Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: - (1983)

Heft: 1

Artikel: Die Sterblichkeit bei den Einzelkapitalversicherungen der

Schweizerischen Lebensversicherungs- und Rentenanstalt in den

Jahren 1971 bis 1980

Autor: Vogel, Franz

DOI: https://doi.org/10.5169/seals-967130

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

B. Wissenschaftliche Mitteilungen

FRANZ VOGEL, Zürich

Die Sterblichkeit bei den Einzelkapitalversicherungen der Schweizerischen Lebensversicherungs- und Rentenanstalt in den Jahren 1971 bis 1980

Der Bericht über die Sterblichkeit in den Jahren 1971 bis 1980 im schweizerischen Bestand der Einzelkapitalversicherungen der Rentenanstalt setzt die seit 1920 regelmässig durchgeführte Beobachtungsreihe fort. Der vorliegende Artikel unterscheidet sich inhaltlich etwas von den vorangegangenen Publikationen, nimmt doch die Beschreibung der neuen Ausgleichsmethode einen relativ grossen Raum ein. Aus diesem Grunde wurden die Untersuchung der Sterblichkeit nach Geschlechtern und die Vergleiche mit fremden Tafeln weggelassen. Diese Untersuchungen werden in einem späteren Artikel erscheinen.

Die Beobachtungen in den Jahren 1971 bis 1980

Um Vergleiche mit den früheren Messungen der Rentenanstalt zu ermöglichen, sind im wesentlichen dieselben Richtlinien angewendet worden wie bei den Messungen in den vorangehenden Jahrzehnten. Das Material beschränkt sich auf die Einzelkapitalversicherungen des Schweizergeschäfts und umfasst alle in Kraft gestandenen Policen mit Ausnahme der gestaffelten gemischten Versicherungen, der wenigen prämienfreien Terme-fixe- und Vorsorgeversicherungen sowie der nach Ablauf der Hauptversicherung weitergeführten prämienfreien Gewinnzusatzversicherungen. Nicht berücksichtigt wurden ferner alle Policen mit erhöhtem Risiko. Bei einem späteren Wegfall der Erschwerung ist die Police fortan als normales Risiko in der Messung enthalten.

- 1.1 Statistische Festsetzungen
- a) Als Zähleinheit dient die Police. Bei Versicherungen auf mehrere Leben ist für jede versicherte Person eine Police gezählt.
- b) Die Einheit der Beobachtungszeit ist das Kalenderjahr. Die gegenwärtige Periode umfasst die Kalenderjahre 1971 bis 1980.

- c) Sterbefälle, welche sich vor dem 1. Januar 1971 ereigneten, jedoch erst während der Periode 1971/80 bekannt geworden sind, gelten als Sterbefälle des Jahres, in welchem sie bekannt wurden, jedoch mit dem Alter am Todesdatum.
- d) Bezeichnet man mit $R_{x+1/2}^k$ die Anzahl Versicherter am Ende des Kalenderjahres k mit dem erreichten Alter x+1/2 und mit T_x^k die Zahl der während des Jahres k Gestorbenen des Alters x, so ergibt sich die Anzahl der im Jahre k unter Risiko Gestandenen R_x^k nach der Hardyschen Formel:

 $R_x^k = \frac{1}{2} \left(R_{x-1/2}^{k-1} + R_{x+1/2}^k + T_x^k \right)$

Die Summation über alle Beobachtungsjahre k führt dann für jedes Alter x zur Gesamtzahl R_x der unter Risiko Gestandenen und zur Gesamtzahl T_x der Gestorbenen.

e) Die beobachtete einjährige Sterbenswahrscheinlichkeit für die Versicherten des erreichten Alters x ergibt sich damit zu

$$q_x = \frac{T_x}{R_x}$$

1.2 Umfang der Beobachtung

Unter einjährigem Risiko gestandene Policen 7206215.0 Beobachtete Policen-Sterbefälle 20392=2,83 % Gegenüber der Messung des letzten Jahrzehnts haben die unter Risiko Gestandenen um 16 %, die Sterbefälle um 10 % zugenommen

Aufteilung nach Geschlechtern

	Unter Risiko			
	Gestandene	Sterbefälle		
Männer	5096721,5 (70,7 %)	17626 = 3,46 %		
Frauen	2109493,5 (29,3%)	2766 = 1.31 %		

Der Anteil der Frauen hat sich gegenüber der vorangegangenen Beobachtungsperiode von 25,1 % auf 29,3 % erhöht.

