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RENE SCHNIEPER, Winterthur

Risk Processes with Stochastic Discounting

Introduction

The compound Poisson process and the random walk can both be modified to
model the present value of the surplus of a risk business if a constant interest
rate or, equivalently, a constant discount factor is given.

We investigate the properties of these processes when the discount factors
themselves are random. The first problem thereby is the choice of the random
process which generates the discount factors. It is not realistic to assume that
the interest rates are a sequence of independent random variables. On the
other hand, to assume that the interest rate is given by a general autoregressive
process is very unconvenient as far as mathematical tractability is concerned.
We show that modelling interest with a Markov process is a good compro-
mise. The Markovian assumption seems realistic and the model is tractable.
As far as the first moment of the present value of the surplus is concerned, our
model is equivalent to the assumption of a constant discount factor. It is pos-
sible to compute higher order moments and hence to approximate the distri-
bution function of the surplus. If the individual claims are exponentially dis-
tributed, one can compute the probability of ruin exactly. In general we give
an upper bound for the probability of ruin.

The main lesson which can be drawn from the results is that one cannot in
general replace stochastic discounting by the constant mean interest rate.
Though the procedure is legitimate in some special cases, it is very misleading
if for instance the model allows the alternance of positive and negative inter-
est rates.

The paper is based on the author’s Ph. D. thesis now referred to as [5], a copy
of which can be obtained from the author.

I. Discrete Time

1. The Model

We consider a sequence of random cash flows X, X,, ... . X, represents for
instance the premium for period i+ | minus the cumulative claim of period i.
X, is paid at the end of period i. We also consider a sequence of random dis-
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count factors ¥, ¥V, ... . Fis the discount factor in force during period i

The present value of a monetary unit at time ¢ is equal to
W=Hn-h ..V,
and the present value of the cumulative cash flows for the first n time period is
S, =ﬁ: W X.
=1

Notice that if the discount factors are constant, ¥ = v, we get the familiar ex-
pression ,
S, =) v'X.

t=

We make the following assumptions:

- X,, X,, ... are independent, identically distributed and integrable.

- K, K, ...is a Markov chain with a finite state space {v,, v,, ..., v i, initial
probabilities a = (a,, a,, ..., a,) and homogeneous transition probabilities
given by a matrix P.

We think of each discount factor ¥ as the product of an interest component

(interest rate I) and an inflation component (inflation rate J):

V=+D"(1+J).

Consequently we only require o < v, < co but we explicitly allow some of the

v.’s to be smaller than | and some to be larger than |. This means that the

weights W can converge to o or to co or oscillate between o and oo as £ goes

to oo,

— The cash flows and the discount factors are stochastically independent or,
to be more precise, their probability space is the product space of the two
probability spaces defined above.

2. The Expectation of S,

Since the discount factors and the cash flows are independent we have

E(S,) = E(Z W,)= E(X)Y E(W).

=1 =1

On the other hand we have

E(W)=EW VK .- V)= Z VYV Pyt P (1)
which shows that a direct computation is not possible in general since the sum
is to be taken over ¢' terms.
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We introduce the following definitions:

- M= (mi,) = (pu’ V;)

is the discounted transition matrix corresponding to both the set of discount
factors {v,, v,, ... v,} and to the matrix of transition probabilities (p,). M is in
general no longer a transition matrix but still a nonnegative matrix, i.e. all en-
tries of M are nonnegative.

- v=(a,v,...,a,v,)

is analogously a row vector of discounted initial probabilities corresponding
to {v, ... v, and to the initial probabilities (a,, ... a,).
We shall use the following notations and conventions:

—e=(,1,.., 1)’

e is a column vector whose components are all equal to 1.

— L is the identity matrix.

—  Matrix convergence denotes elementwise convergence.

— If Qis a nonnegative matrix then A(Q) denotes its dominant root in the
sense of the Frobenius-Perron theorem (cf. appendix).

We can now state the following:

Theorem
(i) EW)=vM 'e.
If I — M is regular we have

[( ] W:): v M) (I=M")e=v(I=M")(I-M)"e
= |

(i) F(Z W,) < co for any set of initial probabilities if and only if
- L(M) < 1.
In this case [ — M is regular and
E(Z H{): v(I— M) 'e.
=
(iii)  If the transition matrix Pis irreducible and aperiodic we have
“,[,n (A(M)"' M)" = C,

where Cis a constant matrix.
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Proof

(i)

Upon rearranging the factors in (1) we get:

. _ f=1
E(W) = Z a Vi PiiyViy" oo P Vi, =V M e
R

which proves the first part of (/). On the other hand,

I+ M+ .. A+ MY I-M)=(I-M)(I+M+...+ M Y=1-M" (2

and the second part of (/) follows.

