenverteilungsfunktion //(x) (positive und

negative Risikosummen seien zugelassen), die sich aus zwei Verteilungsfunk-
tionen zusammensetzt (nicht unbedingt Einzelschadenverteilungsfunktionen),
d.h.

//(x) C'i //i (x) + Cj #2 (x), C, +C2=1. (2.1)

Gesucht ist ein numerisches Verfahren zur Berechnung der zusammengesetzten
Poissonverteilung mit Poissonparameter A

00 ^
1 rA"V(x) (2.2)

/c =0

für den Fall, dass die Verteilungen

00 ^
^l(x)= I rye-^(x), (=1,2, (2.3)

Jc=0 ^ •

rekursiv berechenbar sind.

Aus praktischen Gründen behandeln wir im folgenden nur den interessanten

Fall, wo //1 ausschliesslich positive und //j negative Risikosummen zulässt. Die
Verteilungen Fi, F2 werden mit Hilfe der Rekursionsformel von Adelson-Panjer
berechnet.

£)arVe//n«£/ a/.s

Es seien i/', 1/^, 1/^ die charakteristischen Funktionen von //, //,, //j und £, £,, £2

diejenigen von F, F,, F2. Für die charakteristische Funktion £ der zusammenge-
setzten Poissonverteilung F erhalten wir

£ ~ ^ — ^(Cl^l +C2'/'2)- (A1 + A2)

k (2.4)
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Aus der Wahrscheinlichkeitstheorie wissen wir, dass falls die charakteristische
Funktion einer Verteilung das Produkt der charakteristischen Funktionen von
gegebenen Verteilungen ist, so ist die ursprüngliche Verteilung identisch mit dem

Faltungsprodukt der gegebenen Verteilungen.
Somit gelten die Beziehungen

(2.5)

für die Verteilungsfunktion F, respektiv

/=/i */2 (2.6)

für die zugehörige Wahrscheinlichkeitsdichtefunktion.

Der .yermre/rwr.v/re /I /ryor/t/irm«'

Die Dichte /*(.*) der Einzelschadenverteilungsfunktion //(.v) liisst sich schreiben

als

wobei

/i(x) ClM*) + C2/*2M

Cl= Z ^ £ M*)
x£0 x <0

und die /(('s definiert sind durch

M*)
// (_v)

Cl

0 *<0
M*)

0

A(jr)

^2

x>0

„v>0

Wie bereits erwähnt, sind die Wahrscheinlichkeitsdichtefunktionen

Z '=i,2,
/c 0

nach Adelson-Panjer rekursiv berechenbar (vgl. z. B. [6]).
Setzen wir

W[=max {/j[(x)=|=0}, ^ -min +
X X

so gelten die Rekursionsformeln für /i(x), resp. ^(x):

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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I min(.v.mi)

/iW - Z 7^1 j/i(•*~"7) für x>0, Aij A,/JI(/)
X j= 1

/2(0) e ^ (2-12)

-j min(-x,wi2)

,/2W - I yW](-*-i) für X<0, A2j A2Ä2(-y)
X j 1

Die semirekursive Methode besteht aus zwei Schritten :

/. Sc/tri'»

Zunächst wird/2(x) im Intervall [ — 72,0], 72 genügend gross, nach Adelson-
Panjer gerechnet und in einem Vektor gespeichert. Die Grenze 72 kann dabei so

gewählt werden, dass die Genauigkeit der Rechenanlage voll ausgenützt wird
(wenn möglich doppelte Genauigkeit), um/j(x) möglichst klein ausserhalb von
[ — 72,0] zu machen (siehe Diskussion in Abschnitt 5).

2. Sc/irü/

Mit Hilfe des abgespeicherten Vektors^(x) werden/, und die Faltung/]*/],
miteinander rekursiv gerechnet, /] nach Adelson-Panjer.
Es bleibt noch zu zeigen, wie man die Faltung/] */j rekursiv rechnen kann, falls

./)(x) aufgerufen werden darf. Im diskreten Fall, wird /=/]*/i mit der

Faltungssumme berechnet:

/(*)= Z /i0)/2(0, 7>0, 16[-72,0], xe[ —72, co[ (2.13)
i + j x

Die Bedingung / x—/e[ — 72,0] führt zur Formel

x + T2

/(*) Z ./1 (./)./2 V -/), xe [ —72,00[ (2.14)
j max(0,x)

Die Herleitung der gewünschten Rekursionsformeln geht über eine Folge von
reellwertigen Hilfsfunktionen <?„(z), >'e[0, 72], «eN, die folgendermassen
definiert sind:

'
0o(z) =0, ZG [0,72]

• t7„ + i(z) f/„(z-l)+/i(«)./2(-Z + 1), ZG [1,72] (2.15)

3n + i(0) 0, «e IN
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Eine routinemässige Rechnung zeigt, dass/=/i*/2 wie folgt gewonnen wird:

/(n-r2) 0„(r2)+/i(«)/2(-r2), «eN. (2.16)

Man überzeugt sich, dass die Formeln (2.15) und (2.16) mit Hilfe eines

Hilfsvektors c/(^) (anstelle der Folge ,g„(j>)) rekursiv vollzogen werden können.