Die nachfolgende Tabelle zeigt die Aufteilung der unter einjährigem Risiko stehenden Policen und der beobachteten Policensterbfälle nach Alter, sowie die daraus berechneten einjährigen Sterbenswahrscheinlichkeiten.

STERBLICHKEITSMESSUNG 71-80

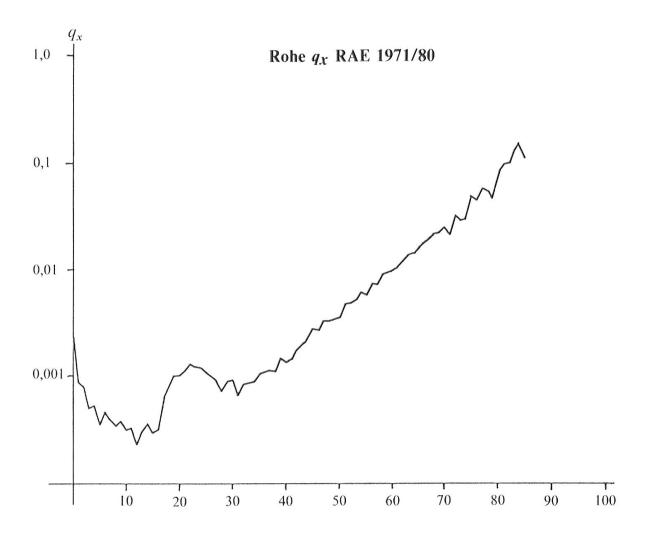
ALTE	R BESTAND	TODES-	ROHE	ALTER	BESTAND	TODES-	ROHE
	UNTER	FAELLE	STERBENS-		UNTER	FAELLE	STERBENS-
	RISIKO		WAHRSCH.		RISIKO		WAHRSCH.
				0.2	122111 22		
С	9514.50	5.5	2.3123	4.5	177446.00	485	2.7332
1	24512.50	5.5	0.8975	4.6	174893.00	456	2.6073
2	32105.00	2.5	0.7787	47	172703.50	564	3.2657
3	36532.50	1.8	0.4927	4.8	170867.50	5 3 9	3.1545
4	40249.00	21	0.5218	49	167434.00	564	3.3685
5	43684.50	15	0.3434	50	160686.50	562	3.4975
		22	0.4666	51	153217.00	710	4.6340
6 7	47154.00	19	0.3774	52	147049.00	690	4.6923
	50346.00			53	140612.50	716	5.0920
8	53631.00	18	0.3356				
9	56414.00	21	0.3722	5 4	133773.50	804	6.0102
1 C	58727.00	18	0.3065	5.5	123225.50	693	5.6238
11	61145.50	20	0.3271	56	112176.00	806	7.1851
12	62201.50	14	0.2251	57	105528.00	764	7.2398
13	63218.50	19	0.3005	5.8	99507.00	862	8.6627
14	64385.50	23	0.3572	59	92538.50	859	9.2826
	04307.30		0.557.2				
15	65739.50	19	0.2890	60	80402.50	783	9.7758
16	67425.00	21	0.3115	61	68410.00	726	10.6125
17	70581.50	41	0.5809	62	62179.00	746	11.9976
18	74268.50	59	0.7944	63	56928.50	774	13.5960
19	79946.00	80	1.0007	64	50158.00	702	13.9958
	.,,,,,,,	00	,,,,,,,				
2 C	81203.50	82	1.0098	65	33804.00	5 4 1)	15.9744
21	81865.50	90	1.0994	66	18260.50	318	17.4146
5.5	87149.00	108	1.2393	67	13546.00	272	20.0797
23	93839.00	113	1.2042	68	10910.50	235	21.5389
24	101146.50	119	1.1765	69	8442.00	183	21.6773
2.0				70	1100 50	110	24 0510
25	107771.00	120	1.1135	70	4408.50	110	24.9518
5.6	115207.50	114	0.9895	71	1134.50	24	21.1547
27	124359.50	113	0.9087	7 2	584.50	19	32.5064
28	134220.50	95	0.7078	73	412.00	12	29.1262
29	143053.50	128	0.8948	74	297.50	9	30.2521
3 C	150253.00	136	0.9051	75	224.00	11	49.1071
31	155264.50	100	0.5441	76	179.00	8	44.6927
32	159924.00	134	0.8379	77	154.50	9	58.2524
33	163988.50	140	C.8537	78	148.00	3	54.0541
34	166545.50	144	0.8646	79	129.50	5	46.3320
7.0				80	113.00	9	79.6450
35	168148.00	173	1.0289				
36	169293.50	182	1.0751	81	96.00	9	93.7500
37	170849.50	193	1.1296	82	92.00	9	97.8261
38	171729.50	187	1.0889	83	94.50	12	126.9841
39	172769.00	249	1.4412	84	79.50	11	156.0284
4 C	174003.50	229	1.3161	85	36.50	4	109.5890
41	175812.00	249	1.4163				
42	177046.00	306	1.7284		7206215.00	20392	
43	177764.00	349	1.9633				
44	178354.50	396	2.2203				
	110074.70	370					

