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Thomas Mack, München

Berechnung der maximalen Stop-Loss-Prämie, wenn die
ersten drei Momente der Schadenverteilung gegeben sind

Einleitung und Überblick

Bei der Tarifierung von Schadenexzedenten- und Stop-Loss-Verträgen befindet
sich der Rückversicherer oft in der Situation, dass nur wenige Schäden der
Statistik oberhalb der Priorität liegen (Priörität Betrag, ab dem die Leistungs-
pfiicht des Rückversicherers beginnt). Dann bleibt es fraglich, ob eine an die
Schadendaten angepasste Verteilungsfunktion auch in dem für die Tarifierung
wichtigen Bereich oberhalb der Priorität als zutreffend betrachtet werden kann.
Vielfach enthalten die Quotierungsunterlagen sogar nur die Höhe der Schäden,
die mindestens 50% der Priorität überstiegen haben. Dies können so wenige
Schäden sein, dass eine sinnvolle Verteilungsanpassung gar nicht möglich ist.
Dann muss man in der Praxis die Nettoprämie aus dem Burning Cost

beobachtete Schadenerfahrung) zuzüglich eines gegriffenen Sicherheitszu-
Schlags berechnen oder versuchen, die Schadenerfahrung anderer Portefeuilles
auf das zu tarifierende Portefeuille zu übertragen (Exposure-Quotierung, vgl.
dazu Gerar/jewoW, 1976, Seite 328 ff., bzw. Credibility-Verfahren von ßw/i/-

wa«n/S'trau6, 1970).
Diese Problematik war auch Thema einer Tagung der schweizerischen ASTIN-
Gruppe am 11. Mai 1982 (GA/er, 1982). Den Referenten war dabei folgende
Aufgabe gestellt worden:
Anhand einer Schadenstatistik mit 41013 Schäden soll der Erwartungswert
£(W — w>)* der die Priorität w 1000000 übersteigenden Schadenhöhe V
geschätzt werden. Nur ein einziger der 41013 Schäden überstieg diese Priorität ;

er betrug I 238 000.
Ein mögliches Verfahren in dieser Situation ist die Anwendung der Theorie der
maximalen Stop-Loss-Prämien, was auf der Tagung auch von einem der
Referenten (Prof. Ger/w) vorgeschlagen wurde. Dabei werden gewisse Para-
meter (z. B. Mittelwert x und Streuung ,yQ aus der Schadenstatistik ermittelt und
dann diejenige Schadenverteilung V gesucht, die unter allen Schadenverteilun-
gen mit diesen vorgegebenen Parametern den maximalen Wert für £(36 — vv)* -
maximale Stop-Loss-(Netto-)Prämie genannt - liefert, also (z.B.)
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sup {£(X-w)+: V>0, £(*) *, Var(X)=^}.
,Y

Dieser spezielle Fall, wo „v und ^ vorgegeben sind, wurde von Sowers (1969)
gelöst, der zeigte, dass dann stets

£(* - w) + < (|/(vr-3c)2+5^ - w + Ä)/2

gilt, und dass diese Schranke auch erreicht wird, wenn V eine Zweipunkt-
Verteilung ist und w>(s^ + ^)/(2x) gilt. Eine scharfe Schranke im Fall
w<(j^+^)/(2x) wurde von De FyWer/Gooraer/s (1982) angegeben. Bei der ge-
nannten Schadenstatistik war Je 3 102, s 19000, so dass sich für w 1 000 000
die Schranke

£(V-w)+<90,5

ergab. Eine auf dieser Schranke basierende Schadenexzedenten-Prämie von
90,5 x 41013 3700000 ist jedoch angesichts des Burning Cost von 238 000 in
der Praxis kaum plausibel zu machen.

Andererseits ist klar, dass bei zusätzlicher Vorgabe des dritten oder weiterer

Nullpunktmomente der Schadenstatistik die maximale Stop-Loss-Prämie den

Burning Cost immer mehr annähert. Tay/or (1977) hat gezeigt, dass bei Vorgabe
der m ersten Momente ZT(dO,..., £(V") die maximale Stop-Loss-Prämie durch
eine (w+1)-Punkt-Verteilung geliefert wird (zumindest bei Verteilungen mit
beschränktem Wertebereich [0, M]). f/eitaa«/! (1978) zeigte, wie mit Hilfe der
linearen Programmierung auch eine obere Schranke für £(W-h>) ' ermittelt
werden kann. Seither sind sehr viele Arbeiten auf diesem Gebiet erschienen,
deren hauptsächliches Ziel es war, unter verschiedenen Annahmen explizite
Formeln für diese Schranken anzugeben. Im wesentlichen ist dies gelungen in
den Fällen, wo die Annahmen sich neben £(V) und Var(V) auch auf den

