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Rose-Marie KESTEMONTet José Paris, Louvain-la-Neuve

Sur l'ajustement du nombre de sinistres

1 Introduction

Dans [5], Gossiaux et Lemaire comparent plusieurs méthodes d'ajustement du
nombre de sinistres sur différents exemples. Ils tirent plusieurs conclusions. La

première indique que la loi de Poisson simple ne convient jamais. La deuxième
confirme le fait bien connu suivant : la méthode des moments est inadéquate pour
estimer les paramètres de la loi de probabilité d'une variable aléatoire discrète

quand la distribution n'est pas symétrique. La troisième conclusion indique
qu'ils n'ont pas mis en évidence une loi unique capable d'ajuster valablement les

exemples analysés. Nous nous proposons d'indiquer ici qu'une telle loi existe et

qu'il est possible d'en estimer efficacement les paramètres. Enfin nous propose-
rons deux mesures simples et efficaces de la qualité de l'ajustement obtenu.

2 Le Modèle

Il est bien connu (Feller [3], Hofmann [6], Thyrion [12]), qu'on peut caractériser

une loi de probabilité du nombre /V(0 d'événements survenant dans l'intervalle
[0, t] par

Pr [iV(/) 0] 7t(0, t) e~"<"

H)
Pr[iV(0 «] rc(«,0 (-l)" 7t'"'(0,/) « 1,2,...

dans laquelle

t

0(0 J 0'(«)</« (2)
0

avec 0' complètement monotone sur R *" et 0(0) 0. Ainsi construite, la fonction
7c(0, /) est complètement monotone et en vertu du théorème de Bernstein-

Widder, la loi de probabilité de 7V(0 peut être interprétée comme une loi de

Poisson composée ou pondérée du type

oo

71(0,0=1 (3)
0
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dans laquelle la fonction de structure t/décrit l'hétérogénéité a priori des assurés.

La loi de probabilité de A(t) peut également être identifiée à une loi de Poisson

généralisée du type

A/(0 <Ûl +£2+ • • • +£z,(r) (4)

dans laquelle les £, sont des v. a. entières et positives, indépendantes entre elles, et
aussi indépendantes de la v.a. L(/) qui suit une loi de Poisson simple.
Ce type de loi est donc très général. Pour le rendre opérationnel, il y a lieu de faire

un choix convenable de la fonction 0'. Nous utiliserons la fonction

^ (TT^ /»0.c>0,û>0 (5)

introduite par Hofmann [6] et utilisée par Thyrion [12],
Elle conduit à

« 0

/>

0(0

[(1 +c0' " — 1] 0<a< 1

c(l -fl)

-ln(l+c0 ß l
c

[1 -(1+t'O'-"] 1<£2.

(6)

,c(l -a)
Ce choix se justifie à beaucoup d'égards. Du point de vue mathématique, la

fonction 0' est une transformée de Laplace. Du point de vue statistique, ce choix

permet d'englober plusieurs lois de probabilité usuelles. C'est le paramètre a qui
permet de différencier les lois introduites. Pour a 0, on retrouve la loi de

Poisson simple; pour a 1, on retrouve la loi binomiale négative; pour a 2, on
retrouve la loi de Polya-Aeppli; si a tend vers l'infini, on retrouve la loi de

Neyman type A.
Les différentes probabilités se trouvent par les relations de récurrence

7t(0, 0

„A-. v *> + *) / et ^
r(a)jfc r \ÏTc/7t(« + i,o=—r (1+cO " Z V7N,'V 17~T~zr 0

« + I

(7)

La fonction génératrice des cumulants factoriels de 7V(f), à savoir

Ç(s) ln £[(1 +sf <">] ln P[0, -to] (8)

fournit



159

AT[2] =/«'rt^
A"[3]=/)^a(a +1)^
AT[4J /?c\/ (a +1 (a + 2) A

On en déduit facilement l'espérance et la variance de /V(/), soit

£W(0=/>/
var 7V(/)=p(l + ac)t^.

(9)

(10)

La formule (8) montre encore que la somme de deux variables aléatoires

indépendantes AM/) et AMO qui suivent une loi de probabilité du type indiqué
plus haut, de paramètre respectif /?i, et de mêmes paramètres a et c, obéit

encore à une loi du même type de paramètres p, +/>2, a, c.