Gegenüber der letzten Beobachtungsperiode hat sich die Besetzung der einzelnen Alter nur geringfügig verändert. Stichwortartig lassen sich die Unterschiede wie folgt umschreiben:

- schwächere Besetzung der Alter 0 bis 5
- mehr als 100000 Policen unter Risiko in den Altern 24 bis 57
- Maximum mit 178354,5 beim Alter 44
- mehr als 100 Sterbefälle in den Altern 22 bis 70

In der nachfolgenden Graphik sind die unausgeglichenen Sterbewahrscheinlichkeiten dargestellt. Um den gesamten Beobachtungsbereich zu erfassen wurde ein logarithmischer Massstab gewählt.

Sehr ausgeprägt tritt der «Unfallbuckel» im Altersbereich 18 bis 28 in Erscheinung.



2 Ausgleichsmethode

Die Aufgabe, für Daten mit irregulären Schwankungen eine glatte Ausgleichsfunktion zu konstruieren, stellt sich nicht nur in der Lebensversicherungsmathematik. Die meisten Lösungsansätze gehen davon aus, dass sich die irregulären Schwankungen des Beobachtungsmaterials als Realisation von Zufallsvariablen denken lassen, deren gemeinsame Verteilung eine einfache Struktur besitzt. Die Berechtigung dafür, die irregulären Schwankungen auszugleichen, ist jedoch erst aus der zusätzlichen Annahme abzuleiten, dass die Mittelwerte der Zufallsvariablen durch eine «glatte Funktion» darstellbar sind. Das Ausgleichsproblem reduziert sich damit auf die Aufgabe, aus einer Menge «glatter Funktionen» anhand der konkreten Zufallsstichprobe eine spezielle Ausgleichsfunktion zu bestimmen.

2.1 Ausgleichsmethode der vorangegangenen Beobachtungen

Da kein befriedigendes Sterbegesetzt für den gesamten Beobachtungsbereich existiert, hat man lokale Ausgleichungen für zwei Hauptbereiche konstruiert und durch geeignete Übergangskurven verbunden. Als «glatte Funktionen» dienten dabei Polynome und das Sterbegesetzt von Perks.

Die Ausgleichungen der letzten drei Beobachtungen lassen sich wie folgt umschreiben [7], [3], [4].