Median, die Überschreitungswahrscheinlichkeit/7(W>z), die Unimodalität oder
die Symmetrie der Verteilung beziehen (vgl. Goouaer/s/De KyMer/Z/aezew/onc/c,

1984, S. 290 ff.).
Doch für den Fall, dass die ersten drei Momente gegeben sind, ist bis jetzt keine

explizite Formel für die maximale Stop-Loss-Prämie veröffentlicht worden.
Aber gerade dieser Fall ist angesichts des obigen Beispiels für die Praxis

interessant, zumal der Praktiker auch bei sehr ungenügenden statistischen Daten
oft aus der Kenntnis ähnlicher Portefeuilles ein gutes Gefühl für die Höhe des
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Variationskoeffizienten und der Schiefe hat. Zwar kann jeder einzelne solche
Fall mit Hilfe der linearen Programmierung numerisch gelöst werden, doch ist
der Vorteil einer direkten Formel unverkennbar. Eine solche Formel wird in
dieser Arbeit hergeleitet für den in der Praxis relevanten Fall, dass die Priorität
genügend hoch ist. Die Formel ist auch dann anwendbar, wenn die gegebenen
drei Momente nicht auf einer vollständigen Schadenstatistik beruhen, sondern

nur auf den Schäden oberhalb einer gewissen Grenze, wie das in der Praxis häufig
der Fall ist. In der Praxis wird man diese Formel hauptsächlich zur Berechnung
des Schwankungszuschlags bei nichtproportionalen Deckungen einsetzen, und

zwar insbesondere dann, wenn in der zugehörigen Schadenstatistik mögliche
Grosschäden nicht ausreichend repräsentiert erscheinen.

Lösungsidee

Gegeben seien also die Priorität vv > 0 und die ersten drei Nullpunktmomente m,,
W2, W3 einer (ansonsten unbekannten) Schadenverteilung auf /? [r, ,y) mit 0 < r
<w<,y<co. Sei Sr die Menge aller Verteilungsfunktionen F auf F mit

S

j /V/.F(t) m* für A" 1,2,3.
r

Gesucht ist die maximale Stop-Loss-Prämie

S

Vf,v,R(Wi,W2,W3)= sup J' (/-Vt>)+rfF(f),
FgSR r

wobei (/ — w) + max (0, — w). Wenn es ein kubisches Polynom

£/w,r (0 «0 + «H + «2^ + «3 F

mit

é7iv,/î(0^(f — w)* für alle ?eF

gibt, so liefert es wegen

S S

J (t — w)*r/F(/)<J (ßo +M + tf2^+a3^)r/F(0

«0+«i^i+"2^2+ «3'«3 für alle FeSr

eine (evtl. noch nicht optimale) obere Schranke

ß(t/.v,R) : ÛQ + ßl W, + «2^2 + «3'"3 > ('"1, «i,, ms)
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für die maximale Stop-Loss-Prämie. Berührt das Polynom g«,den Stop-Loss-
Integranden (/ —h>)* in zwei Punkten „v, .yeR, und gibt es eine Zweipunktvertei-
lung GeSfl auf diesen beiden Punkten, so gilt

0w,k(') (*~w)* auf R G-fast überall,

J (f-w)+dG(/)=J ffw,*(0dG(0.

und daher ist

M«.,* («i W2, W3) ß (£/,„,«)•

Einen analogen Lösungsansatz verwandte auch schon ôotverî bei seinem

Beweis. In allgemeinerer Form ist dieser Ansatz bei f/Aa«« (1981, Satz 6)

angegeben, der dort einen Satz von Aire/« und AWe/mau« über das Markovsche

Momentenproblem zitiert. Jedoch ist die Existenz des geforderten Polynoms
nicht immer gesichert. Zum Beispiel gibt es im Falle von nur zwei gegebenen

Momenten für w< «73/(2«() (und R [0, co)) kein solches Polynom (Parabel),
d.h. die Abschätzung von ßowens ist dann nicht mehr scharf. Bei drei

vorgegebenen Momenten kommt man ausserdem nur für einen relativ kleinen
Bereich von Prioritäten mit einer Zweipunktverteilung aus, wie Satz 1 zeigt. In
Satz 2 wird gezeigt, wie man den interessierenden Fall höherer Prioritäten mit
einer Dreipunktverteilung lösen kann, deren kleinstes Atom in r liegt (denn das