Les données analysées étant annuelles, nous serons conduits à poser r= 1. Dans

ce cas, on notera que £ est également la fonction génératrice des cumulants de la

variable aléatoire /l, dont t/ est la fonction de répartition. Elle fournit

Xi=/>

+ -

On en déduit

2

rt

£M p

var /I pac

1 +-
Jfc-1

/c^2. (11)

et le coefficient de variation de /l, à savoir
/rte

(12)

est une mesure de

l'hétérogénéité relative a priori du portefeuille.
Il peut également s'avérer judicieux d'examiner les coefficients d'asymétrie
(skewness) et d'aplatissement (leptokurtosis) exprimés à l'aide des cumulants
factoriels (Anscombe [!])

/>(ac)*

A',[41

p(ac)A3

rt

1+- +
(13)

Il s'agit de deux fonctions décroissantes de a qui pourront également aider au
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choix de la loi. Les relations (13) sont également vraies si on remplace les

cumulants factoriels de /V(/) par les cumulants du même ordre de (/.
Le réalisme en assurance conduit à imposer la restriction

lim 7t(0,0 0. (14)
/- + 00

Elle implique immédiatement que a^l. Ainsi la loi de Poisson simple et la loi
binomiale négative apparaissent comme des cas limites des lois proposées.

fie/fw/r/Hr: Si nous considérons la loi de Poisson simple

P(0,0 e~"
(15)

I HA I

P(«, /) e
«

de même espérance que les lois de Poisson composées introduites, la comparai-
son peut être amplifiée. Nous avons:

P((UKrc(0, /)

M.,,,«.#»P(0,0 7T(0, /)

Ces relations sont bien connues (Feller [3]). Pour les lois introduites, la première
traduit le fait que, pour r fixé, 0' est une fonction décroissante de « et dès lors, 7t

est une fonction croissante de a. De ce fait, elle constitue l'une des raisons qui
conduisent à écarter les lois de Poisson simples.
La deuxième relation montre l'importance de (F. Par contre, la relation

7t(l, 0^(1,0 (17)

n'est pas vraie en général.

3 Estimation

En sciences actuarielles, on accepte volontiers que la loi de probabilité qui
caractérise le nombre de sinistres est une loi de Poisson composée. Quand on veut
aborder le problème de l'estimation, deux voies se présentent. La première
consiste à essayer d'estimer la loi de structure £/. Dans [11], Teicher a montré que
celle-ci était identifiable et Simar [10] a donné un algorithme qui permet
d'estimer (7 par la méthode du maximum de vraisemblance. Cette direction de

recherche a suscité de nombreux travaux au cours des dernières années. Il est

cependant important de noter que puisque les valeurs observées de A pendant
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une année sont limitées aux entiers <7, le nombre de classes homogènes
identifiables par ce procédé est également <7 (Lindsay [9]). Ainsi, ce procédé
met nécessairement en évidence une fonction de structure discrète. Conceptuel-
lenient, cela présente l'inconvénient de n'identifier que peu de classes homogènes
d'assurés. Dès lors, cette méthode non paramétrique peut avantageusement être

remplacée par une méthode paramétrique. En effet, les paramètres qui figurent
dans t/ se retrouvent dans la loi de probabilité de /V(/). Dès lors, on peut choisir
une classe de lois de probabilité de /V(/) suffisamment larges et en estimer les

paramètres. La forme de la loi proposée au paragraphe 2 présente cet avantage.
On pourrait penser en estimer les paramètres par la méthode du maximum de

vraisemblance. Mais d'une part, l'expression (7) des probabilités ne laisse aucun
espoir de trouver la forme analytique des estimateurs. D'autre part, même les

méthodes numériques ne s'avèrent pas simples. Dans [12], Thyrion propose
d'estimer les paramètres en utilisant la moyenne et la variance de l'échantillon
ainsi que la proportion des assurés n'ayant provoqué aucun sinistre. Le choix de

la moyenne expérimentale comme estimateur de /; est raisonnable. Selon toute
vraisemblance, elle constitue un estimateur exhaustif pour/;. Cette affirmation,
nullement prouvée, semble cependant réaliste car elle est vraie pour a 0 et pour
cr l.
Comme déjà rappelé plus haut, utiliser la variance expérimentale comme
estimateur est contre-indiqué. Dès lors, pour estimer « et c, nous utiliserons le

résultat de Lambert et Tierney [8] qui montre que pour les lois de Poisson

composées, estimer les probabilités par identification aux proportions observées

est asymptotiquement aussi efficace que la méthode du maximum de vraisem-
blance. En résumé, nous proposons de prendre pour estimation de /;, a, c la

solution du système
'

