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THomAs Mack, Miinchen

Berechnung der maximalen Stop-Loss-Primie, wenn die
ersten drei Momente der Schadenverteilung gegeben sind

Einleitung und Uberblick

Bei der Tarifierung von Schadenexzedenten- und Stop-Loss-Vertrigen befindet
sich der Riickversicherer oft in der Situation, dass nur wenige Schiden der
Statistik oberhalb der Prioritiit liegen (Pridritit = Betrag, ab dem die Leistungs-
pflicht des Riickversicherers beginnt). Dann bleibt es fraglich, ob eine an die
Schadendaten angepasste Verteilungsfunktion auch in dem fiir die Tarifierung
wichtigen Bereich oberhalb der Prioritiit als zutreffend betrachtet werden kann.
Vielfach enthalten die Quotierungsunterlagen sogar nur die Hohe der Schiiden,
die mindestens 50% der Prioritdt iiberstiegen haben. Dies kénnen so wenige
Schiiden sein, dass eine sinnvolle Verteilungsanpassung gar nicht moglich ist.
Dann muss man in der Praxis die Nettoprimie aus dem Burning Cost
(=Dbeobachtete Schadenerfahrung) zuziiglich eines gegriffenen Sicherheitszu-
schlags berechnen oder versuchen, die Schadenerfahrung anderer Portefeuilles
auf das zu tarifierende Portefeuille zu iibertragen (Exposure-Quotierung, vgl.
dazu Gerathewohl, 1976, Seite 328ff., bzw. Credibility-Verfahren von Biihl-
mann/Straub, 1970).

Diese Problematik war auch Thema einer Tagung der schweizerischen ASTIN-
Gruppe am 11. Mai 1982 (Gisler, 1982). Den Referenten war dabei folgende
Aufgabe gestellt worden:

Anhand einer Schadenstatistik mit 41013 Schiden soll der Erwartungswert
E(X—w)" der die Prioritit w=1000000 {iibersteigenden Schadenhéhe X
geschitzt werden. Nur ein einziger der 41 013 Schiiden liberstieg diese Prioritét;
er betrug 1238 000.

Ein mogliches Verfahren in dieser Situation ist die Anwendung der Theorie der
maximalen Stop-Loss-Primien, was auf der Tagung auch von einem der
Referenten (Prof. Gerber) vorgeschlagen wurde. Dabei werden gewisse Para-
meter (z. B. Mittelwert X und Streuung s%) aus der Schadenstatistik ermittelt und
dann diejenige Schadenverteilung X gesucht, die unter allen Schadenverteilun-
gen mit diesen vorgegebenen Parametern den maximalen Wert fiir £(X —w) " -
maximale Stop-Loss-(Netto-)Primie genannt — liefert, also (z.B.)
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sup {E(X—w)*: X>0, E(X)=X%, Var(X)=4}.
X

Dieser spezielle Fall, wo X und s* vorgegeben sind, wurde von Bowers (1969)
gelost, der zeigte, dass dann stets

EX—-w)'*< (VEJ—_-JZW —w+X)/2

gilt, und dass diese Schranke auch erreicht wird, wenn X eine Zweipunkt-
verteilung ist und w>(s*+X%)/(2%) gilt. Eine scharfe Schranke im Fall
w < (s* +X%)/(2%) wurde von De Vylder/Goovaerts (1982) angegeben. Bei der ge-
nannten Schadenstatistik war x =3 102, s = 19000, so dass sich fiir w=1 000 000
die Schranke

E(X—-w)*"<90,5

ergab. Eine auf dieser Schranke basierende Schadenexzedenten-Priamie von
90,5 x41013=3700000 ist jedoch angesichts des Burning Cost von 238 000 in
der Praxis kaum plausibel zu machen.

Andererseits ist klar, dass bei zusitzlicher Vorgabe des dritten oder weiterer
Nullpunktmomente der Schadenstatistik die maximale Stop-Loss-Primie den
Burning Cost immer mehr annéhert. Taylor (1977) hat gezeigt, dass bei Vorgabe
der m ersten Momente E(X),. .., E(X™) die maximale Stop-Loss-Pramie durch
eine (m+ 1)-Punkt-Verteilung geliefert wird (zumindest bei Verteilungen mit
beschrinktem Wertebereich [0, M]). Heilmann (1978) zeigte, wie mit Hilfe der
linearen Programmierung auch eine obere Schranke fiir £(X —w)" ermittelt
werden kann. Seither sind sehr viele Arbeiten auf diesem Gebiet erschienen,
deren hauptsichliches Ziel es war, unter verschiedenen Annahmen explizite
Formeln fiir diese Schranken anzugeben. Im wesentlichen ist dies gelungen in
den Fillen, wo die Annahmen sich neben E(X) und Var(X) auch auf den
Median, die Uberschreitungswahrscheinlichkeit p(X > z), die Unimodalitiit oder
die Symmetrie der Verteilung beziehen (vgl. Goovaerts|De Vylder| Haezendonck,
1984, S. 290ft.).