RAE 1940/50

Alter 0– 1: keine Ausgleichung

2–33: Hauptbereich I, Polynom v. Grad 4 34–40: Verbindungsstück, Polynom v. Grad 3

41-99: Hauptbereich II, Perks

RAE 1950/60

Alter 0– 3: Polynom v. Grad 4

4–31: Hauptbereich I, Polynom v. Grad 6 32–43: Verbindungsstück, Polynom v. Grad 3

44-99: Hauptbereich II, Perks

RAE 1961/70

Alter 0-2: keine Ausgleichung

3-30: Hauptbereich I, Polynom v. Grad 5 31-45: Verbindungsstück, Polynom v. Grad 3

46–77: Hauptbereich II, Perks 78–99: Polynom v. Grad 2

Die Wahl der Altersbereiche und der Funktionstypen wurden in umfangreichen Parallelrechnungen so lange verändert, bis eine ausreichende Anpassung an die Beobachtung erreicht wurde. Bei der Ausgleichung 1961/70 haben sich zwei unerfreuliche Situationen ergeben:

- das Verbindungsstück im Altersbereich 31 bis 45 konnte nicht mit der gewünschten Glattheit eingepasst werden. Glatte Einpassungen lieferten eine ziemlich schlechte Anpassung im Inneren des Intervalls. Eine befriedigende Anpassung konnte durch einen leichten Knick bei den Anschlussstellen erreicht werden.
- das Sterbegesetz von Perks hat im Altersbereich 45 bis 77 eine gute Anpassung ermöglicht. Die Extrapolation bis zum Alter 99 lieferte unbrauchbare Werte.

Nachdem auch bei der aktuellen Beobachtungsperiode ähnliche Erscheinungen auftreten, drängt sich die Suche nach einem anderen Sterbegesetz oder nach einer anderen Ausgleichsmethode auf. Da ein geeignet gewähltes Sterbegesetz nur im betreffenden Altersbereich Verbesserungen bringen kann und keine Vereinfachung bietet bei der Wahl der Altersbereiche und der Einpassung der Verbindungskurve, wurde nach einer neuen Ausgleichsmethode gesucht, welche für den gesamten Altersbereich angewendet werden kann.

2.2 Ausgleichung durch Splines

Verschiedene Publikationen berichten über die Verwendung von Splines zur Ausgleichung von Sterbetafeln. [5], [6], [9].

Zunächst soll der Begriff der Splinefunktion kurz erläutert werden.

Häufig werden für die Ausgleichung kubische Splines verwendet. Sie lassen sich wie folgt beschreiben: Gegeben sind die Punkte (x_i, f_i) , i = 0, 1, 2, ..., n. Die Beobachtungswerte f_i seien mit Fehlern der Standardabweichung df_i behaftet.

Die Ausgleichsfunktion \hat{f} soll folgende Eigenschaften besitzen:

1. $\hat{f}(x)$ ist zweimal stetig differenzierbar

2.
$$\sum_{i=0}^{n} \left(\frac{\hat{f}(x_i) - f_i}{df_i} \right)^2 \le s$$

3.
$$\int_{x_0}^{x_n} [\hat{f}''(t)]^2 dt = \text{Minimum}.$$

Hieraus folgt

4. $\hat{f}(x)$ ist in jedem Intervall $x_i \le x \le x_{i+1}$ ein Polynom vom Grad 3.

Die so berechnete Ausgleichsfunktion besteht aus *n* Intervallen. Bei der Anwendung auf Sterblichkeitskurven entstehen keine brauchbaren Resultate. Es wurde daher ein Verfahren verwendet, welches mit weniger als *n* Intervallen arbeitet. Der Kurvenverlauf wird bei vorgewählten Intervallgrenzen so bestimmt, dass der Ausdruck

$$\sum_{i=0}^{n} \left(\frac{\hat{f}(x_i) - f_i}{df_i} \right)^2$$

minimal wird. In diesem Zusammenhang erscheint die Splinefunktion lediglich als spezielle Form der stückweisen Polynomfunktionen.

2.2.1 Die Verwendung von Splines zur Ausgleichung von Sterbetafeln

Die Ausgangsdaten für die Ausgleichung sind für jedes Alter $x \in [x_0, x_n]$

- der Bestand unter Risiko R_x
- die beobachteten Sterbefälle T_x
- und die daraus berechneten rohen Sterbenswahrscheinlichkeiten $q_x = \frac{T_x}{R_x}$.

