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Hilary L. Seal, Apples

Numerical probabilities of ruin
when expected claim numbers are large

Introduction

Numerical probabilities ofeventual ruin, i.e. duringa period when the number of
expected claims is very large (theoretically infinite), can be traced back to

Lundberg himself (1926, Kap. 8). Using his newly derived asymptotic formula
for the probability of eventual ruin based on a large initial risk reserve (free

surplus) of .Y,,, namely ae (Lundberg, 1926, p. 26), and with four different
claim size distributions: (i) all claims unity, (ii) exponentially distributed claims,

(iii) gamma with index 2 claims, and (iv) an actual life insurance distribution of
sums at risk from De Förenade, Lundberg's own company, he evaluated the

proper fraction a for five different /f-values, namely 0.05/, /= 1,2,4,6,10,
showing that it decreased considerably over this range.
An exact value of the probability of eventual ruin when claims are occurring in

time as a Poisson process (Lundberg's invariable assumption) and the claim size

distribution is exponential, (ii) above, was published by Cramer (1930) as

I

i//(H')=- - e
1+1

where the monetary unit is the mean claim, ;/ is the risk loading on the unit

premium per expected claim, and vv is the number of average claims that the

company has available as initial risk reserve. The value of t//(ir) for the uniform
claim distribution, (i), had already been given by Erlang (1909) in a telephone

delay problem (see Seal, 1969, 4.12). These formulas would have permitted the

practitioner to evaluate exact eventual ruin probabilities at will for the two

specified claim distributions.

The next published numerical probability of eventual ruin occurs in Cramer

(1955, p. 45). It was based on a distribution of fire insurance claims graduated to

produce the sum of an exponential and a truncated Pareto v 1.75 density,

namely

/>(!') /le • /?( y • 6) -"5 0 < y < 500
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where /?() is written for the claim density, // =4.897954, 0 4.503 and

7 5.514588. The asymptotic value of i//(ir) was computed by Lundberg's
formula already mentioned, the value of /? being 0.00736. The «exact» four-
decimal values ofi//(ir) were stated to have been calculated by Cramer's integral
equation, 1 hereafter, and Nils Wikstad tells me that research among some old

papers suggests that this computation was made using trapezoidal quadrature.
The asymptotic formula is rather poor, not even being correct in the second

decimal place, but the largest illustrative value of vr is only 100.

At the time C'ramér wrote. Ammeter's (1948) suggestion to replace risk theory's
Poisson process of successive claims in a portfolio of policies by the negative
binomial (Polya) process had not yet produced statistical confirmation other
than his own single example (however remember O. Lundberg's (1940) fittings of
this process to successive sicknesses of individual insured), but the next twenty-
five years were to see substantial evidence that this new process, as generalized by

Thyrion (1959) to become the mixed Poisson process, was widely applicable in

nonlife insurance (Seal, 1969, pp. 15-28; Brichler, 1971 ; Thyrion, 1972). In fact

no other claim number process has yet been shown to agree with actual statistics

of claim occurrences. Types of distribution of independent claim sizes are just as

limited, for apart from the Pareto and lognormal distributions, namely with
distribution functions, respectively,

where <£(•) is the distribution function of Normal (0, 1), wc are not aware that

any has been fitted successfully to actual claim sizes in actuarial history (Seal,

1969, pp. 29 31 ; Benckert & Jung, 1974). For example, of the four published
fittings of mixed exponential claims distribution none was tested statistically for
goodness of fit and in two of the articles the authors themselves expressed doubts
about the adequacy of the results.

There are few published calculations of i//(ir), other than its upper bound, since

Cramer's (1955) example. First were those of Grandell & Segerdahl 1971 and

Bohman( 1971). In both cases the gamma distribution waschosen for claim sizes,

and while the joint authors utilized Lundberg's asymptotic formula Bohman
illustrated the numerical inversion of the characteristic function (Laplace

and
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transform) of i// vi')- Both sets of results agreed, essentially to five decimal places,
with calculations by an «exact» formula of Thorin (1973). Then came Thorin &
Wikstad's (1973) calculations including those for a Pareto claim distribution,
and their further calculations in (1977) for lognormal claims assuming a Poisson

process of claim occurrences.
This brief historical review has been necessary to show that the numerical
calculation oft// (vv), or as we will write it I - C(ir) to emphasize that (/() can be