Doch fiir den Fall, dass die ersten drei Momente gegeben sind, ist bis jetzt keine
explizite Formel fiir die maximale Stop-Loss-Pramie verdffentlicht worden.
Aber gerade dieser Fall ist angesichts des obigen Beispiels fiir die Praxis
interessant, zumal der Praktiker auch bei sehr ungeniigenden statistischen Daten
oft aus der Kenntnis dhnlicher Portefeuilles ein gutes Gefiihl fiir die Hohe des
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Variationskoeffizienten und der Schiefe hat. Zwar kann jeder einzelne solche
Fall mit Hilfe der linearen Programmierung numerisch geldst werden, doch ist
der Vorteil einer direkten Formel unverkennbar. Eine solche Formel wird in
dieser Arbeit hergeleitet fiir den in der Praxis relevanten Fall, dass die Prioritit
genligend hoch ist. Die Formel ist auch dann anwendbar, wenn die gegebenen
drei Momente nicht auf einer vollstindigen Schadenstatistik beruhen, sondern
nur aufden Schiden oberhalb einer gewissen Grenze, wie das in der Praxis hdufig
der Fall ist. In der Praxis wird man diese Formel hauptsichlich zur Berechnung
des Schwankungszuschlags bei nichtproportionalen Deckungen einsetzen, und
zwar insbesondere dann, wenn in der zugehorigen Schadenstatistik mogliche
Grosschiaden nicht ausreichend reprisentiert erscheinen.

Losungsidee

Gegeben seien also die Prioritit w > 0 und die ersten drei Nullpunktmomente m, ,
m,, my einer (ansonsten unbekannten) Schadenverteilung auf R =[r, s) mit 0 <r
<w<s<oo. Sel Sg die Menge aller Verteilungsfunktionen F auf R mit

[ “dF(t)=m, fiir k=1,2,3.
Gesucht ist die maximale Stop-Loss-Primie

M., g(my,my,m3)=sup [ (t—w)*dF (1),

FeSr r
wobei (1 —w)" =max (0, —w). Wenn es ein kubisches Polynom

gw,R(t)za()"'alt‘l‘(lztz+(13[3

Jwr(t)=(t—w)"  fir alle teR

gibt, so liefert es wegen

f (t—w)*dF(t)gj' (aop+ayt +ayt* +ast>)dF(t)

=dy+aym, +amy+aymy  fur alle FeSy

eine (evtl. noch nicht optimale) obere Schranke

B(gy,r):=ag +amy +aymy +azmy =M, g(my, my, ms)
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fiir die maximale Stop-Loss-Prdamie. Beriihrt das Polynom g,, r den Stop-Loss-
Integranden (1 —w) " in zwei Punkten x, ye R, und gibt es eine Zweipunktvertei-
lung GeSg auf diesen beiden Punkten, so gilt

gwr()=(—w)" auf R G-fast iiberall,

[ (t—w)* dG ()= gy.r (1) dG(2),
und daher ist

MW,R (ml , My, m3) = B(gw,R)'

Einen analogen Losungsansatz verwandte auch schon Bowers bei seinem
Beweis. In allgemeinerer Form ist dieser Ansatz bei Heilmann (1981, Satz 6)
angegeben, der dort einen Satz von Krein und Nudelmann tiber das Markovsche
Momentenproblem zitiert. Jedoch ist die Existenz des geforderten Polynoms
dw.g nicht immer gesichert. Zum Beispiel gibt es im Falle von nur zwei gegebenen
Momenten fiir w <m,/(2m,) (und R= [0, c0)) kein solches Polynom (Parabel),
d.h. die Abschitzung von Bowers ist dann nicht mehr scharf. Bei drei
vorgegebenen Momenten kommt man ausserdem nur fiir einen relativ kleinen
Bereich von Priorititen mit einer Zweipunktverteilung aus, wie Satz 1 zeigt. In
Satz 2 wird gezeigt, wie man den interessierenden Fall hoherer Prioritdten mit
einer Dreipunktverteilung losen kann, deren kleinstes Atom in r liegt (denn das
Polynom g,z kann allenfalls noch einen Randpunkt mit dem Stop-Loss-
Integranden (1 —w)* gemeinsam haben, vgl. Figur 1). Dabei ist ein nichtlineares
Gleichungssystem mit 9 Unbekannten zu l0sen, das letztlich auf eine kubische
Gleichung reduziert werden kann. Mittels geometrischer Uberlegungen kann
dann gezeigt werden, dass stets eine zulidssige Losung existiert. Nachdem
kubische Gleichungen mittels der Formel von Cardano oder mit Hilfe cines
programmierbaren Taschenrechners gelost werden konnen, bereitet die Berech-
nung der maximalen Stop-Loss-Primie keine grosse Miithe mehr. In Satz 3 wird
schliesslich noch gezeigt, wie im Fall, dass der Wertebereich R der zugelassenen
Verteilungen endlich ist, das Problem auch fiir einen Bereich niedriger
Priorititen gelost werden kann, und zwar mit Dreipunktverteilungen mit
grosstem Atom in s.