Die «wahre» Sterbenswahrscheinlichkeiten seien mit \tilde{q}_x bezeichnet. Die Anzahl Sterbfälle aus dem Bestand unter Risiko R_x kann als binomialverteilte Zufallsvariable mit Mittelwert $R_x\tilde{q}_x$ und Varianz $R_x\tilde{q}_x(1-\tilde{q}_x)$ betrachtet werden. Bei genügend grossen Bestand unter Risiko und hinreichend vielen Sterbfällen ist die standardisierte Variable

$$\frac{T_x - R_x \tilde{q}_x}{\sqrt{R_x \tilde{q}_x (1 - \tilde{q}_x)}}$$

annähernd normal verteilt.

Falls die Beobachtungen pro Alter unabhängig sind, ist die Verteilung der Variablen

$$z = \sum_{x_0}^{x_n} \frac{(T_x - R_x \tilde{q}_x)^2}{R_x \tilde{q}_x (1 - \tilde{q}_x)}$$
 (2.1)

gut approximiert durch eine χ^2 -Verteilung.

Die verwendete Ausgleichsmethode bestimmt die ausgeglichenen Werte \hat{q}_x so, dass der Ausdruck (2.1) minimal wird. Man kann (2.1) umschreiben als

$$z = \sum_{x_0}^{x_n} \frac{R_x}{\tilde{q}_x (1 - \tilde{q}_x)} \left[\frac{T_x}{R_x} - \hat{q}_x \right]^2$$

$$= \sum_{x_0}^{x_n} w_x (q_x - \hat{q}_x)^2$$

$$\text{wobei } w_x = \frac{R_x}{\tilde{q}_x (1 - \tilde{q}_x)}$$

$$(2.2)$$

So betrachtet ist z die gewichtete Summe der Quadrate der Fehler zwischen den rohen und den «wahren» Sterbewahrscheinlichkeiten. Die Gewichte w_x hängen von den (unbekannten) \tilde{q}_x ab.

Als Vergleich sei erwähnt, dass bei der χ^2 -Minimum-Methode die freien Parameter so bestimmt werden, dass der Ausdruck

$$\sum_{x_0}^{x_n} \frac{R_x}{\hat{q}_x} (q_x - \hat{q}_x)^2$$

minimal wird.

Sind im Beobachtungsintervall $[x_0, x_n]$ die Teilintervallgrenzen ξ_i gewählt:

$$x_0 = \xi_1 < \xi_2 < \ldots < \xi_m < \xi_{m+1} = x_n$$

so lassen sich die rohen Sterbenswahrscheinlichkeiten ausgleichen durch eine Splinefunktion vom Grad k mit den Intervallgrenzen ξ_i , welche den Ausdruck (2.2) minimiert.

Die Tatsache, dass die Gewichte w_x von den unbekannten \tilde{q}_x abhängen, wirkt etwas störend. Es scheint sinnvoll, die Gewichte durch einen iterativen Prozess solange anzupassen bis sie stabil bleiben. Als Startwerte wählt man die Gewichte wie sie sich aus den rohen q_x ergeben:

$$w_x^0 = \frac{R_x}{q_x(1 - q_x)}$$

Mit diesen berechnet man die am besten angepasste Splinefunktion (im Sinne dass der Ausdruck (2.2) minimal wird). Die so ausgeglichenen \hat{q}_x werden zur Berechnung neuer Gewichte verwendet. Dieser iterative Prozess wird fortgesetzt bis zwei aufeinanderfolgende Splines innerhalb einer gewünschten Genauigkeit gleiche Werte liefern.

2.2.2 Berechnung der best-approximierenden Splinefunktion

Die Berechnung der best-approximierenden Splinefunktion soll hier nur in groben Zügen skizziert werden. Die verwendete Methode und die Programme stammen grösstenteils aus dem Buch von Carl de Boor, A Practical Guide to Splines, [1].