Polynom </,„ « kann allenfalls noch einen Randpunkt mit dem Stop-Loss-
Integranden (/ — w)* gemeinsam haben, vgl. Figur 1 Dabei ist ein nichtlineares

Gleichungssystem mit 9 Unbekannten zu lösen, das letztlich auf eine kubische

Gleichung reduziert werden kann. Mittels geometrischer Überlegungen kann
dann gezeigt werden, dass stets eine zulässige Lösung existiert. Nachdem
kubische Gleichungen mittels der Formel von Curr/r/uo oder mit Hilfe eines

programmierbaren Taschenrechners gelöst werden können, bereitet die Berech-

nung der maximalen Stop-Loss-Prämie keine grosse Mühe mehr. In Satz 3 wird
schliesslich noch gezeigt, wie im Fall, dass der Wertebereich /? der zugelassenen

Verteilungen endlich ist, das Problem auch für einen Bereich niedriger
Prioritäten gelöst werden kann, und zwar mit Dreipunktverteilungen mit
grösstem Atom in .s.

Resultate

Bei Formulierung und Beweis der Resultate spielt eine aus den Momenten

W2, W3 berechnete Zweipunktverteilung eine wichtige Rolle:
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Satz 0:
Seien m,, Wj, W3 reelle Zahlen mit ^:=/«2 — und sei c (/«3 — 3»2^2
+ 2 Wi)/A^ (sind m,, W2, a«3 die ersten drei Momente einer Verteilung, so ist £ die

Standardabweichung und c die Schiefe). Dann gibt es genau eine Zweipunkt-
Verteilung Z mit

£Z Wi, £Z^ W2, £Z^=m3.

Z hat die Atome

« mi -((/4 + c^ -c)6/2

y =Wj + (j/T+<? + c)ft/2

und die Wahrscheinlichkeitsgewichte

(1 + c/|/4 + ?)/2 auf m

/?2 (1 -c/|/4+7)/2 auf y.

Sind m,, m2, /M3 die Momente einer Verteilung auf einem Intervall [r, s], so gilt
r < m < y <
Beweis: Das Gleichungssystem

/>1 +/>2 =1 (1)

/?i« ==r«i (2)

Pl«*+/>2^=W2 (3)

Plt/^+P2^=t«3 (4)

ist zu lösen. Aus (2) und (3) ergibt sich durch Elimination von « die quadratische
Gleichung

— 2/tyWii; + m? -/7[W2 0

und daraus

y=wi±l/(m2-mf)/t,/p2

M mi +1/(^2-wfWPl
Wegen t<<r kann nur das jeweils obere Vorzeichen vor der Wurzel zutreffen.
Aus der Definition von c errechnet man

c (fi ~/>2)/l//h/V
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Daraus folgen die im Satz behaupteten Formeln für ^ sowie

l/Ä (]/4 + ?+c)/2

l/Pz/Pi (]/4 + -c)/2.

Für später ist noch folgendes festzuhalten : Man hätte auch aus den Gleichungen
1 )—(4) zunächst /?i, />2 vollständig eliminieren können. Dann hätte man für «

(und ebenso für u) die quadratische Gleichung

(A«2 — + (/?v«2 — W3)J/ + WiW3 — W2 0 (5)

erhalten, u, r sind also gerade die Nullstellen dieser Gleichung.
Schliesslich ist noch zu zeigen, dassr<w< a <5 gilt, falls Wi, «12, W3 die Momente
einer Verteilung auf [r, ä] sind. Zunächst gilt für jede Verteilung fF auf [0, + 00)

die Beziehung WiW3>m|; dies folgt aus der Schwarzsehen Unglei-

chung mit 2f=]/fF, F=A^. Weiterhin rechnet man nach, dass diese Beziehung
gerade notwendig und hinreichend für u(fF)>0 ist, wobei w( fF) das kleinere

Atom der aus den ersten drei Momenten von fF berechneten Zweipunktvertei-
lung bezeichnet. Hätte man nun eine Verteilung 7auf [r,s] mit «(7)<r, so ergäbe
sich für die verschobene Verteilung 7 —r auf [0, co) der Widerspruch

0<r/(7 — r) w(7) — r<0.

Analog beweist man auch r<^, denn für jede Verteilung auf — 00,0] gilt
ebenfalls «v«3>W2, was gleichbedeutend mit r<0 ist.