Resultate

Bei Formulierung und Beweis der Resultate spielt eine aus den Momenten m,,
m,, my berechnete Zweipunktverteilung eine wichtige Rolle:
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Satz 0:

Seien m, , m,, my reelle Zahlen mit *:=m, —m$ >0 und sei ¢=(my —3 m;m;
+2my3)/b? (sind m, , m,, my die ersten drei Momente einer Verteilung, so ist b die -
Standardabweichung und ¢ die Schiefe). Dann gibt es genau eine Zweipunkt-
verteilung Z mit

EZ=m,, . EZ?=m,, EZ’=m,.
Z hat die Atome
H=ny —-(l/m--c)b/Z
u=m1+(]/m+c)b/2

und die Wahrscheinlichkeitsgewichte

pr1=(+c/ 4+c_2)/2 auf u

p=( —c/]/4+—c2)/2 auf v,

Sind m, , m,, my die Momente einer Verteilung auf einem Intervall [r, s], so gilt
r<u<v<s.
Beweis: Das Gleichungssystem

p tp =1 (1
P +pav =my (2)
it + pv?t =m, (3)
pui® +pav’ =my (4)

ist zu I6sen. Aus (2) und (3) ergibt sich durch Elimination von « die quadratische
Gleichung

szz —szmlv+mf — P, =i}

und daraus

v=my + l/(mz —m}) pilp2
u=my T/ (my—md) pafp;.

Wegen u < v kann nur das jeweils obere Vorzeichen vor der Wurzel zutreffen.
Aus der Definition von ¢ errechnet man

c=(p1=p)IV/ Prp2.
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Daraus folgen die im Satz behaupteten Formeln fiir p,, p, sowie
Vpipa=(/4+¢ +0))2
Vpalpr=(/ 4+ —o)/2.

Fiir spiter ist noch folgendes festzuhalten: Man hétte auch aus den Gleichungen
(1)-(4) zunichst p,, p, vollstindig eliminieren kénnen. Dann hétte man fiir u
(und ebenso fiir v) die quadratische Gleichung

(my —m)u? + (mymy —ms)u+mymsy —m3 =0 (5)

erhalten. u, v sind also gerade die Nullstellen dieser Gleichung.

Schliesslich ist noch zu zeigen, dass r <u < v <s gilt, falls m, , m,, my die Momente
einer Verteilung auf [r, 5] sind. Zunichst gilt fiir jede Verteilung W auf [0, + o)
die Beziechung mymy>m3; dies folgt aus der Schwarzschen Unglei-

chung mit le/W, Y= X?. Weiterhin rechnet man nach, dass diese Bezichung
gerade notwendig und hinreichend fir u(W)=0 ist, wobei u(W) das kleinere
Atom der aus den ersten drei Momenten von W berechneten Zweipunktvertei-
lung bezeichnet. Hiatte man nun eine Verteilung 7'auf [r, s] mit u(7) < r, so ergiibe
sich fir die verschobene Verteilung 7—r auf [0,00) der Widerspruch

0<u(T—r)=u(T)—r<0.

Analog beweist man auch v<s, denn fiir jede Verteilung auf (—co,0] gilt
ebenfalls m,m; >m3, was gleichbedeutend mit v <0 ist.

Hilfssatz 1.
Seien z>y>xeRu{ -} gegeben. Der einzige Punkt welR mit y<w <z, zu
dem es ein kubisches Polynom

gw() =ao+a t+ayt? +ast?
gibt, so dass
(1) g, die Abszisse in y beriihrt,
(i) g, die Gerade (t —w) in z beriihrt,
(iii)  g,()=(t—w)" genau fiir alle 1> x gilt,
ist gegeben durch
w=2z*—xy—x2)/3z—y—2x). (6)
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Beweis: Die Bedingungen (i) ind (ii) sind gleichbedeutend mit dem System

ap+a,y+ayy* +azy* =0 (7
a+2a,y+3ayy*=0 (8)
ap+aiz+aztt+a P =z—w 9)
a,+2az+3a2>=1. (10)