We first prove the equivalence:

L(Z W,) < cofor any set of initial probabilities if and only if
=1
lim M" = 0.

N — co

It M - 0, I— Misregular, as is seen from (2). From (/) and the mono-
tone convergence theorem, we then get

E(Z W,): lim v(/—M)"'(I-M")ye=v(l-M) e,
1= | !

which shows that the condition is sufficient. The converse follows from

o

E(Z W,)= Y oM e
(=]

1=

[t remains to show that M" - 0 when n - co if and only it A (M) < 1, but this
follows at once from the Jordan canonical representation of M and from the
properties of the dominant root of M.

(iii)

Pirreducible and aperiodic translates into M indecomposable and pri-
mitive and the asymptotic behaviour of M" follows from theorem 8.1 in
Nikaido [3] (cf. appendix).

Part (iii) of the theorem states that M" ~ A" (M) C for large n. Together with
(it) it shows that, as far as the first moment of the surplus is concerned, our
stochastic discount factor can be replaced by a constant discount factor, the
dominant root of the discounted transition matrix.
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We shall now give a few numerical examples which show that to naively re-
place the stochastic interest rate by the mean interest rate can be very mislead-
ing.

Let ¢ = 2 and consider the following transition matrix:

p_[075 025
~ 1025 075

It is irreducible and aperiodic and it has the following stationary probabili-
ties:
[T = (0.5,0,5).

Let (a,, a,) = (1, 0) be the initial probabilities.

Instead of defining the state space in the form {v,, v,}, we specify the corre-
sponding interest rates {i,, 7,} with the understanding that v, = (1 + ) .
We display the dominant root of M as well as the expected value of the sur-
plus for the case where the cash flows X, are all equal to 1. In parentheses we
give the figures corresponding to the mean interest rate (mean with respect to
the stationary transition probabilities).

(i1, ) A (M) !:'(Z W,)

1=
[—3%, 5%| 0.962 (0.962) 25.6 (25)
[—0, 8%} 0.964 (0.962) 29 (25)
[ —3%, 5%| 0.993 (0.990) 157.1 (100)
[ —4%, 5% 0.999 (0.995) 1 100 (200)
[—6%, 7% 1.003 (0.995) oo (200)
Remarks

[) The method given to compute E(W,) and E(Z W,) can be generalized to
=1

an inhomogeneous Markov chain. Examples are given in [5]. However, the
asymptotical results stated in the theorem only hold for a homogeneous
Markov chain.

2) The condition A (M) < | is sufficient for S, to converge almost surely to a
finite limit as » goes to infinity. The converse is not true as the following
example shows.
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Example

Let X, = x be a nonzero constant. Let V,, V,, ... be independent and identi-
cally distributed with £ (log (1)) < o, log (E(¥)) > o and E(log (¥))* < co.

By definition we have W = (exp (lt > log V,)) , and the almost sure conver-

i=1

gence of S, = x ) W to a finite limit follows from the strong law of large
=1

numbers. On the other hand, it follows from the independence assumption
that A (M) = E(V), which is larger than | by assumption.

3. Higher Moments and the Distribution Function of S,

Let us first consider the simple case where the discount factors are constant,

V=v.Wehave §, =), v' X,.

{= |
[f the X s are normally distributed, S, is normally distributed too. If the X'
are exponentially distributed, we have
VA
(v )

ik

P(Sn>x) ZZ gk e ik g.’\'
k=1

We have thereby arbitrarily assumed £ (X) = 1. The formula is from Rényi
[4]. The result can be proven by induction.

Under the assumption that X is integrable to the 3rd power, it follows from the
Berry-Esseen theorem (cf. [1]) that the distribution of & converges to the nor-
mal distribution as v goes to |. However, the approximation is bad for X ex-
ponentially distributed and v as large as 0.95,

We thus see that there is no general result for the distribution of S .To put it
differently, the distribution of S, is going to depend on the distribution of the
X'’s. Consequently we have to rely on approximations, for this stmple model
as well as for our more general model.

Whatever approximation method we choose, the Edgeworth expansion, the
normal power or the Esscher method, we need the higher moments of S, .
Consequently we must make the supplementary assumption that the X's are
integrable to the 4th power.
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A straightforward computation shows
E(S,) = E(X) E(ZW)
Var(S,) = Var(X)(EX W)* + (E X)* Var(Z W).

