Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of
Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: - (1983)

Heft: 1

Artikel: Numerical probabilities of ruin when expected claim numbers are large
Autor: Seal, Hilary L.

DOl: https://doi.org/10.5169/seals-967133

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-967133
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

89

Hicary L. SEAL, Apples

Numerical probabilities of ruin
when expected claim numbers are large

Introduction

Numerical probabilities of eventual ruin, i.e. during a period when the number of
expected claims is very large (theoretically infinite), can be traced back to
Lundberg himself (1926, Kap. 8). Using his newly derived asymptotic formula
for the probability of eventual ruin based on a large initial risk reserve (free
surplus) of x,, namely ae ~** (Lundberg, 1926, p. 26), and with four different
claim size distributions: (i) all claims unity, (ii) exponentially distributed claims,
(iii) gamma with index 2 claims, and (iv) an actual life insurance distribution of
sums at risk from D¢ Forenade, Lundberg’s own company, he evaluated the
proper fraction « for five different R-values, namely 0.05/, j=1,2,4,6,10,
showing that it decreased considerably over this range.

An exact value of the probability of eventual ruin when claims are occurring in
time as a Poisson process (Lundberg’s invariable assumption) and the claim size
distribution is exponential, (i1) above, was published by Crameér (1930) as

|
'// (H,’) Y —nw/(l+ny)
1+n

where the monetary unit is the mean claim, » is the risk loading on the unit
premium per expected claim, and w is the number of average claims that the
company has available as initial risk reserve. The value of / (w) for the uniform
claim distribution, (i), had already been given by Erlang (1909) in a telephone
delay problem (see Seal, 1969, 4.12). These formulas would have permitted the
practitioner to evaluate exact eventual ruin probabilities at will for the two
specified claim distributions.

The next published numerical probability of eventual ruin occurs in Cramer
(1955, p. 45). It was based on a distribution of fire insurance claims graduated to
produce the sum of an exponential and a truncated Parcto v=1.75 density,
namely

h(p)=de ™+ B(y+6) 27  0<y<500
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where b(-) 1s written for the claim density, 4=4.897954, B=4.503 and
7 =15.514588. The asymptotic value of W (w) was computed by Lundberg’s
formula alrcady mentioned, the value of R being 0.00736. The «exact» four-
decimal values of i (w) were stated to have been calculated by Cramer’s integral
cquation, (1) hereafter, and Nils Wikstad tells me that research among some old
papers suggests that this computation was made using trapezoidal quadrature,
The asymptotic formula is rather poor, not even being correct in the second
decimal place, but the largest illustrative value of w is only 100.

At the time Cramér wrote, Ammeter’s (1948) suggestion to replace risk theory’s
Poisson process of successive claims in a portfolio of policies by the negative
binomial (Polya) process had not yet produced statistical confirmation other
than his own single example (however remember O. Lundberg’s (1940) fittings of

five years were to sce substantial evidence that this new process, as generalized by
Thyrion (1959) to become the mixed Poisson process, was widely applicable in
nonlife insurance (Seal, 1969, pp. 15-28; Brichler, 1971; Thyrion, 1972). In fact
no other claim number process has yet been shown to agree with actual statistics
of claim occurrences. Types of distribution of independent claim sizes are just as
limited, for apart from the Pareto and lognormal distributions, namely with
distribution functions, respectively,
)
B(y)=1—-\14+— O<y<o

y—1

and

In y—¢
B(y)=® ( *) O<y<oo
a /
where @ (-) is the distribution function of Normal (0, 1), we are not aware that
any has been fitted successfully to actual claim sizes in actuarial history (Seal,
1969, pp. 29-31; Benckert & Jung, 1974). For example, of the four published
fittings of mixed exponential claims distribution none was tested statistically for
goodness of fit and in two of the articles the authors themselves expressed doubts

about the adequacy of the results.

There are few published calculations of iy (w), other than its upper bound, since
Cramer’s (1955) example. First were those of Grandell & Segerdahl (1971) and
Bohman (1971). In both cases the gamma distribution was chosen for claim sizes,
and while the joint authors utilized Lundberg’s asymptotic formula Bohman
illustrated the numerical inversion of the characteristic function (Laplace
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transform) of s (w). Both sets of results agreed, essentially to five decimal places,
with calculations by an «exact» formula of Thorin (1973). Then came Thorin &
Wikstad’s (1973) calculations including those for a Pareto claim distribution,
and their further calculations in (1977) for lognormal claims assuming a Poisson
process of claim occurrences.