Dieses lineare Gleichungssystem fiir @y, @, , @, , a3 hat eine von Null verschiedene
Determinante (z —y)* und daher die einzige Losung

az=Q2w—z—=y)/(z-y)’ (11
ay=((z—y) ' —3a3(y+2))/2 (12)
a,= —2a,y—3ayy* (13)
o= —a,y —a > —azy°. (14)

Der Fall x= — o0, d.h. a; =0 (iii), d.h. w=(y +2)/2, ist trivial. Fiir x > — co folgt
aus Bedingung (iii), dass in x eine dritte (einfache) Nullstelle von g,, liegt, d.h.

ap +ayx+ax* +azx* =0, (15)
Subtraktion von (7) und Division durch y —x ergibt
a,+a, (x+y)+ay(x* +xy+y*) =0.
Einsetzen von (12) und (13) liefert
a3=0z—-y) 1Bz—y—-2x)"". (16)

Aus (11) und (16) folgt (6) als notwendige Bedingung. Umgekehrt sind fiir w
- gemiiss (6) und g,, gemiiss (11)—(14) die Bedingungen (i) und (ii) per definitionem
erfiillt. Auch y <w <z ergibt sich direkt aus der Definition (6). Ausserdem gilt
(16) und damit (15), also g,,(x) =0, und es ist a3 > 0. g,, muss daher die in Figur 1
dargestellte Lage haben, d.h. auch (iii) ist erfiillt.
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-— wm == em s + —-—-.— —————————
X y W Z
Figur 1

Hilfssatz 2.
Seien y <z<xeRU{+ w} gegeben. Der einzige Punkt welR mit y <w <z, zu
dem es ein kubisches Polynom

gD =ap+at+ayt® +ast?
gibt, so dass
(1) ¢g,, die Abszisse in y beriihrt,
(i) g, die Gerade (¢t —w) in z beriihrt,
(i)  gw(O)=(—w)" genau fir alle ¢ <x gilt,
ist gegeben durch
w=(xy+xz-2y")/Q2x+z-3)p). (17)

Beweis: Analog zu Hilfssatz 1 (Spiegelung an der Ordinate und Drehung um 45°
ergibt genau die Situation von Hilfssatz 1): Die Bedingungen (i) und (ii) sind
identisch mit denen von Hilfssatz 1 und liefern daher dasselbe Gleichungssystem
(7)—(10) mit den Losungen (11)—(14). Der Fall x = + oo ist wieder trivial. Fiir x <
+ oo folgt aus (iii) g,,(x)=x—w, d.h.

o+ arx+ay 2 +azxd=x—w. (18)
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Subtrahiert man hiervon (9) und dividiert durch x —z, so erhilt man
ay+ay(x+z)+az(x2+xz+2%)=1.

Einsetzen von (12) und (13) liefert

ay=(z—-y) '3y —z-2x)"". (19)

Zusammen mit (11) ergibt dies (17).

Umgekehrt sind fiir w gemiiss (17) und g,, gemiiss (7)-(10) die Bedingungen (i)
und (ii) per definitionem erfiillt. Auch y<w <z ergibt sich direkt aus der
Definition (17).

Ausserdem gilt (19) und damit (18), d.h. es ist g,,(x) =x —w und a3 <0. Daher
muss g,, die in Figur 2 dargestellte Lage haben, d.h. auch (iii) ist erfiillt.

Figur 2

Satz 1:
Seien my, m,, my und u, v, p, wie in Satz 0. Fiir r <u, s>v und

|:s(u +v)=2u? 20 —r(u+ u)]
we g

: (20)
2s+v—3u  3v—u-2r

ist die maximale Stop-Loss-Primie auf R=(r,s) zur Prioritit w und den
Momenten m,, m,, my gegeben durch

Mw,R(ml s My, M3)=py(0—Ww).

Die Werte r= —co oder s= + oo sind zulissig. Im endlichen Fall kann das
Intervall R auch halboffen oder geschlossen sein.
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Beweis: Es gilt

s(u+v)—2u* u+v 20 —r(u+v)
< pd <
2s+v—-3u 2 Jv—u-=2r

d.h. das Intervall fiir w ist nichtleer und p, (v —w) ist die Stop-Loss-Primie der
Zweipunktverteilung auf u, v zur Prioritdt w. Dies ist auch die maximale Stop-
Loss-Pramie auf R, wenn es ein kubisches Polynom ¢, gibt mit g,,(£) > (¢t —w)"*
fiir alle teR und g,,(1)=(t—w) " fiir t=u und t=v.