3 Numerisches Beispiel

Die numerische Illustration erfolgt anhand einer einfachen Einzelschadenver-

teilung. Wie solche Verteilungen im allgemeinen gewonnen werden, kann in [2]

nachgelesen werden. Der ausschliesslich für Lebensversicherung interessierte
Leser konsultiere z. B. [6], Zusammenfassend ist unser Beispiel beschrieben

durch folgende Parameter und Tabellen:

Poissonparameter: A 2

Diskretisierungsschritt für die Risikosummen: d 2500

T2= 100

7a6e//e /
Einzelschadenverteilung //(„*)

x Risikosumme/rf -15 -11-6 -3 1 4 5 7 10 14 20 25 35 50 80

Dichte 100 Aft) 1 251124 787(0 6 7 6 3 2 1

Erwartungswert £{A"} 40000

7a/te//e 2

(Auszug aus dem Computer Output)

Selbstbehalt Oesamtschadenverteilung: Netto Stop Loss-Prämie
F (Selbstbehalt)

- 20000 0.03029 60324

- 10000 0.06547 50761

0 0.26330 41765
10000 0.39779 35090
20000 0.49827 29497
30000 0.57868 24788
40000 0.63817 20798

50000 0.69532 17337

60000 0.73862 14484
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Taèe//e 2 (Fortsetzung)

Selbstbehalt Gesamtschadenverteilung: Netto Stop Loss-Prämie
F (Selbstbehalt)

70000 0.79133 12148

80000 0.82393 10 188

90000 0.85874 8531

100000 0.87917 7181

110000 0.89322 6028
120000 0.90923 5037
130000 0.92948 4214
140000 0.94043 3545
150000 0.94969 2979
160000 0.95598 2501

170000 0.96082 2083

180000 0.96622 1713

190000 0.97058 1390

200000 0.97690 1110

4 Rechenaufwand der semirekursiven Methode

Ein geeignetes Mass für den Rechenaufwand eines Algorithmus ist hier gegeben

durch die Anzahl reeller Multiplikationen (vgl. [5], S. 117). Interessiert man sich

für die Werte der Verteilung F im Intervall [ — 72,71] (72 wie in vorigen
Abschnitten), so folgt mit Hilfe der Methode aus Abschnitt 2:

Anzahl reeller Multiplikationen 72*^2
2

(r«i + 1)
+ 71*mi ^

+ (72+1)71 (4.1)

wobei «2- t"i den absoluten Betrag der minimalen, resp. maximalen
Risikosumme bedeutet. Im Vergleich dazu benötigt die FFT-Methode ([5], S.

121):

Anzahl reeller Multiplikationen 4«(2log« + 2log(.v + l)) (4.2)

wobei j r«2 + r»i +1 und « 2h reN, die Anzahl Punkte zur Berechnung der
FFT ist.
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Es dürfte nun nicht allzu schwierig sein, Vergleichskriterien aufzustellen (vgl.
z.B. [5], wo der Fall T1=0 behandelt wird). Wir bemerken nur, dass bei der

Berechnung von Stop-Loss Prämien mit Selbstbchalt in der Höhe der erwarteten
(z. B. positiven) Schadenbelastung, der Wert von T1 noch ziemlich klein sein

sollte, um die FFT-Methode im Rechenaufwand zu schlagen.

5 Fehlerabschätzungen und exakte Stop-Loss-Prämien

Es ist wohlbekannt, dass Stop-Loss-Prämien für diskret arithmetische Vertei-

hingen rekursiv berechnet werden können (z. B. [6] für positive Risikosummen).
Die Erweiterung auf negative Risikosummen ist naheliegend. Die Verteilung F
der Zufallsvariable A' habe die Eigenschaft, dass/( — F2) verschwindend klein
ist. Die Existenz von

CO

£ £/(/:)«( Erwartungswert von A") (5.1)
/c= -T2

wird vorausgesetzt. Die folgende Rekursionsformel folgt sofort aus der

Definition von SX(F, /):
00 f

FL(F,/ + 1) 5L(F,0- I /(*)+ I /W SL(F,/)-l+F(/).
fc= — T2 Je — T2

(5.2)

Als Anfangswert nehmen wir

00 00

SL(F, — 7"2)= £ */(*) +T2- £ /(£)«£{*}+ F2. (5.3)
/c — T2 fc=-T2

Wir diskutieren im folgenden die Genauigkeit der semirekursiven Methode und

geben anschliessend eine Fehlerabschätzung für die Berechnung von Stop-Loss-
Prämien mit Hilfe unseres Algorithmus. Für eine Grösse a bezeichnet a eine

Approximation von a, e„ (n—a)/a den relativen Fehler und d„ n—a den

absoluten Fehler.
Die Bezeichnungen des Abschnitts 2 gelten durchwegs.