This brief historical review has been necessary to show that the numerical
calculation of i (w), or as we will write it 1 — U(w) to emphasize that U(-) can be
regarded as a distribution function (Beekman, 1969), has rarcly been attempted
with a practical distribution of nonlife claim sizes. Furthermore, the calculation
of (w) has never been made with a mixed Poisson, in particular a negative
binomial, claims occurrence process with infinitely large expected claims.

We intend to try to fill the lacuna left by prior published work, namely to produce
numerical values of 1 (w) based on Poisson claim occurrences and Pareto or
lognormal claim sizes. The formulas specifically used for this purpose, among
others, by Thorin & Wikstad (1973, 1977) would naturally take pride of place
among our procedures and, in fact, Nils Wikstad has kindly furnished me with a
FORTRAN program to calculate s (w). But those who have studied the two
papers cited may think that the general technique developed there, using what
Feller (1971, XI. 7) calls "deep complex variable methods™, is rather involved for
the calculation of the refatively straightforward ruin probabilities we require.
After all, Cramér’s integral equation, (1) hereafter, provides the “exact* results
for any Poisson process of claim occurrences. And the final paragraphs of this
paper show how these can usually be employed for mixed Poisson claim
occurrence processes. This is why we have persisted in trying to develop simple
numerical methods available to every practitioner.

The Cramér integral equation for Poisson claim occurrences
Lundberg’s (1909) partial differential equation for y(u,v), the probability

density for a (first) ruin amounting to v given an initial risk reserve of u, was
transformed by Cramér (1926) into an integral equation of Volterra type, namely

o0 l le l u‘
{ xv)do=yp(w)=— [ {1 -B@)}do+— | Y(u—v) {1 —B@®)}dv
o 1 +# 4 L+ 5

where ) (1) is the probability of eventual ruin with an initial risk reserve of u times
the average claim and a continuously paid risk premium of 1 +#, and B(-) is the
distribution function of individual claim amounts with conventional unit mean.
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Claims are supposed to be occurring according to a Poisson process with a unit
expected interval between successive claims. Cramér did not publish a proof of
this relation until (1930).

We write U(w)=1 —i(w) and Cramér’s relation becomes, w>0,

w

n [
Uw)y=——4—- | Uw—y) {1 —-B(y)}dv
l+n 1T+n,

w

=U0)+ | Uw—y)h(py)dv (D

0

This is proved by Feller (1971, VL. 5 and X1. 7) with his R(-)=U(:).

We have mentioned that Cramér’s (1955, p. 45) "exact™ method of solution of (1)
involved the use of trapezoidal quadrature. However quadrature by repeated
Simpson suggested by Seal (1978, p. 59) has never, we believe, been extended to
large w-values and the necessity of small increments in w results in a computer
run of three minutes or more. Nevertheless this was an obvious first trial in the
numerical production of U(w) from (1).

The results appeared to be satisfactory. For lognormal ( —3, 1) (the unit ¢ being
approximately the value deduced from observations by Biihlmann & Hartmann
(1956) and ¢ then equals —5 for the mean claim to be unity) with a step in w
equal to 0.1 the U(w) values shown in Table A were obtained, and for w<20
there was three decimal agreement with values produced using a w-step of 0.01.
For Pareto v=2.5 (a "modern* value of v; Seal, 1980) the step of 0.1 achicved
four decimal agreement at U/(20) with a 0.01 step, and a “check*™ of U(250)
based on evaluation of the right hand side of (1) using repeated Simpson with 0. 1
increments reproduced the uncurtailed Table A value to six places of decimals.
We now proceed with other methods of calculating U(w) that have been
proposed cither specifically or in similar situations.

Asymptotic formulas for large w

[n Feller (1971, X1. 7) it is shown that it follows from (1) that

: "
lim {1—U(w)} s (2)

w0 J Xerc.\‘dB(x) - (l s ”)

0
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if the integral exists, where x is obtained from

| edB(y)=1+(1+n)x

0

This is the Lundberg (1926, p. 26) asymptotic formula already mentioned.
The trouble with asymptotic formulas is that one needs some “exact** results to
indicate from what value of the variable, w in this case, the asymptotic results can
be used. However this problem does not arise when B(y) is Pareto-v or
lognormal ({, o); the integral used in the determination of x, conveniently by
expanding the exponential and producing moments of B(:), diverges even
though the moments of the lognormal are all finite. Those of the Pareto are
infinite except for the mean and variance (v>2). To meet this situation Thorin
(1974) proposed a different asymptotic formula for Parcto-v and in a further
article (Thorin & Wikstad. 1977) he extended his procedure to lognormal ((, o)
provided In w > { +a”. We have called these formulas "Thorin asymptotic™ in
Table A and although the Pareto values are better than the lognormal neither set
is acceptable.