Sei x<r, so gibt es nach Hilfssatz 1 zu x <u<v ein solches Polynom g, fiir
w=(2v* —xu—xv)/(3v—u—2x). Da w hierbei eine strikt wachsende Funktion
von x ist, ergibt sich aus den moglichen Werten [ — co, r] fiir x entsprechend das
Intervall

u+v 20 —r(u+v)
2 7 3v—u-2r

fiir w. Sei nun noch z >s, so gibt es nach Hilfssatz 2 zu u <v <z ein Polynom g,,
der gewiinschten Art, wenn w=(uz+vz—2u*)/(2z+v—3u) gilt, wobei w
ebenfalls eine strikt wachsende Funktion von z ist. Aus den Werten [s, + oo ] fiir z
ergibt sich daher das Intervall

sw+v) =21 u+v
2s+v—3u ’ 2

fiir w. Man sieht, dass »r=u und/oder s=v sein darf, wenn R und das sich
insgesamt ergebende Intervall (20) fiir w rechts und/oder links offen sind.
Zur numerischen Kontrolle kann die maximale Stop-Loss-Priamie auch mittels

B(g,,)=ay+a,my +aym, + aym;

berechnet werden, wobei die Koeffizienten ay, a,, a,, a; gemiss (11)—(14) mit
z=v und y=u zu ermitteln sind.

Hilfssatz 3:

Seien my, m,, my und u, v wie in Satz (0, Damit es eine echte Dreipunktverteilung
mit den ersten drei Nullpunktmomenten m,, m,, m5 gibt, sind fiir die Atome x
<y <z die Bedingungen x <u, z>v und

e, 7325 my(x+2z) —m xz—m;
T (z—my) (my —x) —(my — )

21
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notwendig und hinreichend. Der Nenner von A ist fiir x <u, z>voder x<u,z>v
ungleich Null und es gilt 2(x, v) = u fiir alle x < wund A (u, z) = v fiir alle z > v sowie
u<h(x,z)<v fiir alle x <u, z>v. Fiir die Gewichte ¢,, ¢,, g3, auf x, y, z gilt

qr=(my —my (y+2)+yz)/((z —x) (y — X)) (22)
¢y =(—my+m(x+2) —xz)/((z - ) (y —x)) (23)
43 =(my —m;(x +y) +xy)/((z —y) (z = x)). (24)
Beweis: Fiir die Dreipunktverteilung muss gelten
q1+q2+q3=1 (25)
Ghx+qry+qsz=m, (26)
QX+ @Y+ 2t =m, (27)
QX+ @Y+ g3z =m;. (28)

Die Gleichungen (25)—(27) sind ein lineares Gleichungssystem fiir die Gewichte
q1> 42, q3. Es hat die Determinante (z —y) (z —x) (y —x) und daher die einzige
Losung (22)-(24). Aus (28) folgt zusammen mit (23)~(25)

xyz—my(xy+yz+xz)+my(x+y+z)—my=0. (29)

Umgekehrt folgt aus (22)—(24) und (29) auch die Giiltigkeit von (25)—(28).
41, 45, q3 sind wegen (25) genau dann Gewichte einer echten Dreipunktvertei-
lung, wenn sie positiv sind, d.h. wenn

y>(mz—my)/(z—my)  (g,>0) (30)
y<(my—mx)/[(m —x) (q3>0) (31)
x<(mz—my)/(z—my) (g,>0). (32)

(32) ist gleichbedeutend mit
z>(my —myx)/(m; —x). (33)

Wegen der Bedingungen (32) und (33) kann (29) in der Form

~ (my —myx)z —(m3 —myx)
(my —x)z —(my —m,x)

_(myz—my)x —(myz —my)
 (z—my)x —(myz —my)

=h(x, z) (34)
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geschrieben werden, d.h. bei festem x (bzw. z) liegen z, y (bzw. x, y) auf einer
Hyperbel A(x, ) (bzw. h( ,z)), und zwar wegen (31) und (33) in deren rechtem
unterem Asymptotenquadranten (bzw. wegen (30) und (32) in deren linkem
oberem Asymptotenquadranten). Die Hyperbel hat genau dann in diesem
Quadranten einen Ast, wenn ihre Diskriminante D(x) (bzw. D(z)) positiv ist,
wobei

D(x)= —(my —myx)* +(m; —x) (m3 —myx)
= (my —m?) x>+ (mymy —m3) x +mymy —m3.

Die Nullstellen von D sind nach der Bemerkung zu (5) im Beweis von Satz 0
gerade » und v, Die Diskriminante ist also genau dann positiv, wenn x <u oder
x>v gilt (bzw. z<u oder z>v).

Der Fall x> v scheidet wegen

m=q1X+q,y+q3z>x>0>m,

aus;analogscheidet auch der Fall z <w aus. Die Bedingungen x <« und z > v sind
also neben (21)=(34) notwendig.

