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Erhard Kremer, Hamburg

Bemerkungen zur Pay-Baek-Methode

1 Vorbemerkungen

Verfolgt man die versicherungsmathematischen Publikationen des letzten

Jahrzehntes, so erkennt man eine zunehmende Theoretisierung des Bereiches der
Prämienkalkulation. Inzwischen sind allgemeinere Prämienprinzipien mathe-
matisch analysiert (s. De Vylder, Goovaerts und Haezendonck (1984) und die
Theorie der Erfahrungstarifierung (s. Norberg (1979), Höddinghaus (1980))

ausgebaut worden. Besonders interessante mathematische Beiträge zur Prä-
mienkalkulation wurden für spezielle RückVersicherungsverträge geliefert. De

Vylder 1982), Goovaerts und De Vylder (1982), Goovaerts und Declerq (1980),
Kremer (1982), (1983a), Winkler (1982) wenden Resultate der konvexen

Optimierung und der Mathematischen Stochastik zur Abschätzung der Prämien

spezieller RückVersicherungsverträge an und Kremer (1984) entwickelt eine

asymptotische Prämienformel für eine umfassende Klasse von Rückversiche-

rungsverträgen, aus der einige bekannte Prämienformeln (s. Kremer 1983b)) als

Spezialfälle folgen. Diese Resultate scheinen jedoch überwiegend von theoreti-
schem Interesse zu sein.

Die in der Rückversicherungspraxis eingesetzten Tarifierungsverfahren sind aus

Praktikabilitätsgründen oft relativ elementar. Einige dieser Verfahren scheinen

zunächst von Praktikern empirisch entwickelt und erst später mathematisch

begründet worden zu sein (s. Benktander (1954), (1969), (1977), Kremer (1982),

(1983b)). Einen elementaren Überblick über die wichtigsten Tarifierungsver-
fahren gibt Flemming (1983), die mathematischen Fundierungen werden in

Kremer (1983b) skizziert. Fast alle der dort zitierten Verfahren sind inzwischen
mathematisch begründet und aus geeigneten stochastischen Modellen hergelei-

tet (s. Kremer 1983b)). Lediglich das in der Praxis häufig verwendete Pay-ßncA:-
wurde bislang noch nicht mathematisch analysiert (bzw. dem

Verfasser ist keine entsprechende Publikation bekannt). Flemming (1982, S. 11

bezeichnet die Methode noch als nichtmathematisch und führt kaufmännische

Argumente an. Mit der vorliegenden Notiz zeigt nun der Verfasser, dass das

Pay-ßacA:- Ker/h/ire« mit einem klassischen Teilgebiet der Wahrscheinlichkeits-
theorie, der sogenannten PrncMerM«ry.yt/!eor/e, mathematisch begründbar ist.

Einen Hinweis auf diese Beziehung findet man bereits im Buch von Karlin und

Taylor (1975, Seite 204).

Mitteilungen der Vereinigung Schweiz. Versicherungsmathematiker, Heft 2, 1985
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2 Die Pay-Back-Methode

Betrachtet werde ein Kollektiv von Risiken. Es sei ein Rückversicherungsver-

trag abgeschlossen, der im Zeitablauf Schäden für den Rückversicherer erzeugt.
Die Zeiten zwischen den aufeinander folgenden Schäden seien durch unabhän-

gige, identisch verteilte Zufallsvariable:

T}:(ß,H,,P)-(0,oo)
(Zeit zwischen demy-ten und (y'-l)-ten Schaden
des Kollektivs)

7=1,2,...

beschrieben, die Schadenhöhen durch unabhängige, identisch verteilte Zufalls-
variable :

Aj:(ß,H,,P)^(0, co)

(Höhe des y'-ten Schadens des Kollektivs).

7 1,2,...

Zusätzlich werde angenommen, dass die Schadenhöhen Àj von den Schadenzwi-
schenzeiten 7} unabhängig sind. Der RückVersicherungsvertrag sei für eine

Dauer von A Perioden abgeschlossen. Die sogenannte Puy-ß«c/r-/Vf
besteht nun darin, die Nettorisikoprämie des RückVersicherungsvertrages über

die Formel:

v : A • — (2.1)
T

mit den als existent angenommenen Erwartungswerten :

p £(*,), y l,2,...
t £(7}), 7=1,2,...

zu berechnen (siehe Flemming(1983), S. 11)). Die Grösse r ist interpretierbar als

diejenige (mittlere) Zeitdauer, in welcher der (mittlere) Schaden /t durch
Prämieneinnahmen amortisiert werden muss, damit der Rückversicherer keine

