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Biorn SunpT, Oslo

Credibility models allowing durational effects

1 Introduction

IA.  For a numerical study on parameter estimation in credibility models
[Sundt (1983)] the present author used data from an automobile liability
insurance portfolio observed for three consecutive years. From this portfolio we
extracted the subportfolio consisting of all policies that had been in force for all
three years. In Table 1.1 we have given the number of policies and claim
frequencies both for the subportfolio and the whole portfolio. It is clearly seen
that the claim frequencies of the subportfolio are significantly smaller than the
frequencies of the whole portfolio. Hence, there must have been some selectional
effect by our construction of the subportfolio; it seems that old policies have
smaller claim frequencies than young policies.

One way to explain such a selectional effect would be by a learning effect; the
drivers get better as time passes. However, if this were the right explanation, then
the claim frequencies of the subportfolio should have been decreasing with time,
and such an effect is not detected in the data.

[t seems more appropriate to assume that there are individual differences
between the policies, and that policies with high claim frequencies are more apt
to leave the portfolio than policies with low claim frequencies. This aspect has so
far not been encountered in credibility theory [except by Taylor (1975)], and it is
the purpose of the present paper to examine it more closely,

Table 1.1
Claim frequencies in an automobile lability insurance portfolio (data from
Storebrand Insurance Co. Ltd.)

Period Subportfolio Whole portfolio

Policy years Frequency Policy years Frequency
1976 2697 0.023 11098 0.050
1977 2697 0.027 12103 0.057
1978 2697 0.026 11249 0.052
1976-78 8091 0.025 34450 0.053

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 1, 1983
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1B.  As usual in credibility theory, we assume that to each policy in an
insurance portfolio there is connected an unknown random variable 0,
describing how this policy may differ from the other policies in the portfolio; to
concretize, let us roughly say that the policy is more risky the greater the value
taken by 0 is.

Let £ be the total time the policy stays in the portfolio. Thus, for an n years old
policy we know that =n. We shall assume that £ is integer-valued.

The key idea of the present paper is that the fact that the policy has been in force
for a certain number of years, tells something about its fl. By this we do not mean
that fis changing over time, but that the conditional distribution of 0 given that the
policy has been in force for this period, is different from the unconditional
distribution of 0.

1C.  Let X;denote the claim number or the claim amount of an insurance policy
from the i-th year it is in force. We assume that X, X,,... are conditionally
independent and identically distributed given 4.

[t is important in what follows, to imagine that ¥; is also defined for i > r. Thus,
when we want to estimate ¥, utilizing the past experience, the fact that 1> n,
may give some information in addition to the information lying in the values of

Rses i 25 e

ID. The present paper summarizes parts of the author’s doctoral dissertation
[Sundt (1982)], available from the author. For more details, we refer to the
dissertation.

2 Conventions

[n what follows, many expressions will be simplified by the concept that when
Zy,23,. .. 18 some sequence, then by ,z we mean the vector ,z=(zy,...,z,)".
Another simplifying notation is the following: Let y and Z be two random
variables. Then, if there is no possibility of misunderstanding, we write & ( j|z) as
an abbreviation for & (J|Z=z). We do similarly for conditional variances,
densitics, etc.

For indexed quantities we skip the index when it does not give any information.
For instance, if p,,. .., p, are identically distributed random variables, we write
& (7) instead of & ().

We shall often introduce conditional densities, expectations, etc. Let  and Z have
the joint density f(y,z) and Z marginal density g(z). Then, if g(z)#0, the
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conditional density f(y|z) of J given Z=z, is given by

y o
f(¥]2) 2

g(2)

For g(2)=0f(y]z) may be defined in an arbitrary way. Because of this, we shall
not bother about mentioning the case when denominators are equal to zero when
we work with conditional densities, expectations, elc.

By R, we shall mean the non-negative real numbers; by A, the non-negative
integers.

3 The general setup

3A. Let 0 be a random variable with measurable density 1(0) with respect to a
measure space (&, .o, a).

For given (=0 the random variables ¥, X,,. . . are independent and identically
distributed with measurable density f(x]0) with respect to the measure space
(Ry, 4, b). In most applications 4 is either the counting measure or the Lebesgue
measure, in most cases extended by an atom at zero.

The random variable ¢ is defined on Aj, and we assume that

l (n=10)
P‘ ? ‘,,-1 = 0l [7:() = .“.
e d= e 02020 0w 120
p=ii
This gives
Pt'(?)‘ HIT;H, ‘115 = w0X, (7:()):({;"”(()’ n’:\.)

Hence, if 0 and the past claim amounts are given, the future claim amounts do
not influence the probability of leaving the portfolio. We also assume that these
probabilities are not influenced by the rating of the policy.