Umgekehrt ist fiir x<u, z=v oder x<u, z>v die Definition (21) fiir y sinn-
voll, da der Nenner von - wegen (vgl. dazu Satz 0)

(z—my) (my —x)> (0 —my) (my —u)=b*>=m, —m}

ungleich Null ist. 4 definiert also Hyperbeln (34), die wie dort eine positive
Diskriminante, also strikt wachsende Aste haben. Da man ausserdem mit Hilfe
der Schreibweisen (34) und den Momentenbedingungen (Gleichungen (2)—(4)
von Satz 0) fiir ¥ und v nachrechnet, dass 4 (x, v)=wu und h(u, z) = v gilt, folgt aus
der Monotonie von A(x, ) bzw. A( ,z) schliesslich u <h(x, z) <v fiir x <u, z>v,
und somit x <y <z. Wegen

z>v=(my —myu)/(m, —u)>(my; —mx)/(m —x),
x <u=(mu—my)/(v—my) <(miz—my)/(z —m,)

folgt, dass (z, y) auf dem rechten unteren Ast von A(x, ) bzw. dass (x, y) auf dem
linken oberen Ast von h(',z) liegt. Daher sind die Ungleichungen (30)-(32)
erfiillt und die Gleichungen (22)—-(24) definieren tatsiichlich Gewichte, die
(25)—(28) erfiillen.
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Satz 2:
Seien m, , m,, my, u, v wie in Satz 0, h wie in Hilfssatz 3 und r <u, s> v, y=h(r, ).
Dann ist fiir

202 —r(u+v) 282 —r(y+s)
W Bo—u=3F * Be—j—2r

die maximale Stop-Loss-Pramie auf R = [r, s) zur Prioritit w und den Momenten
my, my, my gegeben durch

M., w(my, my, m3)=q3(z —w),
wobei z die grosste (oder einzige) reelle Losung der kubischen Gleichung
A2+ B2+ Ciz+D,=0 (35)
A,=2(my —r)
B, = =2(my—myr)—(r+3w)(m;—r)
C,=2w2my, —myr—r?)
D,= —(my—myr)(w—r) —=2rw(m, —myr)
ist und ¢ berechnet wird aus
g3 =(my —m(r+y)+ry)/((z—y) (z—r)) (36)
y=h(r,z2)=(=22+@F+3w)z—=2rw)/(w—r). (37

Der Wert s= + oo ist zulissig; bei endlichem s gilt der Satz auch fiir das
geschlossene Intervall [r,s], wobei dann auch das Intervall fiir w rechts
geschlossen sein kann.

Beweis: Nach Hilfssatz 3 gibt es auf jedem Tripel r <y <zmit z> v und y =h(r, 2)
eine echte Dreipunktverteilung zu den Momenten m, , m,, my. Nach Hilfssatz 1
gibt es zu jedem solchen Tripel r <y <z ein w mit y <w <z und ein kubisches
Polynom g,, mit g,,())=(t—w)" fir alle t>r, g, ()= —w)" fir te{r,y,z},

wenn
gilt w=(Q22*~ry—rz)/(3z—y-2r) (38)

In (38) ist w unter Beachtung von y = Ah(r, z) eine strikt wachsende Funktion von
z, da ihre Ableitung nach z

W =2{3(z =3P +4G =) =N+ —rP+E =Py }Bz -y =21

positiv ist. Aus den moglichen Argumentwerten (v, s) fiir z ergibt sich daher unter
Verwendung von A(r,v)=u das behauptete Intervall fiir w.
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Wegen der Existenz des Polynoms g,, ist die maximale Stop-Loss-Primie zur
Prioritdt w durch die Dreipunktverteilung auf r, y, z gegeben und betrigt
¢3(z —w) mit g5 gemiss (36). Fiir festes w besagt (38), dass die Atome z, y auf der
Parabel

y=(=2224+(r+3w)z—=2rw){(w—r) (39)

liegen miissen, und zwar dort, wo sie die Hyperbel y = A(r, z) trifft, auf der z, y ja
ebenfalls liegen. Dies ergibt die Gleichungen (37) und (35). Dass z die grosste
(oder einzige) reelle Nullstelle von (35) ist, folgt daraus, dass z, y sowohl bei der
Hyperbel A(r, ) als auch bei der Parabel (39) jeweils auf dem rechten Ast liegen.
Letzteres wurde fiir die Hyperbel in Hilfssatz 3 gezeigt; fiir die Parabel folgt dies
daraus, dass die z-Koordinate (r+ 3 w)/4 des Scheitels kleiner als w und damit
auch kleiner als z ist. Die beiden Aste schneiden sich nur einmal, da der
Hyperbelast wachsend, der Parabelast fallend ist.