Nr=/)

' /V

—£—
'Vo (1+c)"

La résolution du système des deux dernières équations peut nécessiter un assez

grand nombre d'itérations.
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4 Analyse des Résultats

Le premier tableau en appendice reprend, pour les exemples analysés dans [5] et

dans l'ordre indiqué, l'estimation des paramètres a, c. Celle-ci conduit aux
effectifs attendus des tableaux suivants. Ils confirment la qualité de la procédure
attestée par les valeurs uniformément faibles de la statistique chi-carré usuelle

d'ajustement. La loi proposée est toujours facilement acceptée.

Comme mesure de la qualité de l'ajustement, nous proposons plutôt les deux

statistiques

r=S*—p(l+ac)
F=/C3 — (pc^fl(fl+ l) + 3/?c«+/?)

dans lesquelles S* est la variance estimée, £3 la /^-statistique de Fisher. Ces deux

statistiques ont une espérance nulle. Leur variance peut être facilement calculée.

L'estimation de ces deux statistiques, reprise dans le tableau 1, confirme la

qualité des ajustements proposés.

L'estimation // de l'hétérogénéité relative a priori qui complète ce tableau

indique que la méthode proposée fonctionne bien même pour des exemples assez

diversifiés.

Appliquée à d'autres exemples relevés dans la littérature, elle a fourni également
d'excellents résultats.
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Résumé

Cet article indique une famille de lois de probabilité suffisamment large et une méthode efficace
d'estimation des paramètres qui permet d'ajuster avec succès les distributions de sinistres recontrées
dans la littérature et d'en expliquer les similitudes et les différences.

Zusammenfassung

im vorliegenden Artikel wird eine ausreichend grosse Klasse von Wahrscheinlichkeitsverteilungen
definiert sowie eine effiziente Methode zur Schätzung ihrer Parameter angegeben. Dies erlaubt eine

einfache und wirksame Anpassung an numerische Daten.

Summary

This article defines a sufficiently large class of probability distributions as well as an efficient method
of estimating its parameters, which allows a better fit to numerical data compared to traditional
approaches.
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Appendice

TaWeaw /

P « c r F 7/

1 0,10108 0,57415 0,10843 0,006372 0,000617 0,784789
2 0,08650 0,68892 0,60714 -0,000132 -0,003911 2,198975
3 0,21435 0,40766 0,81835 0,003067 0,029563 1,247542
4 0,15514 0,44060 0,35457 -0,000061 -0,000757 1,003479
5 0,14422 0,32082 0,42468 0,000001 0,000127 0,971957
6 0,13174 0,27648 0,18638 -0,000004 -0,000108 0,625415

TaWea« 2

£jcero/)/e / PTcemp/e 3

/V 106974 ;V 4000 TV=946

*= 0,10108 S* 0,10745 f 0,0865 S* ; 0,12255 f 0,21435 S* 0,28893

* observés attendus A: observés attendus A: observés attendus

0 96978 96978 0 3719 3719 0 7840 7840
i 9240 9240 1 232 232 1 1317 1317

2 704 699,67 2 38 37,43 2 239 231,43
3 43 52,02 3 7 8,45 3 42 52,00
4 9 3,97 4 3 2,21 4 14 14,09

55 0 0,34 5 1 0,63 5 4 4,29
5=6 0 0,27 6 4 1,41

7 1 0,77
5=8 0 0,00

E.xewp/e 5 £'.vemp/e 6

iV 119853 tV 23589 /V 421240

* 0,15514 S* 0,17932 Â 0,14422 S* 0,16387 /? 0,13174 S* 0,13852

/t observés attendus A: observés attendus A' observés attendus

0 103704 103704 0 20592 20592 0 370412 370412
1 14075 14075 1 2651 2651 1 46545 46545
2 1766 1766,78 2 297 297,40 2 3935 3935,16
3 255 255,39 3 41 40,28 3 317 317,07
4 45 42,26 4 7 6,70 4 28 27,74
5 6 7,69 5 0 1,28 5 3 2,70

6 2 1,49 6 1 0,27 56 0 0,33

5=7 0 0,39 >7 0 0,07
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