The joint density of (,&',7,0)" is now given by

n t—1
(4['[ ‘}'(x:-’(})) (II g: (0, ,--;‘)) (1 g0, Nu0) (t<n)

i=1 i=1

We let 7, denote the indicator

{1t if t>n
I e -
0 if t<n
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3B. After n years we want to estimate X,,,;. We assume that the past claim
amounts X are available, and that it is known whether the policy will be in force
next year or not, that is, the available policy data are (,,g”,ﬁ,)’. We use quadratic
loss, that is, we choose the estimator minimizing the risk

-%n +1 (*‘en + 1) =& (fﬂ LT '%” + 1)2

within some class %, of estimators x,,, based on the available data.
The widest possible class is of course

(f,::ck 1= {J€r1+ \ :h(niazn)]hzg X {Os I}—) lze}

that is, the class of all estimators utilizing the available data. The optimal
estimator in this class is

x:fir i= (5’ (*{‘n + lJnia Tn) =& ((g) (i

D), i)

Similarly, the optimal estimator of X, ;. { based on the past claim amounts, that is,
the optimal estimator from the class

%::”:1 = {)en +1 h (ni)|h :&_) 5}

0)],%)

*k 0%
it =8 X4y

nj_g) - (SJ((E (’%

The classical credibility estimator %, ,, is the optimal estimator from the class

n
T e = {x,, r1=dy+ Z cz,-,i'ilfzo, Alye o, UnE __@}

i=1

[t is well known [see ¢.g. Bithlmann (1967)] that

. noo- K
X1 = X +H7+K I
with
= [ < ; (Ib @l (3 v 2 @ (%
,x,,:n- 2 Xy Jo== bl p=8V(30) A=y oS"(xlﬁ) H=4&(X)

The estimator ¥, , , was originally developed in a model in which variables like ¢
and i, were not incorporated. In the present model the information lying in i, may
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be utilized by the introduction of
Xn F1 = %o (jn) £ Z ai(Zn) Xy

i=1

being the optimal estimator from the class
";.n 1= YAn +1=do (;;l)_'_ Z a, (;;l)“%l'ja()! o g (1,,:{0, 1}'"*:
i=1
e.g. Jewell (1975a)] that the coefficients o (Z,), . . ., o, (i) are

[tis well known [seee
determined by the normal equations

4 (in +1s n~:\~_: ,'[n)
(g’(-{‘n + l|in) =& (f:n *+ 1|Tn)

=% (X‘n +1» n-j I|Zn)

As
% ok
%n-f-lcq lculni—l

'f}"HC !nHC lni—l

Sg—gn +1 (X.n -I-l)

we have
n +1 ()'L",, + l)

(ﬂn +1 (xn +1

‘n+1 (xrr !—l)

‘%?n +1 (x:lk+ l)
(3.1)

#ﬂn +1 (-xrl k l)“‘<-
giving a partial ranking of the four estimators

[n practice the estimators of X, are to be used for rating the policy for its

3C aotiee ~eet M e
(n+ [)-th insurance year, and thus the expressions for the estimators x*, ; and
%, + 1 for the case i, = 0 are of no practical interest. Hence, for the rest of the pape

‘n +1 =& ("rl + lJn\ (t >”)) @p(‘gﬂ (XIH)‘ i t> H))

we let
and n
.i’,, 11 =0+ Z 0 X
i=1
o, are determined by the normal equations
(3.2)

where the coefficients oy, o,
%J(in +1» !E£,|‘[> ”) =% (jn +1s ni”! > ”)
(3.3)

] ({‘n F 1’?> ”) = (’gﬁ (-{.n + 1|?> H)
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ﬂ gE(U,i
PR o) P A Ul E— : (3.4)

3D, We easily find
& (( ‘)/(‘t|0)> _/‘(vrn + 1‘0))

T :(0,:x) /(xi[0)
”(UJ?> n, n-__Y) = %J"""" Y (35)
& (1—[ %’l(ﬁ g)_/'(xy[ﬁ))

i=1

[tis interesting to note that (3.4) remains unchanged if g; (0, ,x) is multiplied by a
constant ¢;. As the coefficients oy, oy,...,a, of x,,, are determined by the
moments of the distribution f7, +.1.‘=‘c|?> n), we have that also these coefficients
remain unchanged.

Furthermore, (3.5) remains unchanged when g;(0, ;x) is multiplied by a func-
tion ;(;x) of wx. As xF,, is an expectation with respect to the distribution
u(()|(?> n), »X), we have that also x;f, ; remains unchanged.

4 Some special cases

4A. In the present section we are going to look at some different additional
assumptions on the probabilities g; (0, ;x).
We first assume that
gi(0,:0)="h;(0)g (0, x;) (4.1)
Then (3.4) becomes
& ((ﬂ h;(ﬁ)) (I_I g(a ‘H)/(V:W)) Sx, Fl'g))
S f>ny=—"=1 B e (4.2)
%@%@M%Hh@)

i=1

From this we see that ¥,. .., X, are conditionally relatively exchangeable with
respect to %, ., given (f>n) [see Sundt (1979)]. Thus x,,, may be written

X.',, o %. + ()n'{.n

and from (3.2) and (3.3) we get

(5" = n= Vap— On,“-u
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with
7>n)

I‘{." =% (_{'" ] .{',,I[~> .’I) Ty = i .(in
;lfl:('g”\('§:lf|t>’z) v":d‘j('%n |l’f>f’)
that 1s, ]
,{',, +1 = (5,, (in _,“n) +v,= : (fn - .“n) + vy (4 3)

n

4B.  An interesting special case of (4.1) is the case
g(0,x)=1 (4.4)

This means that only the risk parameter ( has influence on the probabilities of
departure, not the claim amounts. From (3.4) we get

n nt1
& (( Il h.—(U)) [ ./'(-\?i|(7)>
f=1 =1 4

> Hy=—
& (n /zi(ﬁ))

i=1

\fl(n + 1;(

and we see that X,,..., X, are now conditionally exchangeable given (1> n).
This brings some simplifications in X, ;. We have