Zur numerischen Kontrolle kann die maximale Stop-Loss-Priamie auch mittels

B(g,)=ay+a,my +am, + azm;
berechnet werden, wobei die Koeffizienten ay, a,, a,, a; gemiss (11)-(14) zu

ermitteln sind.

Satz 3:
Seien my, my, my, u, v wie in Satz 0, h wie in Hilfssatz 3 und r <u, s > v, y=h(r, s).

Dann ist fiir

- s(r+9)—=2r* s(u+v)—2u°
2s+y—3r 2s+v-—3u

die maximale Stop-Loss-Pramie auf R=(r, s] zur Prioritit w und den Momenten
my, my, my gegeben durch

M., g(my, my, m3)=q,(y —w)+qs(s —w)

wobei
G2 =(—my+my(x+s)—xs)/((s =) (y —x)) (40)
g3 =(my —my (x+ )+ xp)/((s —y) (s —x)) (41)
y=h(x,8)=2x* =B w+s)x+2sw)/(s —w) (42)

und x die kleinste (oder einzige) reelle Losung der folgenden kubischen
Gleichung ist:
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Ax*+Bx*+ Cyx+ D=0 (43)
A= =2(s—my)

B, =2(ms —mz)+(s+3w)(s—m)
C,=—=2w(s*+mis—2m,)

D=2 ws(mys —my) —(mys —m3) (s —w).

Der Satz gilt auch fiir das geschlossene Intervall [r,s], wobei dann auch das
[ntervall fiir w links geschlossen sein kann. Der Wert r= — oo ist zulissig, nicht
aber der Wert s= + 0!

Beweis: Analog zum Beweis von Satz 2. Nach Hilfssatz 3 gibt es auf jedem Tripel
X<y<s mit x<u und y=h(x,s) eine echte Dreipunktverteilung zu den Mo-
menten m, , m,, my. Nach Hilfssatz 2 gibt es zu jedem solchen Tripel x <y <sein
w mit x<w<y und ein kubisches Polynom g,, mit g, ()= (t—w)* fir alle
<s, g,,(t)y=(—w)" fiir te{x, y,s}, wenn

w=(sx+sy—2x3)/2s+y—3x) (44)

gilt. Genau wie im Beweis von Satz 2 ist w in (44) unter Beachtung von y = h(x, s)
eine strikt wachsende Funktion von x, so dass sich aus den moglichen
Argumentwerten (r,u) fiir x unter Verwendung von A(u,s) =v das behauptete
Intervall fiir w ergibt. Wegen der Existenz des Polynoms g,, ist die maximale
Stop-Loss-Pramie zur Prioritit w durch die Dreipunktverteilung auf x, y, s
gegeben und betrigt also ¢, (y —w)+q3(s —w) mit ¢,, g3 gemiss (40) und (41).
Fiir festes w besagt (44), dass die Atome x, y auf der Parabel

p=02x*=CBw+s)x+2sw)/(s —w) (45)

liegen, und zwar dort, wo sie die Hyperbel y=~h(x,s) trifft, auf der x, y ja
cbenfalls liegen. Dies ergibt die Gleichungen (42) und (43). Dass x die kleinste
(oder einzige) reelle Nullstelle von (43) ist folgt daraus, dass x, y sowohl bei der
Hyperbel 4( ,s) als auch bei der Parabel (45) jeweils auf dem linken Ast liegen.
Letzteres wurde fiir die Hyperbel in Hilfssatz 3 gezeigt ; fiir die Parabel folgt dies
daraus, dass die x-Koordinate (3 w+s5)/4 des Scheitels grosser als w und damit
auch grosser als x ist. Die beiden Aste schneiden sich nur einmal, da der
Hyperbelast wachsend, der Parabelast fallend ist.

Zur numerischen Kontrolle kann die maximale Stop-Loss-Primie auch mittels

B(g,,)=ay+am; +a,m,+aym,

berechnet werden, wobei die Koeffizienten ay, a,, a,, a; gemiss (11)-(14) mit
Z=y und y=x zu ermitteln sind.
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Beispiel