Zur numerischen Berechnung sind die Intervallgrenzen ξ_i , $i=1,2,\ldots,m+1$ in eine Folge von Knoten t_j zu übertragen. In dieser Knotenfolge kann jede Intervallgrenze 1 bis k+1 mal vorkommen. Durch die Vielfachheit werden die Stetigkeitsbedingungen an den Intervallgrenzen bestimmt. Kommt ξ_i in der Folge t_j einmal vor, so sind an der Stelle $x=\xi_i$ die Splinefunktion und ihre k-1 ersten Ableitungen stetig. Kommt der Punkt zweimal vor, so sind an der betreffenden Stelle die Splinefunktion und ihre k-2 ersten Ableitungen stetig. Kommt der Punkt k mal vor, so ist nur noch die Splinefunktion stetig und alle existierenden Ableitungen unstetig. Üblicherweise wählt man die äusseren Intervallgrenzen ξ_1 und ξ_{m+1} mit der Vielfachheit k+1 und die inneren Intervallgrenzen mit der Vielfachheit 1. So entsteht aus der Folge der Intervallgrenzen $(\xi_i)_1^{m+1}$ die Knotenfolge $(t_j)_1^{m+1+2k}$.

Die Splinefunktionen vom Grad k mit der Knotenfolge $(t_j)_1^{m+1+2k}$ bilden einen linearen Vektorraum der Dimension m+k. Eine für numerische Berechnungen gut geeignete Basis besteht aus den sogenannten normierten B-Splines, $(B_j(x))_1^{m+k}$, welche nur von der Knotenfolge abhängig sind. Die B-Splines werden als dividierte Differenzen definiert, für ihre numerische Berechnung gibt es eine einfache rekursive Formel. Als wichtigste Eigenschaft sei erwähnt, dass die B-Splines nur in einem kleinen Intervall (innerhalb $[\xi_1, \xi_{m+1}]$) nicht Null sind. Bezeichnet man mit $B_{i,k,t}$ den i-ten B-Spline vom Grad k der Knotenfolge (t_i) , so gilt:

 $B_{i,k,t} = 0$ für $x \notin [t_i, t_{i+k+1}]$

und

$$B_{i,k,t} > 0$$
 für $x \in (t_i, t_{i+k+1})$

Das bedeutet, dass an irgendeiner Stelle im Intervall $[t_1, t_{m+1+2k}]$ nur k+1 *B*-Splines von Null verschiedene Werte haben können. Durch die Normierung wird

zudem erreicht, dass an jeder Stelle $x \in [t_{k+1}, t_{m+k}]$ gilt:

$$\sum_{j=1}^{m+k} B_{j,k,t}(x) = 1$$

Mit dieser Basis lässt sich jede Splinefunktion darstellen in der Form

$$S(x) = \sum_{j=1}^{m+k} \alpha_j B_{j,k,t}(x)$$

Für die best-approximierende Splinefunktion einer Sterbetafel führt die Bedingung

$$\sum_{x_0}^{x_n} w_x (q_x - \hat{q}_x)^2 \text{ minimal}$$

auf m+k Normalgleichungen

$$\sum_{j=1}^{m+k} \left(\sum_{x_0}^{x_n} w_x B_{i,k,t}(x) B_{j,k,t}(x) \right) \alpha_j = \sum_{x_0}^{x_n} w_x B_{j,k,t}(x) q_x$$

$$i = 1, 2, \dots, m+k$$

Die Koeffizientenmatrix der α_j ist eine symmetrische Bandmatrix. Die Lösung dieses Gleichungssystems liefert die gesuchten Werte α_j . Für weitere Berechnungen kann die *B*-Spline-Darstellung in eine stückweise Polynomdarstellung umgeformt werden.

2.2.3 Beurteilung der Methode

Im Vergleich zur bisher verwendeten Ausgleichsmethode sind folgende Unterschiede festzustellen:

- Die Ausgleichung liefert nur Werte im Beobachtungsintervall [0,85]. Eine Fortsetzung bis zum Alter 100 muss gegebenenfalls konstruiert werden.
- Obwohl die ausgeglichenen Werte stückweise durch Polynome darstellbar sind, werden sie sinnvollerweise nur in Tabellenform angegeben. Die Anzahl der Polynomkoeffizienten bei m Intervallen und dem Polynomgrad k ist m (k+1). In praktischen Anwendungen wurden im vorliegenden Fall beim Grad k=3 etwa 15 Intervalle benötigt, was auf 60 Polynomkoeffizienten führen würde.
- Die Wahl der Intervallgrenzen und des Grades wird im Abschnitt 3.1 diskutiert.