Under the assumption that E(X) = 0 we, moreover, have

E(S)) = E(X") EX W)

E(SH = E(X") E(Z W) + 6 Var (X°) E(E, w: w?).

This last assumption greatly simplifies the expressions we get for £(S,) and
E(S)), but it is by no means necessary. The general results can be found
in [5].

[t remains to determine the value of the expressions involving the W’s. For
this purpose we introduce the following notation:

M, = (p;v)) k=1,2,...
b= (a, v, ..., a, ) k=1,2,...

M, and v, are the discounted transition matrix and the discounted initial prob-
abilities defined in 2. Since M, is a nonnegative matrix, it has a dominant root,
which we denote by A (M,). We can now state the following:

Theorem
[y EWH = v, M " e.
[f [ — M, is regular we have

E(Z W/‘) == VA([”""A/[A_) ]([_M;\') e = VA([_Mx)([—MA)ﬁle'
(=1

F(Z Wf) < oo for any set of initial probabilities if and only if

1=1

A (M) < |. In this case [ — M, is regular and

E(i W,‘) — (I —-M) "e.



210

2y It I-M,,, and I — M, are regular, we have

E( W W})= Ve (T =M (=M )M (T = M) e —

| SiSjsn

i=0

n—2
— Vi (2 M:R--H 1‘/‘”11—1)(1"“1‘/’1)1 €.

IfFAM,, ) <Il,then A(M,) <l and (I — M,, ) as well as (I — M,) are re-
gular. Moreover, we have:

E(Z W W) e (T= M) M (= M) e
i<j
We omit the proof, since it is a straightforward generalization of the previous
one.

We shall now give a few numerical examples. We assume that the transition
probabilities and the initial probabilities are the same as in 2. We give the re-
sults corresponding to the mean interest rate in parentheses.

(i) A (M) f:'( b3 Wﬁ) Vur(Z W.)
1= e |

[ 3%, S%) 0.925 (0.925) 12.8 (12.3) 2.1

1 0%, 8%)] 0.934 (0.925) 16.0 (12.3) 48.1

[ —3%, 5%] 0.99] (0.980) 125.7 (49.8) 12316

[ —4%, 5%) 1.004 (0.990) oo (99.8) o0

| —6%, 7%) 1.019 (0.990) oo (99.8) =

These examples show that as far as higher moments (and consequently the
distribution function) are concerned, the stochastic discount factor can no
longer be replaced by the dominant root of M. For instance, in the case { — 4%,
5%} A (M) was smaller than |, which would imply that Var(S., ) is finite,
whereas A(M,) is actually larger than | and the variance is infinite.

4. The Probability of Ruin
[t is now more convenient to work with the future value of the surplus, which
is defined as follows:

R,=(x+S,)(+D){+D)) ...-(1+D,) n=1,2,...

R, = x,
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where x is the initial surplus and D, the interest rate in force during period k.
D, can be positive or negative and it defines J; through the relation ¥, =

(l + D;‘()Al ’
We define:
w(d, x) = P(min Ry<o|D, =d, R = x).

oskst

¥,(d, x) is the probability that ruin will occur before time ¢, given that the in-
itial surplus is x and that the interest rate in force during the first time period

is d.

From the theorem of total probability and the Markov property of R, we de-
rive the following recurrence relation for ,(d, x):

co

q >
Voo (dy ) = F(=(1+d) x)+ 2 py [ W(d, (1+d) x+y) dF(p),

j=1 —(l F([k].\'

where F(x) = P(X<x).

If we assume X = p — Z, where Z is an exponentially distributed claim with
expectation | and p is a deterministic premium, we have

- q (I +d)x+p
7 (,\‘) - e"(lFt!A)‘\”’l? | 4 Z ])M ' l{/,(d,', U) (:’“dll )

j=1 0

From this recurrence relation we can compute the probability of ruin.

We shall now give a few numerical examples. We assume that the initial prob-
abilities and the transition matrix are the same as in the previous two exam-
ples. We display x,,, and x;, , the amount of initial surplus necessary to keep
the probability of ruin in the first 100 time periods equal to 0.01 and 0.001 re-
spectively. In parentheses we give the initial surplus corresponding to a pro-
cess with a constant mean interest rate.

[, d] Xoon Xo oo

[3%, 5%} 10.3 (10) 13.9 (13.6)
10, 8% 11.8 (10) 16.4 (13.6)
| —3%, 5%| 20.0 (17.9) 41.5 (23.8)
[ —4%, 5% 38.9 (21.5) 66 (28.3)

[ —6%, 7% 69 (21.5) 137 (28.3)
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Again we see that, when we have positive and negative interest rates, it is very
misleading to replace stochastic discounting by a constant discount factor
since we then severely underestimate the necessary initial surplus.