Die Sitze 1-3 losen das Problem der maximalen Stop-Loss-Prdmie bei den
vorgegebenen drei Momenten fiir praktisch alle verniinftigen Werte der Prioritit
w. Fiir die in den Sdtzen 1-3 nicht behandelten Werte von w ist in Analogie zum
Fall mit nur zwei vorgegebenen Momenten m,, m, (vgl. De Vylder und
Goovaerts, 1982) anzunehmen, dass bei endlichem Intervall R die eindeutig
bestimmte Dreipunktverteilung auf r, A(r, s), s zur maximalen Stop-Loss-Primie
fithrt. Doch kann der Verfasser diese Vermutung gegenwirtig nicht beweisen.
Der vergleichsweise einfache Fall von Satz 1 wird in der Praxis eher selten
zutreffen ; meist wird die Lage von w die Anwendung von Satz 2 erfordern. Dies
ist auch bei dem eingangs geschilderten Beispiel der schweizer ASTIN-Gruppe
der Fall. Dort erhilt man (mit ¢=31,5)

u= 2500
v =602 200,

so dass wegen r =0 die Prioritat w= 1000000 fiir s > 1500 000 auf jeden Fall in
dem gemiiss Satz 2 zulidssigen Intervall (402 000, 2 s*/(3 s —5)) liegt. Man erhiilt
weiter

z =1474000
y = 78000
¢, =0,000 063

woraus sich M,,(m,,m,, m3) =30 ergibt. Die daraus errechnete Primienober-
grenze 1230000 liegt deutlich ndher an dem Burning Cost 238000 als der
eingangs genannte Wert 3700000 geméss der Abschitzung von Bowers.

Nachwort

Ich mochte an dieser Stelle den Herren Prof. W.-R. Heilmann und E. M. Kulessa
meinen herzlichen Dank aussprechen. Aufgrund eines Briefwechsels mit Prof.
Heilmann tiber seine Arbeit aus dem Jahr 1981 erschien mir die Durchfiihrbar-
keit des Losungsweges im Fall von drei Momenten technisch moglich, Herr
Kulessa rechnete wihrend seiner Tédtigkeit als Werkstudent in der Miinchener
Riick meine erste Formel anhand vieler Zahlenbeispiele nach und prisentierte
die sich je nach der Lage von w ergebenden Fille in sehr tibersichtlicher Weise in
einem Vortrag im Versicherungsmathematischen Kolloquium an der Universi-
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tit Miinchen. Seine Darstellung bewegte mich dazu, die Grenzen der Giiltigkeit
von Satz 2 und damit auch die anderen Fille (Sdtze 1 und 3) nidher zu
untersuchen.

Dr. Thomas Mack
Miinchener Riickversicherungs-Gesellschaft

Koniginstrasse 107
D-8000 Miinchen 40

Literaturverzeichnis

Bowers, N.L. (1969): An Upper Bound on the Stop-Loss Net Premium - Actuarial Note.
Transactions of the Society of Actuaries, Vol. XXI, 211-217.

Biihlmann, H./Straub, E. (1970): Glaubwiirdigkeit fiir Schadensiitze. Mitteilungen der Vereinigung
schweizerischer Versicherungsmathematiker, 70. Band, 111-133.

De Vylder, F.[Goovaerts, M. (1982): Upper and Lower Bounds on Stop-Loss Premiums in Case of
Known Expectation and Variance of the Risk Variable. Mitteilungen der Vereinigung schweizeri-
scher Versicherungsmathematiker, 1982, 149-164.

Gerathewohl, K., u.a. (1976): Riickversicherung — Grundlagen und Praxis, Band [. Verlag
Versicherungswirtschaft, Karlsruhe.

Gisler, A. (1982): Protokoll der Sitzung vom 11. Mai 1982 der Arbeitsgruppe ASTIN der
Vereinigung schweizerischer Versicherungsmathematiker.

Goovaerts, M.J.|De Vylder, F.|Haezendonck, J. (1984): Insurance Premiums. North Holland,
Amsterdam.

Heilmann, W.-R. (1978): A Duality Theory for Stop-Loss Distributions. Scandinavian Actuarial
Journal, 1978, 225 —228.

Heilmann, W.-R. (1981): Improved Methods for Calculating and Estimating Maximal Stop-Loss
Premiums. Blitter der Deutschen Gesellschaft fiir Versicherungsmathematik XV, 29-41.

Taylor, G.C. (1977): Upper Bounds on Stop-Loss Premiums under Constraints on Claim Size
Distribution. Scandinavian Actuarial Journal, 1977, 93-105.



56

Zusammenfassung

Voneiner Schadenvariablen X seien nur die ersten drei Momente bekannt. Dann werden Formeln fiir
die unter diesen Bedingungen maximal mogliche Stop-Loss-Netto-Primie E(X —w) " bei gegebenem
Selbstbehalt w hergeleitet.

Résumé

La distribution du montant X d’un sinistre n’est connue que par ses trois premiers moments. L’article
établit des formules donnant des bornes supérieures pour la prime nette de réassurance en stop-loss
E(X—w)* de plein w.

Summary

An upper bound for the stop loss pure risk premium E(X—w)" is calculated as a function of the
retention w under the condition that only the first three moments of the claims variable X are known.
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