The inapplicability of (2) for both Pareto and lognormal B(-) can be overcome by
truncating these distributions at a remote tail abscissa. We experimented with
tail abscissas y, corresponding to B( p,) =0.99995 and found x equal to 0.037819
and 0.065041, respectively. The corresponding asymptotic U(w)-values are
shown in Table A. Those for the lognormal are in reasonable agreement with the
quadrature of equation (1) but this cannot be said for Pareto.

Bartholomew’s approximation

Cramér’s relation (1) is a special case of the renewal equation. In the latter U/(0)
becomes a function g(w) and A(y) is a density instead of proportional to the
complement of a distribution function. Bartholomew (1963) proposed a very
simple approximate solution to the equation where g(w)=/(w) and provides
several numerical examples in his 1973 book. In the case of equation (1)
Bartholomew’s formula becomes

wlH (w)

w

w— | H(x)dx

0

Uy ~U(0) [ 1+ (3)
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where ol
H(x)={ h(y)dy.

0
H(x) and its integral can be evaluated for Pareto and lognormal A(y) and
numerical results are provided in Table A. We conclude that relation (3) does not
constitute a good approximate solution to Cramér’s equation.

The Laplace transform of U (w)

Another method of calculating U (w) found in the literature is the inversion of the
Laplace transform of U/(w). The latter is

Pl =l B e 4
(5) g ¢ (w)dw TP TE (4)

where

)= e b(y)dy
0

(Feller, 1971, XIV. 2(b); Cramér, 1930, (78)). Unfortunately ff(s) has no closed
form when B(:) is lognormal but when the claims size distribution is Pareto-v
Seal (1980).

0

B(s)=v | e (1 +y) " tdy=ve”E, . (sb), b=v—1, Re(s)=0
0

Seal (1980).

The numerical inversion of  Y'(s) for w=50(50)450 with [(s) as above was
effected by means of 24 term Gaussian integration described in the computer
program GETBRM of Seal (1978, p. 83). The whole set required barely 10
seconds of CPU time but involved the writing of a program to produce f (s), s =¢
+iu, in double precision arithmetic. The results are shown in Table A and are in
exact three decimal agreement with the repeated Simpson quadrature of the
integral in (1). This is gratifying because it indicates that straightforward, if long,
quadrature of (1) provides correct results even for large w-values.
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The moments of U (w)
[t is quite easy to use (1) to evaluate numerically and exactly

o

| w'dU(wy=m, n=0,1,2,3,...

0
the successive moments of the distribution function U(w), in terms of the
moments (about zero) p;, j=1,2,3,.. ., of the density h(-). For the lognormal
((, o) all moments exist and are given by

pj=e"" (Aitchison & Brown, 1957, p. 8)

but for Pareto-v it is seen (e.g. Seal, 1969, p. 30) that p; is infinite when j>v.
[t can be shown that

Pu+i L 8= ”Uﬁ L) | P>

”l“ = - - TR r”}[)” —j+1» ]}10 =, I”[ — (5)
(n+Dn n;= J! (e 21

and this relation provides a recursion formula for m,, n=1,2,3,.... Note that

U(w), given by (1), is a monotonically increasing continuous function of w with a
unique discontinuity at w=0. Any frequency distribution obtained from the
above moments will thus have an aggregate area of 1 —1/(1+n).

A family of curves based on the first four central moments of a distribution is that
of Karl Pearson. The appropriate member of the family in any given case is
determined from the position of (f,, f,) in the plane. Here

Bi=wi/wy and By =puy/u3

where

0

= | {x—p"p(x)dx

S e

p(-) being the density whose moments are calculated and g its mean.
For the lognormal (—3%,1) use of (5) produces
fi=4813 and f,=10.349

and
28,—-3p,—-6=0.257
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The smallness of this quantity is a criterion for Pearson’s Type 11 (Elderton &
Johnson, 1969, p. 78) which is a gamma distribution with a non-zero start,

namely
L prtt L
V)= — |1 + — I 2
P) a e’I'(p+1) g1 "

with index

4
p=ya=——1=—0.1690
5
and
=y — [/'}) = *59936

In terms of the incomplete gamma ratio

,
[ p)=P(p+1,a¥y-y)

—a

Three-decimal values of

h )
!+<l - ) P(p+1,a+w-y), n=01, w=2525)150
1 +n 149

are given in Table A. For w>=75 the results are in good agreement with
quadrature using a step of 0.1 in w. We mention that a rather different
incomplete gamma ratio approximation to U(w) is given in Beekman (1969).
With an unlimited number of moments m, available no doubt some series
approximation could be found to represent U(w) pretty accurately.