regarded as a distribution function (Beekman, 1969), has rarely been attempted
with a practical distribution of nonlife claim sizes. Furthermore, the calculation
of t//(ir) has never been made with a mixed Poisson, in particular a negative
binomial, claims occurrence process with infinitely large expected claims.
We intend to try to fill the lacuna left by prior published work, namely to produce
numerical values of i//(ir) based on Poisson claim occurrences and Pareto or
lognormal claim sizes. The formulas specifically used for this purpose, among
others, by Thorin & Wikstad (1973, 1977) would naturally take pride of place

among our procedures and, in fact, Nils Wikstad has kindly furnished me with a

FORTRAN program to calculate i//(ir). But those who have studied the two

papers cited may think that the general technique developed there, using what
Feller (1971, XL 7) calls "deep complex variable methods", is rather involved for
the calculation of the re/m/re/r straightforward ruin probabilities we require.
After all, Cramer's integral equation, (I) hereafter, provides the "exact" results

for any Poisson process of claim occurrences. And the final paragraphs of this

paper show how these can usually be employed for mixed Poisson claim

occurrence processes. This is why we have persisted in trying to develop simple
numerical methods available to every practitioner.

The Cramer integral equation for Poisson claim occurrences

Lundberg's (1909) partial differential equation for y(», r), the probability
density for a (first) ruin amounting to r given an initial risk reserve of», was

transformed by Cramer (1926) into an integral equation of Vol terra type, namely

00 I 00 1 "
I' y (»,/') <r/r !//(«)= I' {l-ß(r)|r/r+ j i//(»-m) { I -ß(r)}de
o

1 + '/ «
I + >/ o

where i//(») is the probability of eventual ruin with an initial risk reserve of» times

the average claim and a continuously paid risk premium of I F //, and ß( is the

distribution function of individual claim amounts with conventional unit mean.
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Claims are supposed to he occurring according to a Poisson process with a unit
expected interval between successive claims. Cramer did not publish a proof of
this relation until 1930).

We write T/(vr)=l — i//(vr) and Cramer's relation becomes, >r>().

This is proved by Feller (1971, VI. 5 and XI. 7) with his /?()= 7/(-).
We have mentioned that Cramer's (1955, p. 45) "exact" method ofsolution of( I

involved the use of trapezoidal quadrature. However quadrature by repeated

Simpson suggested by Seal (1978, p. 59) has never, we believe, been extended to

large u'-values and the necessity of small increments in ir results in a computer
run of three minutes or more. Nevertheless this was an obvious first trial in the

numerical production of 7/(h') from (1).
The results appeared to be satisfactory. For lognormal — y, 1) (the unit <r being

approximately the value deduced from observations by Bühlmann & Hartmann

(1956) and £ then equals —1 for the mean claim to be unity) with a step in ir
equal to 0.1 the 7/(w) values shown in Table A were obtained, and for vv<20
there was three decimal agreement with values produced using a vv-step of 0.01.

For Pareto v 2.5 (a "modern" value of v; Seal, 1980) the step of 0.1 achieved

four decimal agreement at 7/(20) with a 0.01 step, and a "check" of 7/(250)
based on evaluation of the right hand side of (1 using repeated Simpson with 0.1

increments reproduced the uncurtailed Table A value to six places of decimals.
We now proceed with other methods of calculating 7/(vr) that have been

proposed either specifically or in similar situations.

Asymptotic formulas for large n>

In Feller (1971, XI. 7) it is shown that it follows from (1) that

m 1 T

f/(w) — H J 7/(u'-r){
1 + '/ 1 + >/ o

j 7/(u' —r) {I -ß(y)}(/r

7/ (0) + j 7/( u' —>) // jO c/r (1)
O

(2)

j' .vCA/ß(,v)-(l +//)
0
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if the integral exists, where /c is obtained from

CO

j e"h//i( r) l 4 (1 + >/)/c

0

This is the Lundberg (1926, p. 26) asymptotic formula already mentioned.
The trouble with asymptotic formulas is that one needs some "exact" results to
indicate from what value of the variable, w in this case, the asymptotic results can
be used. However this problem does not arise when /J( r) is Pareto-r or
lognormal (Ç,<r); the integral used in the determination of k, conveniently by

expanding the exponential and producing moments of #(•), diverges even

though the moments of the lognormal are all finite. Those of the Pareto are

infinite except for the mean and variance (v> 2). To meet this situation Thorin
(1974) proposed a different asymptotic formula for Pareto-r and in a further
article (Thorin & Wikstad, 1977) he extended his procedure to lognormal (Ç, a)

provided In u' > C + rr. We have called these formulas "Thorin asymptotic" in

Table A and although the Pareto values are better than the lognormal neither set

is acceptable.
The inapplicability of (2) for both Pareto and lognormal ß(-)can be overcome by

truncating these distributions at a remote tail abscissa. We experimented with
tail abscissas r, corresponding to #(>',) 0.99995 and found rc equal to 0.037819

and 0.065041, respectively. The corresponding asymptotic t/(u')-values are

shown in Table A. Those for the lognormal are in reasonable agreement with the

quadrature of equation (I) but this cannot be said for Pareto.