/////.y.s'rtZz / ;

Seien z>y>;ceIRu{ —00} gegeben. Der einzige Punkt welR mit w<z, zu
dem es ein kubisches Polynom

r/„(0 «o + «i/ + «2^+03/^

gibt, so dass

(i) r/„ die Abszisse in 7 berührt,

(ii) die Gerade (t — vv) in z berührt,

(iii) r/»,(/)>(t — w)* genau für alle gilt,

ist gegeben durch

w (2z^ — „vy — xz)/(3z — — 2.v). (6)
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Beweis: Die Bedingungen (i) ind (ii) sind gleichbedeutend mit dem System

«o + ai y + 02/+ 03/= 0 (7)

ai +2 02^ + 3^3^ 0 (8)

«o+ßi^ + «2Z^ + ö3Z^=z-ve (9)

«1 +2a2^ + 3«3Z^ l. (10)

Dieses lineare Gleichungssystem für «o> "1 > «3 hat eine von Null verschiedene

Determinante (z—y)* und daher die einzige Lösung

Ö3 (2W—z—y)/(z-j>y (11)

a2 ((z-y)~'-3ö3(y + z))/2 (12)

«i -2 «2^-3 «3/ (13)

«0= -01^-02^-03/- (14)

Der Fall x — 00, d.h. «3 0 (iii), d.h. w (y + z)/2, ist trivial. Fürx> —00 folgt
aus Bedingung (iii), dass in * eine dritte (einfache) Nullstelle von g,„ liegt, d.h.

«0+«i^C + «2^+«3^=0- (15)

Subtraktion von (7) und Division durch y-x ergibt

«i + «2 (x+y) + «3 (^ + xy+y^) 0.

Einsetzen von (12) und (13) liefert

«3 (z-y)"'(3z-y-2x)"E (16)

Aus (11) und (16) folgt (6) als notwendige Bedingung. Umgekehrt sind für w

gemäss (6) und g,„ gemäss (11 )—( 14) die Bedingungen (i) und (ii) per definitionem
erfüllt. Auch y < w<z ergibt sich direkt aus der Definition (6). Ausserdem gilt
(16) und damit (15), also r/„,(x) 0, und es ist «3 >0. 0,„ muss daher die in Figur 1

dargestellte Lage haben, d.h. auch (iii) ist erfüllt.
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y W Z

Figur 1

f////.v.y«/z 2;
Seien >><z<xgIRu{ + oo} gegeben. Der einzige Punkt vveIR mity<vv<z, zu
dem es ein kubisches Polynom

gibt, so dass

(i) </„ die Abszisse in berührt,

(ii) die Gerade (/ — vv) in z berührt,

(iii) 0w(O^('— w)* genau für alle r<,v gilt,

ist gegeben durch

Beweis: Analog zu Hilfssatz 1 (Spiegelung an der Ordinate und Drehung um 45°

ergibt genau die Situation von Hilfssatz 1): Die Bedingungen (i) und (ii) sind
identisch mit denen von Hilfssatz 1 und liefern daher dasselbe Gleichungssystem
(7)—( 10) mit den Lösungen 11 )—( 14). Der Fall x= +oo ist wieder trivial. Fiir,x<
+ oo folgt aus (iii) 0,„(jc) -k — w, d.h.

t/,,(0 fl0+fll/ + fl2^+«3^

vv (xy+„xz - 2 y*)/(2 ,x + z - 3 y). (17)

«0 + <+-X + «2^ + «3^ =X — VV. (18)
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Subtrahiert man hiervon (9) und dividiert durch x—z, so erhält man

«1+^2 (•* + z) + Ö3 (x* + xz + z*) 1.

Einsetzen von (12) und (13) liefert

Û3=(Z-^)"H3^-Z-2X)"'. (19)

Zusammen mit (11) ergibt dies (17).

Umgekehrt sind für w> gemäss (17) und gemäss (7)—( 10) die Bedingungen (i)
und (ii) per definitionem erfüllt. Auch j><w<z ergibt sich direkt aus der
Definition (17).
Ausserdem gilt (19) und damit (18), d.h. es ist g,„(x)=x — w und «3<0. Daher
muss r/„ die in Figur 2 dargestellte Lage haben, d.h. auch (iii) ist erfüllt.

Figur 2

Satz I :

Seien r«2, '«3 und w, u, wie in Satz 0. Für r<«, j>i; und

J(M + I;)—2M^ 2u* —/•(« + y)

2Ä' + Ü — 3m ' 3a— H— 2/
(20)

ist die maximale Stop-Loss-Prämie auf 7? (r, j) zur Priorität w und den
Momenten mj, w, gegeben durch

(ffl 1, W2 W3) =/?2 (u - w).