=, A=Y (E(X |(7, (r> n))}?> n)

|
Ty = (/‘)n o6 /]'n
H

with

b, =8 (v (3|0, (¢ > H))]?> n)

With «,=¢,/4, we have
- o

—F A —" g,
n+r, | ntk,

Xp+1=
For practical applications the assumption (4.4) may be criticized; it seems
natural to assume that g (0, x) depends on x as the policy may leave the portfolio
because of a claim. However, as will become more clear in Section 5, assumption
(4.4) has the advantage that we avoid the rather unstable estimators of v, and 4,
that we get under the more general assumption (4.1). This means that in some
cases the choice between dropping the assumption (4.4) or not, may be
considered as the choice between an appropriate model with unstable estimation
methods or a (slightly?) less appropriate model with stable methods.
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4C. From (3.1) wesee that X, ; cannot be a better estimator of X,,, ; than x,, ;.
From (3.4) we see that if

gi(0,x)=c (4.5)
then n+ 1
./.(n =+ 1;‘[ > ”) =6 ( [‘I /(~\|‘0)> :./.(n F 1;)

i=1

where /(,;1x) denotes the unconditional density of , | X, that is, the fact that !
> n, does not give any information about the claim amounts. In that case X, |
= 4 and xFF, =x% ;.

Let us assume that we have a portfolio of independent policies that all satisfy the
conditions of Section 3. Then, if (4.5) holds, the O-value of a policy drawn at
random from the portfolio, is distributed according to the density w(0). The
structural parameters ¢, 4, and u can be estimated from portfolio data, e.g. by
the estimators proposed by Bithlmann & Straub (1970).

[t is tempting to argue that also in the general case where (4.5) does not
necessarily hold, one should use X, | instead of X, , even if X, is better; in
X, one has to estimate the structural parameters (t,, 4,, 1, v,) for each n,
whereas in ¥, , ; one could use the same two structural parameters (x, () for all n.
Besides, for the estimation of («, ¢t) one could use the simple Biihlmann-Straub
estimators.

As to the second argument one has to be a bit careful. Assume that the age § of a
policy randomly drawn from the portfolio is distributed by a distribution with

point probabilities
pls)= Pr(s=s5)

Then the structural distribution of the s in the portfolio has the density

v(0)= Z u(()]?> s—1p(s)

S

which in general is not equal to «(0). Hence, the Bithlmann-Straub estimators are
not applicable when (4.5) is not satisfied.

4D. We now assume that

g (0, iv;') = &i (i—I\') (4.6)

This means that given the past experience, the value of @ would not give any new
information as to whether the policy is going to continue or not.
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From (3.5) we now see that .
TT./(x0)
(O[> n), )= w(0)=u(0],x)

ﬂ(nfuwﬂ
i=1

»X) denotes the conditional dumty of 0 given %t =,X. From this we see

where (0
that when ¥ is known, the fact that t>n, does not give any additional
information about (. In particular, we get that x*¥ =x*,,. However, the
conditional distribution

& [[ gil I()

()|f > i) =—r ”, e .
& (FI &’f(f-,_ﬂ\:))
still depends on n. £

4E.  We now assume that x*¥, is linear in X,...,X,, that is, that x}¥, =%, ,,.
This is the case in some parametric classes [chcll (1974, 1975b), Diaconis &
Ylvisaker (1979)] and the nonparametric class introduced by Ferguson (1973)
[sce also Zehnwirth (1977, 1979)].

We also assume that (4.6) holds. This implies that x5 = x¥*, . But then x}, | is
lincar, and thus x*,,=x,,,. Hence, we have

ok — kR i
Ny | =Xp+ =Xn+1 = Np 1

A natural question is: /\rc Xt 1 and X, 41 alsoequal under (4.6) if we do not make
the assumption that x}f¥, =%, ? From the following theorem follows that the
answer is in general not yes.

Theorem 4.1. If X, ,, =X, for all choices of g;(;X), then x;¥ =%, .

For proof, we refer to Sundt (1982).

[n most cases, x*¥, is not lincar. From Theorem 4.1 follows that in such cases
there exists at least one censoring mechanism of form (4.6) such that x, . | # %, 4,
that is, from (4.6) we cannot conclude that X, | =%, if we are not willing to
assume that x*¥, is lincar.

4F.  For therest of Section 4 we assume that g, (;.x) =g (x;). This is a special case
of (4.1), and hence x, ,, is given by (4.3). Formula (4.2) may now be written

f[ gy

/(rr+1\">”) r‘é’"(q

‘)’ /I(n-l- l;)
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The condition X, =X, may now be written

R K

— X 1=0,(%, — ) +v
n+ K n f[-f—i\ - !( Aln) n
that is,

n _ K

. N
n+x " H-Jr-h'l n ™ Onln

and by solving for x and u, we obtain

k=n(6,1 —1)=n (E"-— l)
A“

= H' (V" o f“n) s Vn (47)

K

We have the following analogue to Theorem 4.1.

Theorem 4.2. /f x,, H =X, for all choices of g(x), and x;{¥, depends on & only
through X, then x*¥ =%, .

We close Section 4 by looking at a parametric example.