Other solutions of the renewal equation

Bartholomew’s (1963) approximate solution of the renewal equation was the
culmination of a long series of attempts to produce numerical solutions based on
different forms of what we have written as A (-). Some of these are described in
Saxer (1958, Kap. 4) and the originator of the equation has detailed his preferred
method in Lotka (1940). Writing the renewal form of equation as

u () =g (¥) + | ulx =) /() dy

0
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and subject to certain restrictions on the three functions involved (Feller, 1941)
the solution takes the form

o0
u(x)= 3 Age’
k=1

where the s, are the roots of the equation

o0

p(s)=| e ™ f(x)dx=1
0

only s, being real, the remainder conjugate complex with real parts less than s, .
In Lotka (1940) the author uses the first four cumulants of f(x), which is a
Pearson Type [ (beta) density, and finds the first 21 roots of ¢ (s) — 1 by a method
described there in detail. His last root is s, = —1.400+3.219i the real part of
which is small enough to produce a vanishing term in the solution for u(x). We
followed Lotka’s procedure with the first four “cumulants* of /(x) based on
lognormal ( —3%, 1) but found that s, was —0.390 —0.995i, a value considered
insufficiently small in view of the length of the series for u(x)= U(w).

Conclusions for Poisson claim occurrences

Only Pareto and lognormal claim size distributions have been shown to be

acceptable statistically and we have confined our attention to these. Asymptotic

formulas for the probability of ruin with large w, the initial risk reserve expressed

as a multiple of the mean claim amount, whether based on:

(a) Lundberg’s 1926 formula;

(b)  The same formula with 0.00005 of the largest claims eliminated; or

(¢) Thorin’s (1974, 1977) formulas for Pareto and lognormal claims size
distributions;

have been shown to be inapplicable or to produce unreliable results. A simple

formula for U (w) developed for a slightly more general case by Bartholomew

(1963, 1973) and used, we believe, fairly widely in industrial severance

investigations fails quite badly in the actuarial field. On the other hand, repeated

Simpson quadrature of the integral in Cramér’s equation (1) (Seal, 1978, p. 59),

although very long with small increments in w, produced good results which were

confirmed by Gaussian inversion of the Laplace transform of U (w) in the Pareto

case. For the lognormal a fitting of a Pearson curve to the first four moments of

U(w) produced reasonably good results for the larger, important w-values.
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Table 4
Values of U(w) with n=0.1 by Various Methods

Pareto v=2.5

Truncated Gauss-24
Quadrature Bartholomew Thorin Lundberg inversion
w Aw=0.1 (3) asymptotic  asymptotic  of 1" (s)
50 0.836 0.695 0.950 0.881 0.836
100 0.948 0.809 0.982 0.982 0.948
150 0.978 0.861 0.990 0.997 0.978
200 0.988 0.890 0.994 1.000 0.988
250 0.993 0.909 0.995 0.993
300 0.922 0.996 0.995
350 0.932 0.997 0.996
400 0.940 0.998 0.997
450 0.946 0.998 0.998
Lognormal (—%, 1)
Truncated Pearson
Quadrature Bartholomew Thorin Lundberg Type 11
W Aw=0.1 (3) asymptotic  asymptotic by moments
25 0.826 0.681 0.990 0.833 0.789
50 0.963 0.806 0.999 0.967 0.954
75 0.992 0.861 1.000 0.994 0.990
100 0.998 0.891 0.999 0.998
125 1.000 0911 1.000 0.999
150 0.924 1.000
175 0.934
200 0.942
225 0.948

Mixed Poisson claim occurrences
Writing p, (¢) for the probability of n claims in an interval of time (0, ¢) the mixed
(or compound) Poisson process is defined by (O. Lundberg, 1940, p. 72)

(¢ &) . /’{ n
p=1 e vy ©)
. n!