Die Werte /•= — go oder j= +oo sind zulässig. Im endlichen Fall kann das

Intervall /? auch halboffen oder geschlossen sein.
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Beweis: Es gilt

i(« + t))-2i? // + u 2—/•(// + /))
„< A 2 < < <y

2 .$• + u — 3 // 2 3 y — M — 2 /•

d.h. das Intervall für w ist nichtleer und/>2(^~~w) ist die Stop-Loss-Prämie der

Zweipunktverteilung auf //, u zur Priorität w. Dies ist auch die maximale Stop-
Loss-Prämie auf /?, wenn es ein kubisches Polynom ry,„ gibt mit —w)*
für alle /eß und c/„(t) (/-vr)^ für / « und Z u.

Sei x<r, so gibt es nach Hilfssatz l zu x<m<d ein solches Polynom r/„ für
vr (2 —x« —xu)/(3 r-«-2x). Da w hierbei eine strikt wachsende Funktion
von x ist, ergibt sich aus den möglichen Werten [ — oo, r] für x entsprechend das

Intervall

m + u 2^-r(« + r)
2 ' 3d—//—2r

für w. Sei nun noch z>j, so gibt es nach Hilfssatz 2 zu w<d<z ein Polynom r/„
der gewünschten Art, wenn w (i/z + uz — 2w^)/(2z + u — 3 m) gilt, wobei w

ebenfalls eine strikt wachsende Funktion von z ist. Aus den Werten [,v, + oo] fürz
ergibt sich daher das Intervall

j(t/-Fu) — 2//^ M + U

_25 + u — 3« ' 2

für vr. Man sieht, dass /• // und/oder s u sein darf, wenn ß und das sich

insgesamt ergebende Intervall (20) für w rechts und/oder links offen sind.

Zur numerischen Kontrolle kann die maximale Stop-Loss-Prämie auch mittels

ß(g,„) r/o + flim,+ + 03/7/3

berechnet werden, wobei die Koeffizienten r/o, r/j, r/j, r/3 gemäss (11 )—( 14) mit
z u und y // zu ermitteln sind.

W/V/jsr/tz 3:
Seien /W3 und //, u wie in Satz 0. Damit es eine echte Dreipunktverteilung
mit den ersten drei Nullpunktmomenten m,, W2, »13 gibt, sind für die Atome x
<y <z die Bedingungen x<//, z>d und

«2 (x + z) — m, xz — /W3
PO
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notwendig und hinreichend. Der Nenner von /r ist für x<w, z>i> oder x<», z> t>

ungleich Null und es gilt /r(x, u) » für alle x < rr und /i(«, z) t; für alle z > t> sowie

"</i(x,z)<y für alle x<«, z>n. Für die Gewichte r/i, r/2, <73, auf x, .y, z gilt

<7i ("h -«1 + z) + jz)/((z -x) (7 -x)) (22)

Ï2 (-«i2+'"i (* + z) -*z)/((z ->>) (7 -x)) (23)

<?3 (W2 -Wi (x + y) + Xj>)/((z ->>) (z -x)). (24)

Beweis: Für die Dreipunktverteilung muss gelten

<7i +</2+<73 l (25)

^ix4-</2^ + ?3Z WI (26)

<7iX* + ?2/+<?3Z* m2 (27)

r/iX^ + r/2/ +^ W3. (28)

Die Gleichungen (25)—(27) sind ein lineares Gleichungssystem für die Gewichte
<7i, r/2, r/3. Es hat die Determinante (z—y)(z— x)(j> — x) und daher die einzige
Lösung (22)-(24). Aus (28) folgt zusammen mit (23)—(25)

xyz — m i (xy + yz + xz) + W2 (x + _y + z) -W3 0. (29)

Umgekehrt folgt aus (22)-(24) und (29) auch die Gültigkeit von (25)-(28).
</3 sind wegen (25) genau dann Gewichte einer echten Dreipunktvertei-

lung, wenn sie positiv sind, d.h. wenn

y>(miz-w2)/(z-mi) (<7i > 0) (30)

y<(w2-Wix)/(mi -x) (<?3 > 0) (31)

x < (w, z — /«2)/(z — W1 fe >0). (32)

(32) ist gleichbedeutend mit

z > (a«2 -m,x)/(w, -x). (33)

Wegen der Bedingungen (32) und (33) kann (29) in der Form

(«2 — W(X)z — (W3 — W2X)

(/«i — x)z — (W2 —m,x)

(/«iz -r«2)x — (wjZ -W3)

(z-m,)x-(wiz-m2)

/i(x,z) (34)