Example 4.1. We assume that
X

0
SO =Prz=x0)="e", (x=0,1,2,...) (4.8)

and that
gx)=(1-9)*
for some pe[0, 1>. Let

W (s)=8(e )

be the Laplace transtorm of 0. Then

_ Ve
Vn - lb (NQ) .”u - ( l Q) Vu (49)
. " (no 3 o ) y,,_r
""n_(l Q) [lﬂ(n()) Vu“ Tn_(l Q) |:’1n +ﬂ " ‘

Aninteresting question is now : For which densities wof 0 do we have X, ., = %, |
for all 07 By inserting (4.9) in (4.7) we obtain



with s =ngp. By solving this differential equation we get

g (-“):(;5: )

with o= puc. But this is the Laplace transform of the Gamma density

K
u(f=—— g% e
(0) F )
[f 0 has this density, then
: : . o+ nx
X =X = X1 =X = "}"Q;_‘r_'”"'{
Combining this with the fact that if x;*¥, is lincar, then x, , ; = X, , |, for all choices
of g (x), we get that the Gamma densities are the only densities giving linear x*¥,
when /(x|0) satisfies (4.8). This result was proved more directly by Johnson
(1957).

5 A numerical example

SA. In the following numerical example data from «Winterthur» Swiss
[nsurance Company were used. From the portfolio of compulsory automobile
liability policies being in force per 31.12.80, policies satisfying the following
criteria were extracted:

a) Passenger car for private use

b) Cylinder volume 1393-2963 ¢m”

¢) Final digits of the policy number: 12, 35, 58 or 79.
Criterion ¢) was introduced as a procedure for random sampling. Criterion b)
may be criticized ; it means cylinder volume per 31.12.80, but the cylinder volume
may have been different earlier. This means that the claim numbers may have
greater variances in earlier years. It should be mentioned that in «Winterthur»
the policyholder usually keeps the same policy number when he changes his car.
The extraction gave in all 11015 policies, but as the real age of the older policies
was uncertain, we used for the investigations only policies originating not carlier
than 1962.
As a simplification we assumed that for all policies the insurance year followed
the calendar year. To obtain this, we defined the first insurance year to be the first
whole calendar year the policy was in force, and we just neglected the data from
the policy before it entered that year. We have not done anything to adjust for the
fact that not all policies cancel at the end of a calendar year.
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Table 5.1

Year of Number of  Claims per policy year in
origin policies

1976 1977 1978 1979 1980 1976-80
1963 470 0.05319  0.05319  0.07021  0.06596  0.08511  0.06553
1964 446 0.06951  0.07848  0.06726  0,05830  0.03140  0.06099
1965 520 0.07885  0.06731  0.06923  0.06346  0.06346  0.06846
1966 574 0.07317  0.07317  0.06969  0.05575  0.05749  0.06585
1967 533 0.06379  0.06379  0.07129  0.06567  0.08255  0.06942
1968 421 0.05463  0.08314 0.07126  0.05701  0.04038  0.06128
1969 378 0.07672  0.07143  0.08201  0.05820  0.07407  0.07248
1970 464 0.05819  0.04957  0.07112  0.07759  0.06897  0.06509
1971 528 0.07386  0.08902  0.07386  0.06250  0.05492  0.07083
1972 546 0.06272  0.05678  0.08242  0.06960  0.05678  0.06557
1973 523 0.07266  0.06119  0.08413  0.10134  0.07648  0.07916
1974 459 0.07190  0.07843  0.07190  0.05011  0.04357  0.06318
1975 496 0.07056  0.08266  0.09274  0.07863  0.06048  0.07702
1976 465 0.06882  0.06237  0.09892  0.08602  0.05591  0.07441
1977 503 — 0.08748  0.10537  0.06560  0.06163  0.08002
1978 609 — - 0.07061  0.06404  0.07882  0.07115
1979 610 — — - 0.07869  0.10000  0.08934
1980 635 — — — 0.10709  0.10709
1963-80 9180 0.06786  0.07043  0.07813  0.06846  0.06808  0.07056

For cach policy we registered the claim number from each year it had been in
force in the period 1976-80. [n Table 5.1 we show the observed claim frequencies.

5B.  Inthe present subsection we want to test whether the age of the policy does
give any information about the value of 0. Let

Fi(x)=Pr{X,< .\‘I?B n)
To test the hypothesis
(H) F=FK=...=F4

against the general alternative that some of these distributions are different from
cach other, we used the homogeneity test described in Sverdrup (1967, Section
XV.2.4) on the claim numbers from 1980. This gives a significance probability
0.003813, and thus we reject that the claim numbers from different years of origin
have the same distribution.

[t would also be natural to test (/) under the apriori condition

Fil=F>...2Fs
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[stochastic ordering, F;(x)<F;,,(x) for all /i and x]. This means that we test
equality against the alternative that the more risky policies are more apt to leave
the portfolio. For this situation we used the Jonckheere-Terpstra test described
in Lehmann (1975, pp. 233-235) on the claim numbers from 1980. The normal
approximation gives a significance probability 0.0003878.

It should be noted that the small significance probabilities do not necessarily
mean that the durational effects are extreme; statistical significance is not always
the same as practical significance. We have a very great sample, and even by small
deviations from the hypothesis, we could have small significance probabilities.
However, referring to Table 5.4 below, in the present case it seems that we also
have practical significance.