Bartholomew's approximation

Cramer's relation 1 is a special case of the renewal equation. In the latter C(0)
becomes a function g(u>) and /;(>') is a density instead of proportional to the

complement of a distribution function. Bartholomew (1963) proposed a very
simple approximate solution to the equation where ,g(ir) //(it) and provides
several numerical examples in his 1973 book. In the case of equation (I)
Bartholomew's formula becomes

6/(ir) ~ (/(0) I +

\

vi'//(vr) \
W

w — J //(a r/.v

0

(3)
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where *

//(a) J /;( y)c(y.
0

//(.v) and its integral can be evaluated for Pareto and lognormal /;(>') and

numerical results are provided in Table A. We conclude that relation (3) does not
constitute a good approximate solution to Cramer's equation.

The Laplace transform of 1/ (w)

Another method ofcalculating C(u') found in the literature is the inversion of the

Laplace transform of L'(vr). The latter is

n

)'(,)= f e-»»£/(w)rfw - (4)
(l+r,).v-l+/i(.v)

where
co

/;(.v)= J e W)( v)r/r
0

(Feller, 1971, XIV. 2(b); Cramér, 1930, (78)). Unfortunately /i(,v) has no closed

form when /?(•) is lognormal but when the claims size distribution is Pareto-v
Seal (1980).

00

/I (.v) v J' <?-( 1 + >•) ' " 'r/y +1 (s/>), 6 v - 1, tfe (,v) > 0

0

Seal (1980).

The numerical inversion of )'(.v) for n' 50(50)450 with /i(.v) as above was
effected by means of 24 term Gaussian integration described in the computer
program GETBRM of Seal (1978, p. 83). The whole set required barely 10

seconds of CPU time but involved the writing of a program to produce /) (.v), ,v e

+ /«, in double precision arithmetic. The results are shown in Table A and are in

exact three decimal agreement with the repeated Simpson quadrature of the

integral in (1). This is gratifying because it indicates that straightforward, if long,

quadrature of (1) provides correct results even for large vr-va lues.
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The moments of 17(iv)

It is quite easy to use (I) to evaluate numerically and exactly

00

j u''V/(/(ir) w„ « 0,1,2,3,...
0

the successive moments of the distribution function (7(ir), in terms of the

moments (about zero) />;,./' 1,2,3 of the density />(•). For the lognormal
(C, ff) all moments exist and are given by

(Aitchison & Brown, 1957, p. 8)

but for Pareto-v it is seen (e.g. Seal, 1969, p. 30) that /;,• is infinite when /> r.

It can be shown that

/Vu I " '

w„= ,r + - 1 -j+I, — - "h (5)
(« + 1 t/ t; ; I ./ 1 +1/ 2 r/

and this relation provides a recursion formula for /«„, «= 1,2,3 Note that
(/(ir), given by I), is a monotonically increasing continuous function of tr with a

unique discontinuity at w 0. Any frequency distribution obtained from the

above moments will thus have an aggregate area of 1—1/(1 +//).
A family ofcurves based on the first four central moments of a distribution is that
of Karl Pearson. The appropriate member of the family in any given case is

determined from the position of (/(,,/Jj) in the plane. Here

/^i=W//'2 and /T=/(4//<2

where
CO

/(„= j {x-/(}"p(x)dx
- oo

p(-) being the density whose moments are calculated and /i its mean.