where M (-) is a distribution function over the positive axis and is called the
mixing distribution. [t was introduced to actuaries by Dubourdieu (1938),
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without supporting observational evidence, as suitable for the probabilistic
representation of automobile accidents, and Seal (1969, pp. 15-17) reports five
statistical articles published before 1963 in which this model was applied. All
these articles interpreted (6) as expressing the probability of n claims occurring to
a single driver subject to a simple Poisson process of claim epochs, the claim
intensity at any such epoch being 4 chosen at random from a distribution
function of A’s, namely M (4). However, as is implicit from O. Lundberg (1940,
Ch. V), when a portfolio of two or more automobile accident policies is
considered (6) means that:

(1)  the claim intensity at any epoch in the interval (0,¢) depends on the

aggregate number ol accidents occurred prior to that epoch, and
(i1)  given that an aggregate of n accidents has occurred in (0, ¢) the epochs of
those accidents are distributed uniformly with density ¢ ",

These two properties of (6) are proved explicitly by Cane (1977).

The foregoing numerical investigation has been based on formulas derived with
a Poisson point process of claim occurrences in mind. In Ammeter’s (1948)
original extension of the Poisson to negative binomial claim processes he showed
how to transform the aggregate claim-size distribution by epoch ¢ stemming
from negative binomial claim input to one based on a Poisson input with the
distribution of individual claim sizes modified to depend on the parameter ¢. This
extension of risk theory based on Poisson claim numbers to negative binomial
claim occurrences was generalized to any mixed Poisson claim process by
Thyrion in a series of papers that culminated in that of 1969. An important result
of Thyrion (1969) is that when the claim process is negative binomial, namely

when
h

/ ‘
M ()= E”) eTMU >0, 0<i<oo

and (6) becomes

n+h—1 h o\ t\"
= ~0,1,2,... h>0
Pall) ( n h+!> (h+t> = =

the mean of the adjusted individual claim size distribution is infinite when (- co
and thus relation (2) cannot be used™. This 1s also true of the Hofmann (1955)

* Thyrion (1969) distinguishes between the case of a single infinite span and that of an infinity of
independent spans of fixed length £ (Ammeter’s original case). The equation to determine k of (2) for
the latter model requires B( p) to be changed to B( y, 1) and k on the right hand side to be multiplied
by p, as defined hereafter (Ammeter, 1948). In (1) B(y) becomes B(y, ).
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claim process
b : 1 "'ﬂ]i
po([):CXp g(--(l _([) {1_(1+('t) I (l>0

Pu(t)=(— )" d (n)() w=1,23,...

but not of the Double Poisson. These three are the only members of the mixed
Poisson family that have been fitted successfully to actual distributions of the
number of claims occurring in a fixed period .

Thyrion (1969) writes the mixed Poisson claims process in the form

Po(D=e"0 0(0)=0, (=1y'0"™()=0 n=1,2,...

n

t
[)lr(l):(—l)n ,_[’_pgj)(f) ,!:‘152933"-
which is equivalent to (6). The adjusted claims size density is then given by
- o0 tm U(nt)( )
bx, )= 1" — -
(0= 2 (=1 m! ()(f)

m=1

bm“ (‘C)

which, for negative binomial claims, takes the form

s=—r— T () e

t\ = m\h+t
In 1+
(1)

in agreement with Ammeter (1948).
This density has mean

0 el tm U(m)(f) 0

—:"*J._ \ = oqym ) _'Jhm*’, '\
Py (j)rb(t,f)a'\ n;l( 1) w00 (j) xh™ (x) dx

[ 0 Mo 1
5 2 U Gy 0=y =0 by Taylors theorem

!
0'(0) - ok
=P ()(t) or p f
In {1 +h

Now the probability of no claims in an infinite period of time being assumed to
be zero, lim0(t)= —co and lim¢/0(¢)=lim1/0"(¢). The latter expression must

t—co =0 t—> 0

for the negative binomial case.
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be finite if p, is to be finite as - co. [tis easily shown that this requirement is not
satisfied for the negative binomial, where 0" (t) = —h/(h+t) (Thyrion, 1969), and
Hofmann claims processes. Nevertheless it is simple to adjust any mixed Poisson
process with lim1/0’(¢) = oo to another in which this limit is finite.
t— o0

Suppose the adjusted 0(-) is 0, (-) such that 0, (1)=0(t) —«&t with ¢ as small as
desired, e.g. £=0.001,. In fact the new mixed Poisson process is obtained from
the original process by adding a pure Poisson process with mean ¢7. Then

0 (O=0()—e  0M(O=0"() m>2

and
im0, ()= —¢
= w0
so that
pr=—pm 0 (0)/e and this is finite and positive.