SC.  For the rest of the paper, we are going to discuss estimation of structural
paramcters. We assume that all the observed policies are independent and having
the same structural density wu(0)), sample density j'(x|()), and probabilities of
remaining in the portfolio g; (0, ;x) satistying (4.1). Then X, ;| is of the form (4.3),
and we want to estimate the structural parameters f,, v,, 7,, and 4,.

Forn=0,1,...,17, let ,N be the number of policies having been in force for
exactly n+ 1 years, that is, the policies originating from calendar year 1980 —p,
Let,¥;; be the claim number from year j of the i-th of these policies. We introduce

'8 l n
Z nj.ij (” S 4)
H i=1
u:\:i, =
| n
Z ”'Y-'..l. (N > 4)
L 4 j=n—13

1 nN [ = N

f= RO SO S 3
" ! nN Z IINI

i=1 =1

-

For u,, v,, t,, and 4, we introduce the unbiased estimators

A ~ A

Hy=aX .- Vi :n“{‘- n+l
[ [ niV ,
Ty (H'{‘i- __n-{.- ')— (”\<\4)
nN" l ig“l
TS ) ST G 4
”N; l ggl (H"\’I" —pX. ) + 4 n 3”N g Al mvij e

HN

[ N y & .
= Vi TN ) Xy TN+
l nN# I i;l ( ) ( " ' 1)

~

A
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This procedure works forn > 0. Forn=0,,, 7,, and /4, are not defined. However,
as X, = v, they are not needed.
Even if the estimators fi,, ¥,, 7., and A, are unbiased, the estimators

& ’{;1 A A S oA
On == Yn=Vy— (‘)n.“n
rll
of 0, and vy, are not necessarily unbiased as they are non-linear functions of the
unbiased quantities. For small ,N the bias may be considerable. However, the
estimators are consistent as ,NToo.

Table 5.2
n £, 1, B y S, P
0 —_ —_ — 0.10709 0 0.10709
| 0.082468 0.001970 0.07869 0.10000 0.023893 0.09812
2 0.033289 0.002086 0.06732 0.07882 0.062672 0.07460
3 0.036388 0.000656 0.08615 0.06163 0.018030 0.06008
4 0.019737 0.003115 0.07903 0.05591 0.157802 0.04344
5 0.018090 0.004173 0.08115 0.06048 0.230665 0.04177
6 0.012016 —0.001881 0.06808 0.04357 ~0.156564 0.05423
7 0.015594 0.003940 0.07983 0.07648 0.252680 0.05631
8 0.009636 0.002567 0.06777 0.05678 0.266457 0.03872
9 0.008539 0.002050 0.07481 0.05492 0.240112 0.03696
10 0.009669 0.000428 0.06412 0.06897 0.044289 0.06613
11 0.010031 —0.000049 0.07209 0.07407 —0.004897 0.07443
12 0.008191 0.000879 0.06651 0.04038 0.107362 0.03324
13 0.007748 0.002049 0.06614 0.08255 0.264444 0.06506
14 0.007924 0.001323 0.06794 0.05749 0.166910 0.04615
15 0.005292 0.001348 0.06971 0.06346 0.254657 0.04571
16 0.008193 —0.001028 0.06839 0.03139 —0.125464 0.03997
17 0.003781 0.005489 0.06064 0.08511 1.451663 —0.00292

[n Table 5.2 we have given the values of i, ¥,, T, A,, 0,, and 7, resulting from our
numerical data. It is seen that when n varies, the values of 9, are very unstable. As
this could be partly due to the above-mentioned bias, we also used the first order
jackknife [see ¢.g. Zehnwirth (1981)] on o, and §,. The jackknife is known to
have a bias-reducing effect. However, in the present case, this effect was
negligible, and in Table 5.2 we have only given the unjackknifed estimates. For
the jackknifed estimates we refer to Sundt (1982), where we have done most of
the subsequent computations also on jackknifed estimates.
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5D. It is clear that the present estimates cannot be used directly in a rating
scheme; they have properties that seem most unfair to the policy-holders. For
instance, for a six years old policy the premium would be a decreasing function of
the average claim number %,. We are now going to introduce some properties
that we want o, and y, to possess.

From the above example we clearly want

i)  0,=0
Furthermore,
i  y,=0

Even with no claims in the past the policy-holder should not have a negative
premium.

Let us now assume that the policy has no claims in year »+ 1, Then it would
clearly seem unfair if the policy-holder should get a premium increase in year n

+ 2, that 1s, we want
, n
B =

’ '%n + ‘}’n +1 ‘<\ (bn "Erx + 7,’1
n-+1

A sufficient condition for this inequality to hold, is that
D )
”1) ’ {:___F_]_S__n
n+1 n
il’) Yn+1 < Tn

[t should be noted that all of these conditions are violated by the estimates in
Table 5.2.

SE.  The conditions given in the previous subsection motivate graduation of
the estimates (7,,0,)" against some parametric functions. Another reason for
doing such a graduation is that we may then get estimates also for n>17.

In the next two subsections we are going to discuss some graduation procedures.
As it seems difficult to say anything about variances and covariances of the
ungraduated quantities, it seems to be too ambitious to try to search for optimal
graduation methods. Thus we are going to propose simple and intuitively
reasonable methods without claiming any optimality properties. When we need
weights, we simply use the number of policies.