For the lognormal (-j-, 1) use of (5) produces

/i, =4.813 and ft 10.349

and

2ft-3ft-6 0.257
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The smallness of this quantity is a criterion for Pearson's Type ill (Elderton &
Johnson, 1969, p. 78) which is a gamma distribution with a non-zero start,
namely

p + 1 / v \
>-y*

with index

and

1 / .v

4
/; y« I —0.1690

/A

fl /(2)> -1/)'= —59.936

In terms of the incomplete gamma ratio

y

J' p(.x) />(/; + l,«T r-;T
- «

Three-decimal values of

— + 1 P(p+ 1, «TTr • >>), // 0.1, H' 25(25) 150
1+r/ V 1+///

are given in Table A. For u >75 the results are in good agreement with
quadrature using a step of 0.1 in tr. We mention that a rather different
incomplete gamma ratio approximation to t/(vr) is given in Beekman (1969).
With an unlimited number of moments m„ available no doubt some series

approximation could be found to represent £/(w) pretty accurately.

Other solutions of the renewal equation

Bartholomew's (1963) approximate solution of the renewal equation was the

culmination of a long series of attempts to produce numerical solutions based on
different forms of what we have written as //(-). Some of these are described in

Saxer (1958, Kap. 4) and the originator of the equation has detailed his preferred
method in Lotka (1940). Writing the renewal form of equation as

.Y

»(.V) =g(-V) F J' W(.V ->•) /'( .!•) (/.!'

0
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and subject to certain restrictions on the three functions involved (Feller, 1941

the solution takes the form
00

»(-v) V ,|^<v
fc t

where the ,v^ are the roots of the equation

CO

f/)(.v)= J c '\/1 v)</\ I

0

only .s-, being real, the remainder conjugate complex with real parts less than .v,.

In Lotka (1940) the author uses the first four cumulants of /( v), which is a

Pearson Type I (beta) density, and finds the first 21 roots of r/;(.v) - 1 by a method
described there in detail. His last root is .sq, — 1.400 + 3.219i the real part of
which is small enough to produce a vanishing term in the solution for n(.v). We

followed Lotka's procedure with the first four "cumulants" of /;( v) based on

lognormal — 1) but found that .v,_, was —0.390 —0.995i, a value considered

insufficiently small in view of the length of the series for n(.v) t/(w).

Conclusions for Poisson claim occurrences

Only Pareto and lognormal claim size distributions have been shown to be

acceptable statistically and we have confined our attention to these. Asymptotic
formulas for the probability of ruin with large vv, the initial risk reserve expressed

as a multiple of the mean claim amount, whether based on:
(a) Lundberg's 1926 formula;
(b) The same formula with 0.00005 of the largest claims eliminated; or
(c) Thorin's (1974, 1977) formulas for Pareto and lognormal claims size

distributions;
have been shown to be inapplicable or to produce unreliable results. A simple
formula for C/(vr) developed for a slightly more general case by Bartholomew

(1963, 1973) and used, we believe, fairly widely in industrial severance

investigations fails quite badly in the actuarial field. On the other hand, repeated

Simpson quadrature of the integral in Cramer's equation (1) (Seal, 1978, p. 59),

although very long with small increments in h\ produced good results which were
confirmed by Gaussian inversion of the Laplace transform of f/(ir) in the Pareto

case. For the lognormal a fitting of a Pearson curve to the first four moments of
(/(vr) produced reasonably good results for the larger, important ir-values.
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7«Wc'

Values of (/(w) with /; by Various Methods

Pareto r 2.5

Truncated iauss-24

Quadrature Bartholomew Thorin Lundberg inversion
hr 0.1 (3) asymptotic asymptotic Of r (.V)

50 0.836 0.695 0.950 0.881 0.836
100 0.948 0.809 0.982 0.982 0.948
150 0.978 0.861 0.990 0.997 0.978
200 0.988 0.890 0.994 1.000 0.988
250 0.993 0.909 0.995 0.993
300 0.922 0.996 0.995

350 0.932 0.997 0.996
400 0.940 0.998 0.997
450 0.946 0.998 0.998

Lognormal -1,0

Truncated Pearson

Quadrature Bartholomew Thorin Lundberg Type III
VV /I »'= 0.1 (3) asymptotic asymptotic by moments

25 0.826 0.681 0.990 0.833 0.789
50 0.963 0.806 0.999 0.967 0.954
75 0.992 0.861 1.000 0.994 0.990

100 0.998 0.891 0.999 0.998
125 1.000 0.911 1.000 0.999
150 0.924 1.000

175 0.934
200 0.942
225 0.948

Mixed Poisson claim occurrences

Writing/;,, (/) for the probability of« claims in an interval of time (0, /) the mixed

(or compound) Poisson process is defined by Lundberg, 1940, p. 72)

co ei/v
/V(0=J'c r/M(7) (6)

o "!