Consider now the expression for A (x, t) with adjusted mean

) <0 M )(m) .
E(,\', f) = ()—t(f) ()’+ (l')b (\) + Z) (— l)'” ’:’;,‘ (: ) h ( )

Assume that

Im()(m)(t)
lim ——2=0 m=223,... 7
1= U% ([) ( )

This is true, for example, for every negative binomial claim process, where 07 (¢)
=(—1D"(m—1)h/(h+t)", and for those of Hofmann with «>1; this latter
inequality is satisfied by one of the two observational results given by Hofmann
(1955). Then

limb(x,t)=>h(x) lim {(1( 0, (t)} b(x) lim ,'() =b{X)

e 0 (1)

t— o t—co

[t follows that (1) and (2) for U(w) and lim {1 — U (w)}, respectively, can be used

t—
without modification for any mixed Poisson claim process satisfying (7). [tis to be
observed that this result, which takes account of the parameter values in 0(t)
only through (7), holds for all positive ¢ and when £=0.
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[ would like to thank Marc-Henri Amsler for suggesting this research. He
pointed out to me that nonlife insurance companies with, perhaps, 100,000
claims in a year were not all that uncommon and that my restriction to small
expected claim numbers in Seal (1978) and elsewhere was not the only solution
for the practical man.

Prof. Hilary. L. Seal

La Mottaz

1143 Apples
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Summary

Only mixed (including simple) Poisson claim occurrences and Pareto and lognormal claim size
distributions have been justified statistically and this paper on large company ruin is limited to their
application. For these cases the asymptotic formulas for the probability of ruin with large initial risk
reserve are a failure numerically, and Bartholomew’s (1963) simple formula, when applied to
Cramér’s exact equation (1), produces unacceptable results. Repeated Simpson quadrature of the
integral in (1) gives good results at the cost of lengthy calculations. Fitting a Pearson curve to the
moments of the survival distribution function is reasonable for the lognormal. Table A summarizes
these results. The paper concludes with a proof that negative binomial claims are equivalent to
Poisson claims so far as eventual ruin is concerned.

Zusammenfassung

Nur Poisson- oder zusammengesetzte Poissonprozesse fiir die Schadenzahlen und Pareto- oder
lognormale Vertetlungen fiir die Schadenhéhe konnten durch statistische Beobachtungen gerecht-
fertigt werden. Die vorliegenden Arbeit (iber die Ruinwahrscheinlichkeit grosser Portefeuilles
beschriinkt sich auf diese Hypothesen. Fiir grosse Portefeuilles mit hoher anfinglicher Schwan-
kungsreserve sind die asymptotischen Formeln fir dic Ruinwahrscheinlichkeit numerisch nicht
verwendbar, und Bartholomews einfache Formel (1963), angewandt auf Gleichung (1), liefert
unbrauchbare Resultate. Mehrfache Anwendung der Simpsonschen Regel aut das Integral in (1)
fiihrt zu guten Ergebnissen. allerdings auf Kosten lingerer Berechnungen. Eine Approximation der
Momente der Verteilungsfunktion der Uberlebenswahrscheinlichkeit durch cine Pearsonkurve ist
im lognomalen Fall indessen sinnvoll, Tabelle A fasst die Resultate zusammen, Die Arbeit schliesst
mit einem Beweis, dass Schadenzahlen vom Typ negativ binomal und Poisson hinsichtlich der
Ruinwahrscheinlichkeit dquivalent sind.

Résume

Les observations statistiques n’ont justifi¢ I'usage que des processus de type Poisson ou Poisson
pondéré pour 'apparition des sinistres et des lois de type Pareto ou lognormal pour le montant des
sinistres. Le présent article, consacré a la ruine de gros porteteuilles, se limite a ces hypothéses. Pour
de gros portefeuilles avec de fortes provisions de fluctuation, les formules asymptotiques pour la
probabilité de ruine ne sont pas praticables numériquement. La formule simple de Bartholomew
(1963), appliquée a I'équation exacte de Cramer (1), produit des résultats inacceptables. Des
quadratures répétées selon Simpson sur l'intégrale dans (1) donnent de bons résultats mais entrainent
de longs calculs. Pour le cas lognormal, une courbe de Pearson adaptée aux moments de la fonction
de distribution de la probabilit¢ de survie conduit & des conclusions raisonnables. Le tableau A
résume ces résultats. L'article se termine par une démonstration que les sinistres de type binomial
négatif sont équivalents & des sinistres de type Poisson pour ce qui concerne le probleme de la ruine.
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