Als entscheidender Vorteil gegenüber der bisherigen Methode wird die Ausgleichung immer im ganzen Beobachtungsintervall [0,85] berechnet. Die stückweise Approximation und die aufwendige Konstruktion von Verbindungskurven entfällt. Dadurch wird global und lokal eine bessere Anpassung an die rohen Werte erreicht, wobei die Glattheit der ausgeglichenen Werte durch die Stetigkeitsbedingungen an den Intervallgrenzen automatisch gewährleistet ist. Eine Bemerkung zur Anzahl der frei wählbaren Parameter der Approximation sei hier angebracht. Die stückweise Polynomdarstellung mit $m \cdot (k+1)$ Koeffizienten könnte ein falsches Bild von der wirklichen Anzahl der freien Parameter geben. Die Polynomkoeffizienten sind nicht frei wählbar, da an den Intervallgrenzen die Stetigkeitsbedingungen erfüllt sein müssen. Mit der unter 2.2.2 beschriebenen Wahl der Knotenfolge (t_j) sind lediglich die m+k B-Splinekoeffizienten α_j frei wählbar. Bei m=15 Intervallen und dem Grad k=3 ergeben sich lediglich 18 freie Parameter.

3 Die Ausgleichung der Sterbetafel RAE 1971/80

Die praktische Anwendung der unter 2.2 beschriebenen Methode führt das Ausgleichsproblem auf folgende Aufgabe:

man wähle den Polynomgrad, die Anzahl und die Lage der Intervalle so, dass die ausgeglichene Kurve optimal ist.

In welchem Sinne dieses Optimum zu verstehen ist, lässt sich kaum rein mathematisch formulieren. Im Laufe der vorliegenden Ausgleichung wurde versucht, durch Einbezug verschiedener Testgrössen den subjektiven Ermessensspielraum weitgehend einzuschränken. Das Resultat sei hier vorweggenommen:

Die Ausgleichung im Intervall [0,85] erfolgte mit einer Splinefunktion vom Grad k=3 und den 14 Intervallen mit den Grenzpunkten 0, 3, 6, 10, 15, 20, 25, 30, 35, 41, 47, 54, 63, 70 und 85. Eine grafische Darstellung befindet sich auf Seite 49, die ausgeglichenen Werte sind in der Tabelle auf Seite 50 zusammengestellt.

Aus praktischen Gründen wurde die Tafel bis zum Alter 100 fortgesetzt. Diese Extrapolation ist sehr subjektiv, da im Intervall [86,100] keine Beobachtungen vorliegen. In diesem Altersbereich wurde das Sterbegesetz von Perks verwendet, welches durch die Vorgabe von 4 Bestimmungsstücken an die ausgeglichenen Werte angepasst werden kann. Aus verschiedenen Varianten wurde jene Perks-

Kurve ausgewählt welche durch die ausgeglichenen Werte der Alter 75, 80 und 85 und die Tangente beim Alter 85 bestimmt wird.

Der Vergleich der nach RAE 1971/80 erwarteten Sterbfälle mit den wirklich eingetretenen zeigt folgendes Bild:

Altersgruppe	Unter einjähr.	Sterbefälle				
	Risiko stehende Policen	beobachtet	nach RAE 71/80 erwartet	%		
0- 4	142913,5	108	106	101,9		
5-9	251229,5	95	96	99,0		
10-14	309678,0	94	89	105,6		
15-19	357960,5	220	223	98,7		
20-24	445203,5	512	508	100,8		
25-29	624612,0	570	579	98,4		
30-34	795975,5	654	658	99,4		
35-39	852789,5	984	957	102,8		
40-44	882980,0	1 529	1558	98,1		
45-49	863344,0	2608	2603	100,2		
50-54	735338,5	3482	3441	101,2		
55-59	532975,0	3984	3973	100,3		
60-64	318078,0	3734	3800	98,3		
65-69	84963,0	1 548	1524	101,6		
70-74	6837,0	174	178	97,8		
75-79	835,0	42	43	97,7		
80-85	502,5	54	52	103,8		
0-85	7206215,0	20392	20388	100,02		
20-64	6051296,0	18057	18077	99,89		