Wir betrachten folgende Grössen und deren Approximationen aus der semire-

kursiven Methode:
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oo i ^

^2(00) E /2 -*) 1
' ^2 (00) X A -*),

x 0

x + T2

/(*)= E AGOAC*-/'), /(*) E ,/i0)/ >(V /).
j max(0,x) j max(0,x)

f(0= É /(*)> E(ö= X /(,), (5.4)
x - 7'2 X=-T2

E(oo) E /(*)> F(co) 1,
x - 7"2

co co

£= E W). £=£{*} E */(*)•
fc — T2 fc — co

Wir bemerken, dass der Erwartungswert £\sich exakt aus der Einzelschadenver-

teilungsfunktion berechnen lässt gemäss £= A £x/i(x). Die ganze positive Zahl

T2 sei nun so gewählt, dass

^2(00) 1 -e

/2(-*)</2(-r2) 5 für alle x^T2, (5.5)

wobei e und (5 beliebig kleine vorgegebene positive reelle Zahlen sind. Natürlich
gilt r2 T2M). Wir leiten zunächst einige Abschätzungen her. Wir haben

co 00 00 0

F(œ)= E E /1OO/2 (x —7) E /10) ' E /2W
*= - T2 j max(0..v) j 0 A T2 ;

> E /lO') E /z(^)= E ZiO) A(œ) l -s.
; 0 A;=-T2 ,/ 0

(5.6)

Somit gilt

l-e<F(oo)<l. (5.7)

Der absolute Fehler in der Wahrscheinlichkeitsdichte /(x) lässt sich leicht
abschätzen durch

E ./i(/)/2 (*-/)
j x+T2 + l

< E A (/) <5 < c) (5.8)
j x+T2 + l

M/wl-

Für den absoluten Fehler in der Verteilungsfunktion EXx) hat man

<(x+T2 + l)<5 (5.9;
X X

MF(X)| - E < E Am
/c= -T2 /c= -T2
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Zur Abschätzung von zl^ F — F £ &/(£) benötigen wir folgende Grössen
/c — CO

F+=2 Z jc/î(j>c) ^ &/!(£) Erwartungswert von Fi)
x>0 /c 0

F_=/l £ x/i(x)= Z /c/2(&) Erwartungswert von F2) (5.10)
x <îO /c - co

0

F_ Z Approximation von F-).

Diese Ausdrücke sind exakt berechenbar, F_ mit Hilfe der Adelson-Panjer
Rekursionsformel für/j. Durch Rechnung erhalten wir

• T2

fc= - co
I ./,(./)./;(A' :/)

Lj=o
co -T2-j
I/iO) I

7 0 /c - co

co -T2-j co - T2 - j
Zi/i(/> Z /a(*)+Z •/!(/> Z W)
j 0 /c — 00 7 0 fc=—co

Es folgt

l^l^l ^ £*+ • 8 -f*

-T2

Z
fc= — 00

— F+fi + |d £_
I

(5.11)

(5.12)

Die Grösse — wird uns interessieren. Für diese gilt
F

< v, wobei v
£*+8 |z1^

l£l
(5.13)

Wir wenden uns nun zum Fehler in der Stop-Loss-Prämie. Aus den Gleichungen
(5.2), (5.3) folgt mit (5.4), class

FL(F,x) SF(F, — F2)+ V (F(0"f(«>))
t - T2

F+F2-F(co)+ X F(/)-(F2 + jc)F(oo)
î - 7"2

x 1

F—xF(oo)+ X ^(0
f -T2

(5.14)
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Berechnen wir Ö'L(F, x) in der Praxis gemäss

so folgt

.S"/.(/•'. v) - £- v/'( x>) + X *"(')> (5.15)
- 72

x 1

dsL(F,jc)~ F —is—.*(1 — ,F(co))-F X ^/(r)
r= - 72

JE-*(-l-f(oo))+ V ^/W (5.16)
*= -72

Schätzen wir dies ab:

X - 1

|dsL(f,*)M£| + eH+ E M/wl
î - 72

X 1

^ v|7| + E|X| + X Ü+Ü2 + 1)<5 (5.17)
f — 72

Nach Ausrechnung der Summe in der Abschätzung erhalten wir

W.*>l < v|£| +e|x| +±|(x + T2)^ +x+ 72)|<5 (5.18)