where M(-) is a distribution function over the positive axis and is called the

mixing distribution. It was introduced to actuaries by Dubourdieu (1938),
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without supporting observational evidence, as suitable for the probabilistic
representation of automobile accidents, and Seal (1969, pp. 15-17) reports five

statistical articles published before 1963 in which this model was applied. All
these articles interpreted (6) as expressing the probability of« claims occurring to

a .s7«g/e driver subject to a simple Poisson process of claim epochs, the claim

intensity at any such epoch being A chosen at random from a distribution
function of A's, namely M(A). However, as is implicit from O. Lundberg (1940,
Ch. V), when a /w/7/«/w of two or more automobile accident policies is

considered (6) means that:
(i) the claim intensity at any epoch in the interval ((),/) depends on the

aggregate number of accidents occurred prior to that epoch, and

(ii) given that an aggregate of« accidents has occurred in (0, /) the epochs of
those accidents are distributed uniformly with density /

These two properties of (6) are proved explicitly by Cane (1977).
The foregoing numerical investigation has been based on formulas derived with
a Poisson point process of claim occurrences in mind. In Ammeter's (1948)

original extension of the Poisson to negative binomial claim processes he showed

how to transform the ugg/rgu/e claim-size distribution by epoch / stemming
from negative binomial claim input to one based on a Poisson input with the

distribution of individual claim sizes modified to depend on the parameter/. This
extension of risk theory based on Poisson claim numbers to negative binomial
claim occurrences was generalized to any mixed Poisson claim process by

Thyrion in a series of papers that culminated in that of 1969. An important result

of Thyrion (1969) is that when the claim process is negative binomial, namely
when

the mean of the adjusted individual claim size distribution is infinite when /-> oo

and thus relation (2) cannot be used*. This is also true of the Hofmann (1955)

* Thyrion (1969) distinguishes between the ease of a single infinite span and that of an infinity of
independent spans of fixed length f (Ammeter's original case). The equation to determine k of (2) for
the latter model requires ß( r) to be changed to ß( r, /) and /r on the right hand side to be multiplied
by /?, as defined hereafter (Ammeter, 1948). In (I) ß(y) becomes «(.>',/).

and (6) becomes
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claim process

/?o(0 exp o(l-«)
f"

(l-(l+o/)' "} r>0

/>„(0 (-0" A"(0 «=1,2,3,...
«!

but not of the Double Poisson. These three are the only members of the mixed
Poisson family that have been fitted successfully to actual distributions of the

number of claims occurring in a fixed period t.

Thyrion (1969) writes the mixed Poisson claims process in the form

/;„(/) c""\ d(0) 0, (-t)"d<">(0>0 «=1,2,...

/>„(') (-D"^ A"'(0 «=1,2,3,...

which is equivalent to (6). The adjusted claims si/c density is then given by

which, for negative binomial claims, takes the form

I / /
6(.v,r) -

In 1+-
x 7A m l w + '

//"'(a)

in agreement with Ammeter (1948).
This density has mean

oo oo

/!, ]' .v/7(.v, /) r/.v I (-1)"' „
J' .v//""(.v)r/.v

0 m " I • " U1 0

/ ^ ^ /n
=7f7T I (-1)"' 7 - -

0""'(O ü'(f-0 by Taylor's theorem
0(0 ,„ t (rn — 1)1 0(0

=/hö'(0)
0(0

or /?,

/
Ä

In I +

for the negative binomial case.

Now the probability of no claims in an infinite period of time being assumed to
be zero, limO(0 — °o and lim//0(O lim 1/0'(0- The latter expression must
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he finite if/5, is to he finite as / -> x>. It is easily shown that this requirement is not
satisfied for the negative binomial, where ü'(/)= — /;/(// + /) (Thyrion, 1969), and

Hofmann claims processes. Nevertheless it is simple to adjust any mixed Poisson

process with lim 1/()'(/) go to another in which this limit is finite.
(-> GO

Suppose the adjusted fl(-) is (!+(•) such that d + (t) (!(/) —c/ with /: as small as

desired, e.g. e 0.001,. In fact the new mixed Poisson process is obtained from
the original process by adding a pure Poisson process with mean ;:t. Then

«;(0 ö'(/)-e, 0<f(/) ö""»(/) //; > 2

and

limdj. (/)= -B
/ -» OO

so that

/;, (0)/r: and this is finite and positive.