50

geschrieben werden, d.h. bei festem x (bzw. z) liegen z, (bzw. x, _y) auf einer

Hyperbel /t(x, (bzw. /a( ,z)), und zwar wegen (31) und (33) in deren rechtem

unterem Asymptotenquadranten (bzw. wegen (30) und (32) in deren linkem
oberem Asymptotenquadranten). Die Hyperbel hat genau dann in diesem

Quadranten einen Ast, wenn ihre Diskriminante D(x) (bzw. D(z)) positiv ist,
wobei

D(x)= — («2—"hx)^ + (wii —x) (»I3—w^x)

(WÏ2 — wf)x^ + (WiW2 — W3)x + Wi»Î3 —

Die Nullstellen von £> sind nach der Bemerkung zu (5) im Beweis von Satz 0

gerade « und u. Die Diskriminante ist also genau dann positiv, wenn x < « oder

x > y gilt (bzw. z < m oder z > u).

Der Fall x>d scheidet wegen

m, ^iX + ^27 + ?3Z>^> D>»1|

aus ; analog scheidet auch der Fall z < tt aus. Die Bedingungen x < w und z > y sind
also neben (21) s (34) notwendig.
Umgekehrt ist für x<«, z>o oder x<w, z>o die Definition (21) für sinn-
voll, da der Nenner von /; wegen (vgl. dazu Satz 0)

(z-m,)(mi —x)>(ü—Wi)(wi -u) ^= m2 -mj
ungleich Null ist. /i definiert also Hyperbeln (34), die wie dort eine positive
Diskriminante, also strikt wachsende Äste haben. Da man ausserdem mit Hilfe
der Schreibweisen (34) und den Momentenbedingungen (Gleichungen (2)—(4)

von Satz 0) für « und y nachrechnet, dass fi(x, y) « und /z(m, z) u gilt, folgt aus
der Monotonie vonA(x, bzw. /*( ,z) schliesslich « < /t (x, z) < u für x < u, z>u,
und somit x <;> < z. Wegen

z> ^ («2 ~Wi«)/(wi —m)> (a«2 —wiix)/(m, —x),

x < m (mit) — /»2)/(ü — mQ < (miz — m2)/(z — mQ

folgt, dass (z, j) auf dem rechten unteren Ast von A(x, bzw. dass (x, /) auf dem

linken oberen Ast von A( ,z) liegt. Daher sind die Ungleichungen (30)-(32)
erfüllt und die Gleichungen (22)-(24) definieren tatsächlich Gewichte, die

(25)—(28) erfüllen.
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Satz 2:
Seien ami, W2, W3, m, t> wie in SatzO, /? wie in Hilfssatz 3 und r <aa, .?> ia, jà=/z(a-,s).
Dann ist für

/2^-r(r< + a) 2^-r(j7+.y)\
^ \ 3ia — m— 2r ' 3s—j?—2r /

die maximale Stop-Loss-Prämie auf /? [r, s) zur Priorität vv unfl den Momenten

«ii, W2, am3 gegeben durch

AM2, AM3) r/3 (z - w),

wobei z die grösste (oder einzige) reelle Lösung der kubischen Gleichung

/l,z^ + £,z^ + C,z + Z), 0 (35)

/l, 2(am, —/)

ß,. —2(am2 — AA/,A) — (A + 3 W) (AM^ —r)

C, 2 w(2 AM2 —amj/-—r^)

D,= — (AM3 — aa^a-) (vv — r) — 2 nr(/M2 — /m^)

ist und r/3 berechnet wird aus

<?3 ('«2-m, (r + ja) + ''Ja)/((z -ja) (z -r)) (36)

ja /z(r, z) — 2 z^ + (r + 3 vv)z — 2 a*vv)/(vv — r). (37)

Der Wert s=+oo ist zulässig; bei endlichem s gilt der Satz auch für das

geschlossene Intervall [r, s], wobei dann auch das Intervall für vv rechts
geschlossen sein kann.
Beweis: Nach Hilfssatz 3 gibt es aufjedem Tripel a<ja<z mit z> a und j> A(r, z)
eine echte Dreipunktverteilung zu den Momenten am, AM2, AM3. Nach Hilfssatz 1

gibt es zu jedem solchen Tripel a-<ja<z ein vv mit ja<vv<z und ein kubisches

Polynom r/„, mit r/,„(/)>(f — w)* für alle />r, //„,(/) (/-vv) + für /e{r,y,z},
wenn

^ vv (2z^ — A7—rz)/(3z—ja —2/-) (38)