Verluste erleidet. Die Grösse r wird als P«y-.ßfle/c-.PmWe bezeichnet. Die
Prämie (2.1 sollte durch einen Sicherheitszuschlag ergänzt werden. Hierauf wird
im folgenden Abschnitt noch eingegangen.
Die durch (2.1) beschriebene Grösse erscheint als sinnvolle Approximation der

Netto-Risiko-Prämie. Die erwünschte theoretische Rechtfertigung geben wir im

folgenden Abschnitt.
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3 Mathematische Begründung der Pay-Back-Methodc

Im obigen stochastischen Modell bezeichne:

S» : Z 7}
j i

und
CO

/J l

(mit der Indikatorfunktion 1 w der Menge M), d.h. TV, ist die Anzahl der Schäden
des Kollektivs bis zur Zeit /. Damit erhält man als Schadenbelastung des

RückVersicherungsvertrages im Intervall [t,f + /i]:
iVt + i,

X5(/) X Aj,
j Nt + l

und wir können als erstes Resultat formulieren:

5«/z 7 :

Die Nettorisikoprämie ist im Intervall [/, t + A] gegeben

durch £'(A'5(0) [i/(7 + /t) —t/(f)]*/t (3.1)

mit [/(/) £(7VJ.

Ferner gilt:

Var (375(0)

[C/(/ + Ä)-t/(0]-o-'+ E [P('+A,f+A)+K(/,/)-2r(/ + A,/)]-jt* (3.2)
i 1

mit der Kovarianz:

F(0,0) Cov (7V,,,7V,0

und
ff^ Var(37j)e[0, oo).

Ztew/.v :

Wegen :

/N,m, /v, \
*S(0 I 20-I

Vj i j=I /
und :
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*(£ yv^=c/Cv)-/(

folgt direkt die Formel für £(VS(t))- Zur Berechnung der Varianz betrachten wir
zunächst

/ iVt + h \2 / iVt + h \ / Nt + »i Nt + h

£ Z *,• =£ I *?)+2-£ Z Z
\j' iV,+ t / \J N. + 1 / \j Nt +1 fc=j+l

(£/(f+A)-£/(*))• £(*?) +

womit man wegen:

/ N,+„ \2 / iVt + h \2
Var Z Z) E Z AO +

\j N,+ l / V/ JV, + i /
die Behauptung erhält.

Wie im Abschnitt vorher sei definiert:

V /2 —
T

und ferner:

T

* —-^ + 2 j V-

Mit diesen Bezeichnungen folgt der

SV/fz 2:

Die Verteilung von 7} sei nicht arithmetisch und 7} integrabel in der 3. Potenz.

Dann gilt:

(a) lim £(XS(0)=v
f-> CO

(b) Ist die Verteilung von 7} sogar streng nicht arithmetisch, d.h.:

<Ê(0 £(exp(/-D7}))#l V/AO

lim inf Ii -<£(r)| >0,
|r|->co

so folgt:
lim Var(ZS(0) ^.
f->oo
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ßewm

7e//(«j.' folgt direkt mit (3.1) und dem klassischen L>«ewm/w/.s7/a:w(?w

(s. Kohlas (1977), Satz 2, S. 57):

W+W-PM.!.;,
A T

Tel/ (/;).• wegen (3.2) und (3.3) ist lediglich zu zeigen:

lim [F(/ + A,/ + A)+ K(/,0-2- F(/ + /u)]
f-> 00

/l

f0
Dies folgt durch direktes Einsetzen, falls gezeigt ist:

lim K(/ + d, /)—/,••/' (I +2Ad))
t-> CO

(A"i +4^2 + Ä?) + 2 • d • (A"[ + 2 • /!/2) (3.4)

— 2-J (/(.?) c/.v

2 A(1 — 2 /;) + 2 2 • j t/(.v)<r/.y.

mit

K, =-• 2* • £(*?)-!

^ [^'£(^)/2]^-2'-£(^)/6
Es gilt :

K(/ + d, 0 ^('V,-m ' /V,)-£(/V, + ,|) • £(/V,)

und mit der Darstellung:

co co co oo

fV,-M"fV, A/,+ £ X! Z Z l{s„«/ + a,s,„<d
,i l m n +1 m 1 n m -h I

folgt (als Verallgemeinerung der Formel (2.4) in Daley und Mohan (1978)):

K(/ + /I, /) £/(/) + J t/(r — s) t/(r/.ç)
0

f + zi

+ | t/(t + d -.?) t/(z/.s)
0

r +J

- j £/(f + d-j) £/(<&)
f

-l/(/ + zl)-C/(0. (3.5)
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Ferner hat man (s. Daley und Mohan (1978)):

f/(f) A-/ + K,+£>(/"'), /-»oo (3.6)