Consider now the expression for />(.v, /) with adjusted mean

/>(-v,0==-, X. dV(/)/'(.v) f X (-1 )"' —

Assume that

lim -ii o m 2,3,... (7)
-> CO " + V * /

This is true, for example, for every negative binomial claim process, where (!'""(/)
(— I)"'(»i — 1)!/;/(// +/)'", and for those of Hofmann with «> I; this latter

inequality is satisfied by one of the two observational results given by Hofmann
(1955). Then

lim/>(.v, 0 Hv) lim I ' 0'+(/)} />(,v) lim 'j/-/>(.v)
(->00 (-»00 (f+VtJ J /->GO 1/+UJ

It follows that (1) and (2) for (/(vr) and lim {1 — t/(n>)}, respectively, can be used
(-»00

vw'/Aom/ OTor///i'c«/('o« for any mixed Poisson claim process satisfying (7). It is to be

observed that this result, which takes account of the parameter values in 0(t)
only through (7), holds for all positive « and when /; 0.
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I would like to thank Marc-Henri Amsler for suggesting this research. He

pointed out to me that nonlife insurance companies with, perhaps, 100,000
claims in a year were not all that uncommon and that my restriction to small

expected claim numbers in Seal 1978) and elsewhere was not the only solution
for the practical man.

Prof. Hilary. L. Seal

La Mottaz
1143 Apples
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Summary

Only mixed (including simple) Poisson claim occurrences and Pareto and lognormal claim size

distributions have been justified statistically and this paper on large company ruin is limited to their
application. For these cases the asymptotic formulas for the probability of ruin with large initial risk

reserve are a failure numerically, and Bartholomew's (1963) simple formula, when applied lo
Cramer's exact equation (1), produces unacceptable results. Repeated Simpson quadrature of the

integral in I gives good results at the cost of lengthy calculations. Fitting a Pearson curve to the

moments of the survival distribution function is reasonable for the lognormal. Table A summarizes
these results, flic paper concludes with a proof that negative binomial claims are equivalent to
Poisson claims so far as eventual ruin is concerned.

Zusammenfassung

Nur Poisson- oder zusammengesetzte Poissonprozesse für die Schadenzahlen und Pareto- oder

lognormale Verteilungen für die Schadenhöhe konnten durch statistische Beobachtungen gerecht-
fertigt werden. Die vorliegenden Arbeit über die Ruinwahrscheinlichkeit grosser Portefeuilles
beschränkt sich auf diese Hypothesen. Für grosse Portefeuilles mit hoher anfänglicher Schwan-

kungsreserve sind die asymptotischen Formeln für die Ruinwahrscheinlichkeit numerisch nicht
verwendbar, und Bartholomews einfache Formel (1963), angewandt auf Gleichung (I), liefert
unbrauchbare Resultate. Mehrfache Anwendung der Simpsonschen Regel auf das Integral in (I)
führt zu guten Hrgebnisscn. allerdings auf Kosten längerer Berechnungen. Fine Approximation der
Momente der Verteilungsfunktion der Überlebenswahrscheinlichkeit durch eine Pearsonkurve ist

im lognomalen Fall indessen sinnvoll. Tabelle A lässt die Resultate zusammen. Die Arbeit schliesst
mit einem Beweis, dass Schadenzahlen vom Typ negativ binomal und Poisson hinsichtlich der
Ruinwahrscheinlichkeit äquivalent sind.

Résumé

Les observations statistiques n'ont justifié l'usage que des processus de type Poisson ou Poisson

pondéré pour l'apparition des sinistres et des lois de type Pareto ou lognormal pour le montant des

sinistres. Le présent article, consacré à la ruine de gros portefeuilles, se limite à ces hypothèses. Pour
de gros portefeuilles avec de fortes provisions de fluctuation, les formules asymptotiques pour la

probabilité de ruine ne sont pas praticables numériquement. La formule simple rie Bartholomew
(1963), appliquée à l'équation exacte de Cramèr (I), produit des résultats inacceptables. Des

quadratures répétées selon Simpson sur l'intégrale dans I) donnent de bons résultats mais entraînent
rie longs calculs. Pour le cas lognormal, une courbe de Pearson adaptée aux moments de ht fonction
de distribution de la probabilité rie survie conduit à ries conclusions raisonnables. Le tableau A
résume ces résultats. L'article se termine par une démonstration que les sinistres de type binomial
négatif sont équivalents à des sinistres de type Poisson pour ce qui concerne le problème de la ruine.
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