SF. In this subsection we assume that

n K’

S s
"4k " 4k

" (3.1)
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This is in particular the case when X, ., =%, ,. However, the prime is used to
indicate that (5.1) may be satisfied under more general conditions, and that we
do not necessarily have k' =« and p’' = u (x and p being defined in subsection 3B).
From (5.1) and (4.3) we obtain

n(t,— fl,,',',) , N

K=" = (Vn _.“n) + Yu
K

’

and we propose

Z nN” (fn ﬁi\n)

= (5.2)
Z HN’IM
n
5 Ao an s
H=——- Z n IV ,é(," (l’" _.un) iy Vi (53)
Z ,,N n
n
as estimators for k" and p'.
Table 5.3
n Present procedure Generalized Bithlmann-Straub
O T nf(n+ k) p/(n -+ i)

0 0 0.06676 0 0.07073

1 0.02302 0.06522 0.03758 0.06807

2 0.04500 0.06376 0.07243 0.06561

3 0.06601 0.06235 0.10485 0.06331

4 0.08612 0.06101 0.13508 0.06117

S 0.10538 0.05973 0.16334 0.05918

6 0.12385 0.05849 0.18980 0.05730
7 0.14157 0.05731 0.21465 0.05555

8 0.15858 0.05617 0.23801 0.05389

9 0.17494 0.05508 0.26002 0.05234
10 0.19067 0.05403 0.28081 0.05087
11 0.20581 0.05302 0.30044 0.04948
12 0.22040 0.05205 0.31905 0.04816
13 0.23446 0.05111 0.33668 0.04692
14 0.24802 0.05020 0.35343 0.04573
15 0.26111 0.04933 0.36935 0.04460
16 0.27376 0.04848 0.38451 0.04353
17 0.28597 0.04769 0.39895 0.04251
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From the «Winterthur» data we get &' =42.4462 and ' =0.06676. As a
comparison we also estimated x and g by the generalized Bithlmann-Straub
procedure described by Sundt (1983, Section 3). This procedure does not take
into account that the duration may give information about the risk parameter.
We get 25.6118 and 0.07073 as estimates for k and . [t is interesting to note the
great differences in the estimates of the two procedures, a strong indication that
the duration should be taken into account. In Table 5.3 we have computed 8, and
va given by (5.1) with k" and g’ replaced by the estimates above. As a comparison
we have also computed the coefficients of X, ., with x and y replaced by the
Bithlmann-Straub estimates above.

To further illustrate the importance of including the durational effects in the

n

model, we have in Table 5.4 for different values of n and Z X; computed the
i=1

premium increase in percent by using the Bithimann-Straub procedure instead of
the present procedure.

Table 5.4

£
i=1
n 0 1 2 3 4 5 6 7 8 9 10 o0
0 SO
1 44 197 287 347 388 420 444 463 479 492 503 633
2 29 180 269 328 369 400 423 442 458 471 481 61.0
3 1.5 165 252 310 351 38.1 405 423 438 451 462 588
4 0.3 150 239 294 334 364 387 405 42,1 433 444 569
5 —09 137 222 278 318 348 371 389 404 41.6 426 550
6 — 20 124 208 264 303 333 355 373 388 40.0 41.0 533
7 — 3. (1.2 196 25.1 289 318 341 359 373 385 395 516
8§ — 4.1 10.1 183 238 276 305 327 345 359 3710 38.1 50.1
9 — 50 90 172 226 264 292 314 332 346 358 368 486
10 — 59 80 16.1 21,5 252 28.1 302 320 334 346 355 473
w  —36.1 —26.7 -21.1 —17.5 =150 —13.0 —11.6 —~104 — 94 — 8.6 — 8.0 0

5G.  Let us now assume that

7 ~ f+no
o+ no y"—oH—rm

(5.4)
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This assumption is fulfilled in some parametric classes discussed in Sundt (1982).
[t scems to be very difficult to find good estimators for «, 5, o, and ¢ without
making further assumptions. We just mention some attempts for this estimation
and discuss their weaknesses.

We concentrate on estimating « and ¢ by the 0,’s. When we have found estimates
% and ¢, we propose to estimate ff and ¢ by the estimators £ and ¢ minimizing

2
02(B,0)=Y N (}:" P '*“”@)

o+ ne

1) The perhaps most natural procedure would be to minimize

2
0\(1,0)=F N (fi,—a:m) (5.5)
By putting the partial derivatives of Q, with respect to o and o equal to zero, we
get a system of two equations in « and ¢. These equations have to be solved
numerically. Unfortunately they have several solutions, and it thus seems to be
quite a lot of work to find the values minimizing Q,.

i) If we instead of minimizing (5.5) minimize

| 2
Ql (av G):; nN ((i,ﬁzﬁ(;)

we have reduced the problem to an ordinary linear regression. However, in many
practical applications we risk that some of the 9,’s are close to zero; they may
even be negative. Such values will of course make the estimators of « and o
extremely unstable, and we may get completely wild estimates.
1) Minimize
Q\(,0)=Y N((a+ns)d, —n)?
"

This expression can be rewritten
2
- n
Ql (OC, O') = Z ,,N(OC + ”0-)2 (On T ) (56)
. o+ no
[n practical applications we may risk that for some value of n, for which we have
given a 0,, the estimated « + o is close to zero. Then n/(«+na) could be a very
bad estimate of d,. But asin (5.6) such estimates are given very little weight, they
do not influence very much the quantity to be minimized.
In Table 5.5 we have estimated the parameters o, o, f§, and ¢ by Procedures ii) and
ii1) above using the (0,,7,)’s of Table 5.2, and in Table 5.6 these estimates have
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Table 5.5