A computation of the probability of ruin with the recurrence relation given
above is only possible for exponentially distributed claims. In the general
case, however, it is possible to give an upper bound for

(d, x) = lim ¥, (d, x).

Theorem

[f A (M) <1 then

P(S,< —x|D =d
Y(d, x) < (S, x| D ) .
min P(S., < o D, =d,)

This is a generalisation of a similar result by Gerber [2] for a constant discount
factor. It provides an upper bound for the probability of ruin, which depends
only on the distribution function of S .

Proof

Let H, = o(R,, D, ..., R
{Ru) D|> #d Rn’ Dn+l} 'dnd Mn = P(Soo < _xl [-In)'

D,, ) be the o-algebra generated by

ny

Since A (M) < 1, S, almost surely exists, so that M, is meaningful. Let 7' = inf

tn| R, < o]. Tis the time of ruin, it is equal to oo if ruin does not occur. By de-
finition, M, is a uniformly integrable martingale and it follows

E(M,) = E(M;|T< o) ¥ (D, R) + E(M;|T=c0)(l~¥(D,R,).

On the other hand we have E(M,| T = «) = oand a straightforward compu-
tation shows that

E(M,.|T< o) 2 mén P(S. < O‘Dt = d,),

which proves the theorem.
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[1. Continuous Time
1. The Model

Consider the following process:

! N(r)
Sy=pfe"Pds =7 MY, 2o
i=1

]

where
A(s) =[ D(t) dt.

X, represents the claim number 7, W the time at which it occurs. N(f) is the

number of claims occurring before time ¢. D (s) is the interest rate in force at

time s, and p is a deterministic premium rate. Thus, if the initial surplus is o,

S (1) is the present value of the surplus at time /.

We make the following assumptions:

— X, X,, ... are independent, identically distributed and integrable. F(x) de-
notes the distribution function of X.

—~ | N(t)|t= o} is a homogeneous Poisson process with rate [, i.e., our time
is the operational time. W denotes the time at which event number i occurs,

~ To define { D () | t= o}, we must introduce two auxiliary processes. First
let [ M(1)|t= o} be a homogeneous Poisson process with rate ffand let ¥/
denote the time at which the i—th event occurs (¥, = 0). Second assume
that D,, D,, ... is Markov chain with finite state space {d,, ..., d,}, initial
probabilities ¢ = (a,, ..., a,) and homogeneous transition probabilities
given by a matrix P. We define { D (/) |t= o} in the following way:

D(t) = D, V., S t<V i=1,2,...

The events recorded by [ M (1) 1= o} can be thought of as potential
changes in the interest rate. Since we do not require that p, # o for all i,
(D(1) 1= o} is in general not a continuous time Markov chain.

— The common probability space of

(X i=1,2,..0, (N |tz o} and {(M(), D(1))]1= o}

is the product space of the three probability spaces defined above. This last
N(1)
assumption implies that the cumulative claim {E X |tz 0] is a compound

i=1

Poisson process, which is independent of the interest rate { D (1) |2 o].



214

2. The Moments of S (t)
Lemma

Let m(z) = E(e’")be the moment generating function of an individual claim.
The moment generating function of S'(¢) is then

M(z, t) = E(e") = Eexp [zp [e 2 ds+ [(m(—ze *)—1) ds] :

O

The proof can be found in [5] and is omitted here. Using the lemma we can
compute the moments of S (¢)

E(S(1) = (E(X)— p)E (j e*A“"’ds)

0

Var (S() = E(X°) E(j e“z’““’ds) + (E(X)—p)’ Var (j g4 ds).

0 0

In the special case where E(X) = p we moreover have
E(S()) = E(X) E(j e"'\("’ds)

E(S(n)' = EX") E(J e N ds)+3 (E (X)) (J e"““')ds)_.
The general expressions for E (S(¢)’) and E(S(1)") can be found in [5].
We introduce the following notation:

VO = (1 + kd/p)! i=1,.,q9 k=12,
My, = (p; v}")
M., = (py Vik) ')

— (k) (k)
Vi = (@, v\, ..., a,v,

(n

— (k) (1) (k)
V(!\‘l) - (al VI Vt IR ac,‘ Vq vq

A (M) denotes the dominant root of the nonnegative matrix M. We can
now state the following:
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Theorem

If A (M) <1 then

EJ‘ e AW dg = % Viky (I_M(“)iI B

IfA(M,,) <1 then A(My) <1 and

[¢]

0

BTN L. - N
E(J el“\"‘)d‘g‘) = F[V(A'.Ek)+V(Ek)(I—M(Ek)) | Mm.zm]([—ﬁ’{(n) e

The proof of the theorem can be found in [5]. By plugging the results of the
theorem in the expressions given above for the moments of S (¢), we can com-
pute these moments for { = co.