In (38) ist w unter Beachtung von ja /a(a-, z) eine strikt wachsende Funktion von
z, da ihre Ableitung nach z

vv' 2 {3 (z-ja)* + 4(z ja) (ja - r) + (ja - rf + (z - r)V }/(3 z - ja - 2 /f
positiv ist. Aus den möglichen Argumentwerten (a, sj für z ergibt sich daher unter
Verwendung von /i(r, c) « das behauptete Intervall für vv.
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Wegen der Existenz des Polynoms ist die maximale Stop-Loss-Prämie zur
Priorität w durch die Dreipunktverteilung auf r, z gegeben und beträgt

^3 (z — w) mit <73 gemäss (36). Für festes w besagt (38), dass die Atome z,_y auf der
Parabel

liegen müssen, und zwar dort, wo sie die Hyperbel j /i(r, z) trifft, auf der z, y ja
ebenfalls liegen. Dies ergibt die Gleichungen (37) und (35). Dass z die grösste

(oder einzige) reelle Nullstelle von (35) ist, folgt daraus, dass z, y sowohl bei der

Hyperbel A(r, als auch bei der Parabel (39) jeweils auf dem rechten Ast liegen.
Letzteres wurde für die Hyperbel in Hilfssatz 3 gezeigt; für die Parabel folgt dies

daraus, dass die z-Koordinate (r + 3 w)/4 des Scheitels kleiner als n> und damit
auch kleiner als z ist. Die beiden Äste schneiden sich nur einmal, da der

Hyperbelast wachsend, der Parabelast fallend ist.

Zur numerischen Kontrolle kann die maximale Stop-Loss-Prämie auch mittels

«0 + + «2^2 +

berechnet werden, wobei die Koeffizienten r/g, «i «3 gemäss (11)—( 14) zu
ermitteln sind.

Satz 3:
Seienm, ,/«2,ffl3, i/, t) wie in SatzO, /i wie in Hilfssatz 3 und r <i<, x> r, j7=/i(r,.s').
Dann ist für

die maximale Stop-Loss-Prämie auf /? (r, 3] zur Priorität w und den Momenten

Wi, m2, W3 gegeben durch

— 2z^ + (r + 3w)z — 2 nr)/(w - r) (39)

A^v.r («1, "Li, a) 72 (7 - w) + 73 (3' -W)

wobei

72 -^2 + wi (x+3) -xj)/((j -y) (y -x))

73 ('"2 -Wi (x +>-) + xy)/((3 -j>) (s' -x))

y /i (x, 3) (2 x^ — (3 w + 3)x + 2 3vv)/(3 — r>)

(40)

(41)

(42)

und x die kleinste (oder einzige) reelle Lösung der folgenden kubischen

Gleichung ist:
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/GG + ß.,x^ + CjX + Z), 0

-2(J-Wi)
ßs =2(WiS—WJ2) + (j + 3 w)(j —Wi)

Cj= — 2 vv(.v^ + a«(5 — 2 mj)

D, 2 vi'.v(/«i,v — W2) — (W2J — W3) (.v — vv).

(43)

Der Satz gilt auch für das geschlossene Intervall [r, s], wobei dann auch das

Intervall für vv links geschlossen sein kann. Der Wert /•= —00 ist zulässig, nicht
aber der Wert ä + 00!

Beweis: Analog zum Beweis von Satz 2. Nach Hilfssatz 3 gibt es aufjedem Tripel

x<y<.v mit „VC« und >> /1 (cc,eine echte Dreipunktverteilung zu den Mo-
menten m,, Wj, W3. Nach Hilfssatz 2 gibt es zu jedem solchen Tripel x <y < .5 ein

w mit x<vv<y und ein kubisches Polynom </,„ mit #„,(/)>(/ —vv)"*" für alle

t<5, 0,„(t) (f — vv)"^ für /e{x,y,j}, wenn

gilt. Genau wie im Beweis von Satz 2 ist vv in (44) unter Beachtung von y /i(x,s)
eine strikt wachsende Funktion von x, so dass sich aus den möglichen
Argumentwerten (/•,») für x unter Verwendung von /v(m, ,v) u das behauptete
Intervall für vv ergibt. Wegen der Existenz des Polynoms //„, ist die maximale
Stop-Loss-Prämie zur Priorität vv durch die Dreipunktverteilung auf x, y, ä

gegeben und beträgt also r/2(y — vv) + <73(x — vv) mit r/2, r/3 gemäss (40) und (41).
Für festes vv besagt (44), dass die Atome x, y auf der Parabel

liegen, und zwar dort, wo sie die Hyperbel y /v(x,s) trifft, auf der x, y ja
ebenfalls liegen. Dies ergibt die Gleichungen (42) und (43). Dass x die kleinste
(oder einzige) reelle Nullstelle von (43) ist folgt daraus, dass x, y sowohl bei der
Hyperbel //( ,ä) als auch bei der Parabel (45) jeweils auf dem linken Ast liegen.
Letzteres wurde für die Hyperbel in Hilfssatz 3 gezeigt; für die Parabel folgt dies

daraus, dass die x-Koordinate (3 vv + .v)/4 des Scheitels grösser als vv und damit
auch grösser als x ist. Die beiden Äste schneiden sich nur einmal, da der
Hyperbelast wachsend, der Parabelast fallend ist.