Procedure ii)

Procedure iii)

o 63.2760 42.6411
o —12.2680 — 1.6949
i} 3.5465 3.1563
0 — 0.6902 — 0.1719
Table 5.6
Procedure ii) Procedure ii1)
H (5,, Ya (5,, Vn
0 0 0.05605 0 0.07402
l 0.01960 0.05600 0.02442 0.07289
2 0.05163 0.05591 0.05095 0.07165
3 0.11333 0.05575 0.07988 0.07031
4 0.28161 0.05530 0.11154 0.06884
5 2.58250 0.04922 0.14634 0.06722
6 —0.58073 0.05758 0.18478 0.06543
7 —0.30974 0.05687 0.22744 0.06345
8  —0.22944 0.05665 0.27508 0.06124
9  —0.1909%4 0.05655 0.32862 0.05875
10 —0.16834 0.05649 0.38922 0.05593
11 —0.15348 0.05645 0.45838 0.05272
12 —0.14296 0.05643 0.53805 0.04902
13 —0.13512 0.05641 0.63083 0.04471
14 —0.12906 0.05639 0.74024 0.03962
15 —0.12423 0.05638 087118 0.03354
6 —0.12029 0.05637 1.03072 0.02613
(7 —0.11702 0.05636 1.22937 0.01690

been inserted in (5.4). None of these sets of estimated credibility coefficients
satisfy all the conditions of subsection 5D.
The set found by Procedure ii) does not seem to have very much to do with the
ungraduated set of Table 5.2, It seems that the ungraduated d,, must have had a
disastrous effect. What we really do in our graduation, is linear regression on
5,',' ' we would have expected o,! to be something positive, but we actually have

Srl= —204.2!

The set found by Procedure iii) looks much more recasonable.
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SH. For the rest of the paper we make the assumption (4.4) in addition to (4.1).
We have to estimate the three structural parameters u,, ¢,, and 4, and propose
the unbiased estimators i, =,X. .

nl¥ T |

(En - , N Z Z (n ,,J(

noi=1 Jj=n—k,+1

-~

o l ni¥ (b
= B P
wlV —1 i; e kn+ 1
with
l n+1
r]-%‘ = j“- .
i /C,, +1 i=n Zk,, . nij
l niN
nv%- . = P’%i-
n‘N iZl r

k,=min (n,4)

(note that the notations have other meanings than in subsection 5C). If we are
going to use the ungraduated estimates in the credibility estimators, one should
replace 4, by max (4,,0) as 4, is non-negative. The estimators introduced are in

Table 5.7
h fﬁ n In rAn ﬁn gn }Tn
0 oo —_— — 0.10709 0 0.10709
| 0.09262 0.001933 0.094556 0.08934 0.02044 0.08752
2 0.06623 0.002092 0.035207 0.07115 0.05943 0.06693
3 0.08565 0.002923 0.031474 0.08002 0.09287 0.07259
4 0.07505 0.000734 0.019497 0.07441 0.03764 0.07161
5 0.07923 0.002371 0.018218 0.07702 0.13017 0.06699
6 0.06797 —0.000914 0.010415 0.06318 —0.08777 0.06873
7 0.08050 0.003906 0.015406 0.07916 0.25354 0.05909
8 0.06630 0.001589 0.009876 0.06557 0.16088 0.05502
9 0.07102 0.000882 0.008774 0.07083 0.10057 0.06371
10 0.06379 0.002262 0.008641 0.06509 0.26174 0.04805
11 0.07143 0.002197 0.008690 0.07249 0.25278 0.05416
12 0.06033 0.001979 0.007006 0.06128 0.28239 0.04398
13 0.06811 0.002528 0.007767 0.06942 0.32553 0.04682
14 0.06463 0.002485 0.007101 0.06585 0.34988 0.04281
15 0.06904 0.000918 0.005521 0.06846 0.16633 0.05707
16 0.06166 0.001918 0.005772 0.06099 0.33231 0.04072
17 0.06234 0,002333 0.006000 0.06553 0.38881 0.04005




83

full accordance with the estimators proposed by Bithlmann and Straub (1970).

As estimators for t,, 0,, and y, we use

. 1 7 ~ A o A
R “n Put+ /T,, Oy = =1 =0,) Ity

In Table 5.7 we have given the values of ¢, 4., T, fi,, ., and 7, resulting from
our numerical data. The estimates are seen to be much more stable than the ones
in Table 5.2. In particular, it is astonishing to see how different the estimates of 9,
are from the ones in Table 5.2. The reason seems to be the great unstability of the

estimates of 4, in that table.

SI. For the present subsection we make the assumptions (5.1). Then,
analogously to (5.2) and (5.3), we get the following estimators for k" and '

Z n N(/;n Z n Nﬁn

A n A
(= U

Table 5.8

H (5,, Y
0 0 0.07345
! 0.02608 0.07154
2 0.05083 0.06972
3 0.07436 0.06799
4 0.09675 0.06635
5 0.11808 0.06478
6 0.13842 0.06328
7 0.15785 0.06186
8 0.17643 0.06049
9 0.19420 0.05919
10 0.21122 0.05794
I 0.22753 0.05674
12 0.23419 0.05559
13 0.25822 0.05448
14 0.27267 0.05342
15 0.28656 0.05240
16 0.29994 0.05142

17 0.31282 0.05047
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When using these estimators on our numerical data, we obtain K= 37.3448 and
f’=0.07345. In Table 5.8 we have computed 0, and y, given by (5.1) with k" and
w1’ replaced by these estimates.