' 1

j t/(/ — s) t/(<fa) C/(0 • ifi +r ' A* • f*
0 2

-f- Ä4 • A • / -f* 2 • A^2 H~ o 1

Mit (3.6) und partieller Integration folgt:

(3.7)

j t/(/+ 4l -s) £/(<fc) j t/(d -i) t/(/ + r/.v)

f 0

41

-{ U(/ + s)U(d-r/,v)-£/(zl )•[/(/) (3.8)
0

zl

A-j C/(^')r/5 + o(l)
0

Die Behauptung (3.4) erhält man durch Einsetzen von (3.6)—(3.8) in (3.5).

Dieses Resultat rechtfertigt es, die Nettorisiko-Prämie £(dfS(/)) durch /( zu

approximieren, d.h. beim Tfnvörmnr/swr/pn'nzi/? (s. De Vylder, Goovaerts und
Haezendonck (1984)) als Risikoprämie:

RR v-(l+/l) (/l^O)

zu wählen. Bei Verwendung des FaWanz/trwiz/p.s' folgt als Approximation der

Risikoprämie:

RR=v + /l-rF (/t^O).

Unter der speziellen Annahme einer exponentiell-verteilten Schadenzwischen-

zeit 7} (d.h. (V, ist Poisson-verteilt)

folgt mit:

f/:=E(X?) <r^ + ^
die einfachere Formel :

T

also für das Varianzprinzip:

<t±4z>.
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Bei der Anwendung dieser einfachen Prämienformel in der Praxis müssen

lediglich die unbekannten Parameter /r, t, geschätzt werden, etwa mit den

klassischen Mittelwert- und Varianzschätzern bzw. mit kürzlich publizierten
verfeinerten Methoden (s. Vardi (1982)).

Alle obigen Prämienformeln sind i.a. lediglich asymptotisch (d. h. für grosses t)
exakt. Wünschenswert wäre es, auch bei finitem / Abschätzungen zu erhalten.
Als einfaches Resultat erhält man den

Satz 3/

Für die Nettoprämie gelten die folgenden Abschätzungen:

(a) falls für die Verteilungsfunktion F von 7} gilt:

(d.h. die Verteilung ist vom sog. Typ ;Vßt/£, siehe Barlow und Proschan

(1975), S 159), so folgt:

£'[AW(/)Kv-(l+/U VfJsO

(b) falls die Verteilung der 7} eine Dichte / besitzt und die Ausfallrate:

j (1-F(X))ä<T-(1-F(0, W^O

mit
/Ii : — /z/v

die Bedingung

r(x)e [a, /i] c (0, co], Vx > 0

erfüllt, so folgt:

F[^S(/)]<v-(l+/l2), V/^0

mit :

ztMwer/fMW/ ;

Im Fall exponential-verteilter Schadenzwischenzeiten T'y ist die obere Schranke
in Teil (b) exakt. Interpretiert man /Ii -/r als Sicherheitszuschlag, so liefert die
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obere Sehranke aus Teil (a) eine einfache Formel für die Risikoprämie, kalkuliert
nach dem Erwartungsprinzip.
Verfeinerungen des Korollars kann man mit einer neueren Arbeit von Brown
(1980) herleiten.

ßeH'e/,v :

Es gilt nach Theorem 3.14, S. 171 in Barlow und Proschan (1975)

--l<£/(0<-
T T

also :

C/(/+A)-C/(/)<- + l.
T

Einsetzen in (3.1) liefert direkt die Behauptung. Analog folgt Aussage (b), denn
nach Barlow und Proschan (1963), Theorem 5.2 hat man:

/I / 1

-+--l<£/(0<-+- 1.
T /)T T ai

Prof. Dr. E. Kremer
Universität Hamburg
Institut für Mathematische Stochastik
Bundesstrasse 55

2000 Hamburg 13
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Zusammenfassung

Zur Tarifierung spezieller Rückversicherungsvertriige wird in der Praxis häufig die sogenannte Pay-
Back-Methode eingesetzt. Das Verfahren wird dargestellt und mittels der Erneuerungstheorie
mathematisch begründet.

Résumé

La tarification de certains contrats de réassurance se base parfois sur la méthode dite du «pay-back».
L'article présente cette méthode et la justifie mathématiquement à partir de la théorie du
renouvellement.

Summary

In practice one often applies the so-called Pay-Back-Method for rating special reinsurance covers.
The method is presented and characterized by applying the renewal theory.
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