3. The Probability of Ruin

[t is more convenient to work with the future value of the surplus, which is de-
fined as follows:
R(1) = (x+ S(1)) e*” t> 0
R{o) = x,
where x is the initial surplus.
The probability of ruin is
Y(d, x) = P({i{nf R(ty<o|D(0o) = d, R(0) = x).

Theorem

If X is exponentially distributed with expectation |, the functions ¥ (d,, x)
(k=1,2,...,q), considered as functions of x, satisfy the following system of
differential equations:

Y (d,, x) (ptdox)ty (d, x)(p—1+d+d x)+
]
+8Y, (o, — 8) (‘[’Jr ¥'(d, x)) =0, k=1,...,q
j=1

with the initial conditions:

q
V' (dy,0) p= ¥(d, 0)+pY (6,—py) ¥(d,0)—1.

j=1
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If, moreover, p = E(X) =1 and d, > o forall k, we have

li_n}o Y(d,, x) = o forall k,

and the above system of differential equations has a unique solution which sa-
tisfies the boundary conditions.

The result follows from the theorem of total probability and from the Markov
property of R,. The proof can be found in [5]. The theorem is a generalisation
of a similar result by Segerdahl [6] for a constant interest rate.

Although we cannot find an analytic solution for the system of differential
equations, it is possible to give a numerical solution. Exmples can be found
in [5].

The following result is more general since it does not require the claims to be
exponentially distributed.

Theorem

If A (M) <1 then

PlS(co - D =d
A (S() < — x|D(0) = d)

m/\m P(S() < 0| D(0) = d,)

The proof is a straightforward generalisation of the one given in the previous
chapter for a similar result. Numerical illustrations can be found in [5].

Appendix

The results which follow can be found for instance in Nikaido [3]. The matrix

Q = (qg,) is nonnegative if and only if g, = oforall i, j. If Qis a nonnegative

matrix, it follows from the Frobenius-Perron theorem that

— Qhas at least one real nonnegative eigenvalue. Let A (Q) be the largest such
eigenvalue of Q. A(Q) is called the dominant root of Q.

~ For any eigenvalue ® of Q we have|w| £ A(Q). Moreover A (Q) satisfies
the following inequalities:

min X g, S A(Q) < max X g,.
i i i j
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[n particular if M is the discounted transition matrix corresponding to a se-
quence of independent discount factors ¥, V,, ... we have

A(M)=minZ p,v,=max ), p, v, = E(V).
i / i :
/
The nonnegative matrix Q is called indecomposable if for all i and j there

exists an n such that ¢i" > o. (Thereby ¢! denotes the (7, j)— th element of

Q")

A state s; has period p2 Lif ¢' = ofor all nunless n = k - pand pis the lar-
gest such integer. If p = | or if there exists no such p, that is if ¢}’ = o for all

n, the state s; is called primitive. The states corresponding to an indecompos-
able O have all the same period. If this period is |, Q itself is called primitive.
It M = (p,; - v)is a discounted transition matrix, it is indecomposable if and
only if P = (p,) is irreducible. Furthermore M is primitive if and only if Pis
aperiodic. If M is indecomposable and primitive we have

lim (A(M)~' M)" = C,

where Cis a constant matrix.
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Abstract

We investigate mathematical models for the present value of the surplus of risk business in the pres-
ence of a stochastically varying interest rate. The interest rate is given by a Markov chain. We show
that such an interest rate cannot in general be approximately replaced by a constant,

Zusammenfassung

Es werden mathematische Modelle untersucht fiir den Barwert der freien Reserven eines Versiche-
rungsgeschifts. Dabei wird angenommen, dass die Zinsrate durch eine Markovkette definiert wird.
Es wird gezeigt, dass eine solche Zinsrate im allgemeinen nicht approximativ durch eine Konstante
ersetzt werden kann.

Résumé

Larticle ¢tudie des modéles mathématiques pour la valeur actuelle de la provision de fluctuation
d'un portefeuille d’assurance lorsque le taux d’escompte varie de fagon aléatoire. Le taux d’escomple
est défint par une chaine de Markov. [l est montré qu'un tel taux d’escompte ne peut pas étre, en gé-
néral, remplacé — méme pour approximation — par une constante.
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