5J.  For the present subsection we make the assumptions (5.4). In Table 5.9 we
have estimated the parameters «, o, 5, and ¢ by Procedures ii) and iii) of
subsection 5G using the (5,,7,)’s of Table 5.7, and in Table 5.10 these estimates
have been inserted in (5.4). The graduated credibility coefficients of Table 5.10
secem much more reasonable than the corresponding ones in Table 5.6, and the
ones obtained by Procedure iii) satisfy all the conditions of subscction SD.

Table 5.9

Procedure it) Procedure iii)
o 46.9086 24.3015
o — 0.7681 1.4327
f 3.8972 2.2538
0 — 0.1614 — 0.0178
Table 5.10
Procedure 1i) Procedure iii)
n (511 7n {511 In
0 0 0.08308 0 0.09274
| 0.02167 0.08097 0.03886 0.08689
2 0.04408 0.07878 0.07362 0.08166
3 0.06726 0.07651 0.10490 0.07694
4 0.09125 0.07417 0.13319 0.07268
5 0.11609 0.07175 0.15891 0.06881
6 0.14184 0.06923 0.18238 0.06527
7 0.16854 0.06663 0.20390 0.06203
8 0.19625 0.06392 0.22369 0.0590S
9 0.22502 0.06111 0.24196 0.05630
10 0.25492 0.05819 0.25888 0.05375
I 0.28601 0.05516 0.27458 0.05139
12 0.31837 0.05200 0.28920 0.04918
13 0.35207 0.04871 0.30284 0.04713
14 0.38721 0.04528 0.31560 0.04521
15 0.42387 0.04170 0.32757 0.04340
16 0.46216 0.03796 0.33881 0.04171

17 0.50219 0.03405 0.34938 0.04012
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SK. In Section 5 we have used several assumptions and several estimation
procedures on the « Winterthur» data, and we now try to make some conclusions.
1) It seems clear that the durational effects should be taken into account. Strong
indications for this are the test of subsection 5B and the comparison with the
Bithimann-Straub estimators in Subsection 5F,

i) The estimators are very unstable. To get reasonable results one should,
preferably, have a very great quantity of data. [t also seems necessary to make
additional assumptions that make smoothing or similar procedures possible.
iii) The gain by jackknifing the estimators is negligible,
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Summary

In a classical credibility model it is assumed that the total claim amounts from different years are
conditionaliy independent and identically distributed, given an unknown random risk parameter f.
[n the present paper, we introduce an additional random variable 7, denoting the total time the policy
stays in the portfolio. It is assumed that information about £ may say something about the value of 1,
and it should therefore be used in the rating scheme. In such models we deduce and discuss credibility
estimators. In connection to a numerical example with real automobile liability data, we first test
under different prior assumptions the hypothesis that there are no durational effects. The hypothesis
is rejected. Then we propose estimators for structural parameters under various assumptions.

Zusammenfassung

In den klassischen Kredibilititsmodellen wird davon ausgegangen, dass die Schadentotale von
verschiedenen Jahren fiir cinen gegebenen Wert des unbekannten Zufalls-Risikoparameters 0
voneinander unabhiingig und gleichverteilt sind. In der vorliegenden Arbeit wird eine zusitzliche
Zufallsvariable 7 eingefiihrt, welche die Gesamtzeit misst, welche eine Police im Portefeuille bleibt. Es
wird angenommen, dass Informationen tiber { Aussagen iiber den Wert von 0 gestatten, 7 sollte daher
im Tarificrungssystem benutzt werden. In solchen Modellen werden Kredibilititsschitzer hergeleitet
und diskutiert. In cinem numerischen Beispiel aus der Praxis der Automobil-Haftpflichtversicherung
wird unter verschiedenen a priori Bedingungen die Hypothese getestet, dass keine daucrabhingigen
Effekte vorlicgen; die Hypothese wird verworfen. Schliesslich werden unter verschiedenen
Bedingungen Schiitzer fiir die Strukturparameter vorgeschlagen.

Résume

Les modeles classiques de crédibilité supposent les charges de sinistres provenant de différentes
années conditionellement indépendantes ct identiquement distribuées, pour une valeur donnée du
paramétre inconnue de risque 1. Le présent article introduit une variable aléatoire supplémentaire 7,
qui mesure le temps total que la police a passé dans le portefeuille. Ony suppose que l'information sur
{ peut fournir des renseignements sur la valeur de ( et que 7 peut ainsi étre utilisé dans le schéma du
calcul des primes. L auteur utilise les modeles de ce type pour déduire puis discuter des estimateurs de
crédibilité. Dans un exemple numérique provenant d’observations réelles d’assurance RC-
automobile, 'auteur teste 'hypothése — sous diverses conditions a priori — qu’il 0’y a pas d’effet
chronique. L'hypothéses est rejetée. Enfin lauteur propose des estimateurs pour les paramétres de
structure sous des conditions diverses.
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