In der Praxis interessiert man sich für den Prämiensatz für einen
£

endlichen Bereich Setzen wir

/c max{|/r,|,|/c2|}

sr
1 |(x+72)2+*+r2|

C c(fi,5)= max '
1-=

1 (5.19)
/ci£^x<fc2.E 1^1

so folgt für den absoluten Fehler im Stop-Loss-Prämiensatz :

d.'SL(F.x) <v + fce + c(e,5)5. (5.20)

Mit wachsendem 772= r2(s, <5) wird in der Praxis wohl c(e, <>)<5 gegen 0 streben,

so dass Stop-Loss-Prämien beliebig genau approximiert werden können. Somit
ist die Konvergenz des semirekursiven Verfahrens begründet. Übrigens kann

unser Abschätzungsverfahren der FFT-Methode angepasst werden. Eine Notiz
hierzu erscheint im «Scandinavian Actuarial Journal».
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6 Schwankende Grundwahrscheinlichkeiten

Für manche praktische Probleme der Risikotheorie ist es nicht zweckmässig
anzunehmen, dass die erwartete Anzahl Schäden für eine feste Zeitperiode
konstant sei. Man denke etwa an saisonbedingte und ökonomisch bedingte
Schwankungen dieses Parameters. Eine Einführung zu diesem Thema findet
man z. B, in [2],

Wir nehmen an, dass die erwartete Anzahl Schäden für eine feste Zeitperiode
gleich 2Z ist, wobei Zeine Zufallsvariable mit Erwartungswert 1 ist. Nimmt man
an, dass die Anzahl Schäden Poisson verteilt ist, so ist die Wahrscheinlichkeit
dafür, dass Ä: Schadenereignisse eintreten gegeben durch

P* Ï^^W(<?), (6.1)
0 ^ •

wobei t/(r/) die Wahrscheinlichkeit dafür ist, dass Z<r/ ist.

Für praktische computerunterstützte Untersuchungen genügt es meistens eine

diskrete Verteilung t/(r/) zu betrachten. Wir beschränken uns hier auf diesen

Fall. Es seien endliche viele g,'s vorgegeben mit

U(<r/,) W;, i=l,(6.2)
Die zusammengesetzte Poissonverteilung mit Parameter 2r/ sei gegeben durch

co r ]

Fjh(*)= X e-*^Lj/«(x). (6.3)
/c 0 ^ •

Die Gesamtschadenverteilung mit Grundwahrscheinlichkeiten /\ (die söge-
nannte gemischte zusammengesetzte Poissonverteilung, in Englisch «mixed

Poisson») ist dann gleich

CO M

F(*)= X W(x)= X WfFi,(*) (6.4)
/c 0 t l

wobei Aj /lr/j gesetzt wurde. Da Fi, semirekursiv berechenbar ist, ist es auch F.

Der einzige Nachteil des Verfahrens liegt im «-fachen Aufwand an Computer-
zeit. In diesem Fall sollte die entsprechende FFT-Methode wohl vorgezogen
werden.

Werner Hürlimann
Allgemeine Mathematik
Winterthur-Leben
8400 Winterthur
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Zusa m menfassung

Eine Verallgemeinerung der Adelson-Panjer Rekursionsformel zur Berechnung der zusammenge-
setzten Poissonverteilung im Falle beliebiger Risikosummen wird vorgestellt. Das Verfahren wird
auf die «exakte» numerische Gewinnung von Stop-Loss-Prämien angewendet. Anhand von
Fehlerabschätzungen, die auf einer Rechenanlage durchgeführt werden können, wird die Kon-
vergenz der Methode erläutert. Schliesslich bemerken wir noch, dass schwankende Grundwahr-
scheinlichkeiten berücksichtigt werden können.

Résumé

L'auteur présente une généralisation à des sommes de risque quelconques de la formule de récurrence

d'Adelson-Panjer pour le calcul de la distribution de Poisson composée. Le procédé permet d'obtenir
des valeurs numériques exactes pour les primes «stop loss». A l'aide d'évaluations des erreurs

d'approximations, qui peuvent être effectuées sur un ordinateur, l'article explique la convergence de

la méthode. L'auteur remarque finalement qu'il est possible de traiter le cas de la variation des

probabilités de base.

Summary

A generalization to the case of arbitrary risk sums of the Adelson-Panjer recursion formula for
computing the Compound Poisson distribution is presented. The procedure is applied to obtain
"exact" numeric values for the stop loss premiums. With the aid of error bounds which could be

implemented on a desk computer, we show the convergence of the method. Finally we remark that it
is possible to take into account also the variation of the basic probabilities.
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