Zur numerischen Kontrolle kann die maximale Stop-Loss-Prämie auch mittels

ßfoj «0 + «l'«l +«2»'2 + «j'«3

berechnet werden, wobei die Koeffizienten «2. "3 gemäss (11 )—(14) mit

z=y und y x zu ermitteln sind.

vv (sx + sy —2 x*)/(2 .s +y — 3 x) (44)

y (2 xr* -(3w + j)x + 2 sw)/(ä - vv) (45)
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Beispie!

Die Sätze 1-3 lösen das Problem der maximalen Stop-Loss-Prämie bei den

vorgegebenen drei Momenten für praktisch alle vernünftigen Werte der Priorität
w. Für die in den Sätzen 1-3 nicht behandelten Werte von w ist in Analogie zum
Fall mit nur zwei vorgegebenen Momenten mi, z«2 (vgl. De F>/efer und

Goow/erts, 1982) anzunehmen, dass bei endlichem Intervall R die eindeutig
bestimmte Dreipunktverteilung auf r, /z(r, s), j zur maximalen Stop-Loss-Prämie
führt. Doch kann der Verfasser diese Vermutung gegenwärtig nicht beweisen.

Der vergleichsweise einfache Fall von Satz 1 wird in der Praxis eher selten

zutreffen; meist wird die Lage von w die Anwendung von Satz 2 erfordern. Dies
ist auch bei dem eingangs geschilderten Beispiel der schweizer ASTIN-Gruppe
der Fall. Dort erhält man (mit c 31,5)

u= 2 500

a =602 200,

so dass wegen r 0 die Priorität w 1 000 000 für ^ > 1 500 000 auf jeden Fall in

dem gemäss Satz 2 zulässigen Intervall (402 000, 2^/(3s—.y)) liegt. Man erhält
weiter

z =1474000

j 78 000

r/3 0,000 063

woraus sich A/„,(m[,^,«13) 30 ergibt. Die daraus errechnete Prämienober-

grenze 1230000 liegt deutlich näher an dem Burning Cost 238 000 als der

eingangs genannte Wert 3 700000 gemäss der Abschätzung von ßowe/x

Nachwort

Ich möchte an dieser Stelle den Herren Prof. IF.-/?, //ez'/maw« und £. ;V7. Ain/essa

meinen herzlichen Dank aussprechen. Aufgrund eines Briefwechsels mit Prof.
über seine Arbeit aus dem Jahr 1981 erschien mir die Durchführbar-

keit des Lösungsweges im Fall von drei Momenten technisch möglich. Herr
ATz/em; rechnete während seiner Tätigkeit als Werkstudent in der Münchener
Rück meine erste Formel anhand vieler Zahlenbeispiele nach und präsentierte
die sich je nach der Lage von w ergebenden Fälle in sehr übersichtlicher Weise in
einem Vortrag im Versicherungsmathematischen Kolloquium an der Universi-
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tät München. Seine Darstellung bewegte mich dazu, die Grenzen der Gültigkeit
von Satz 2 und damit auch die anderen Fälle (Sätze 1 und 3) näher zu
untersuchen.

Dr. Thomas Mack
Münchener Rückversicherungs-Gesellschaft
Königinstrasse 107

D-8000 München 40
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Zusammenfassung

Von einer Schadenvariablen Afseien nur die ersten drei Momente bekannt. Dann werden Formeln für
die unter diesen Bedingungen maximal mögliche Stop-Loss-Netto-Priimie £(A'— w)* bei gegebenem
Selbstbehalt tv hergeleitet.

Résumé

La distribution du montant Xd'un sinistre n'est connue que parses trois premiers moments. L'article
établit des formules donnant des bornes supérieures pour la prime nette de réassurance en stop-loss
£(A'-vr)^ de plein w.

Summary

An upper bound for the stop loss pure risk premium £(V— w) ' is calculated as a function of the
retention w under the condition that only the first three moments of the claims variable A" are known.
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