3.1 Wahl der Intervalle und des Polynomgrades

Man kann annehmen, dass für die rohen Werte q_x gilt:

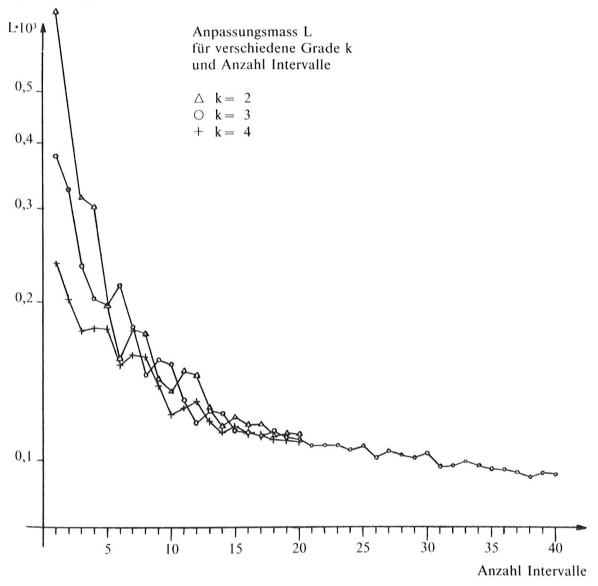
$$q_x = \hat{q}_x + \delta_x$$

mit einer «glatten» oder langsam variierenden Funktion \hat{q}_x und einer Folge von Beobachtungsfehlern δ_x , welche rasch variieren. Die Approximation mit der Methode der kleinsten (gewichteten) Quadrate ist gut dazu geeignet, solche glatte Funktionen aus fehlerhaften Daten zu erkennen. Das Wesen der Methode besteht darin, die Approximation aus einer Funktionsklasse zu wählen, welche flexibel genug ist, die wahre Funktion \hat{q}_x darzustellen, aber doch zu wenig Freiheitsgrade besitzt, um den Oszillationen der Folge δ_x zu folgen.

Um in praktischen Fällen die Grössenordnung der notwendigen Anzahl Freiheitsgrade zu bestimmen, ist es naheliegend, beginnend mit einer Approximation mit wenigen Freiheitsgraden, diese sukzessive zu erhöhen. Als Approximationsmass bzw. Fehlermass der Ausgleichung wird die Veränderung der Grösse

$$L = \sqrt{\frac{\sum_{x} w_{x} (q_{x} - \hat{q}_{x})^{2}}{\sum_{x} w_{x}}}$$

beobachtet. Die nachfolgende Grafik zeigt den Verlauf des Masses L in logarithmischem Massstab für die Polynomgrade k=2,3 und 4 mit m=1 bis 40 gleichlangen Intervallen.



Wie zu erwarten, nimmt das Mass L zuerst ab. Etwa bei 15 Intervallen wird ein Plateau erreicht, bei welchem auch grössere Erhöhungen der Anzahl Freiheitsgrade das Anpassungsmass nicht wesentlich ändern. Eine Erhöhung der Freiheitsgrade bewirkt, dass mit der glatten Funktion \hat{q}_x auch der Fehler δ_x approximiert wird. Im Extremfall, nämlich bei 85 gleichgrossen Intervallen wird die Approximation zur Interpolation und das Anpassungsmass wird gleich Null. Ein solches Diagramm darf als «Visitenkarte» der Rohdaten betrachtet werden. Es zeigt deutlich, welches Mass an Approximation vernünftigerweise angestrebt werden soll.

Die Güte der Approximation wird durch die Wahl des Polynomgrades ab etwa 13 Intervallen nicht mehr wesentlich beeinflusst. Dies bestätigt die praktische Erfahrung anderer Anwendungen. Aus diesem Grunde wurde für die weiteren Untersuchungen der Grad k=3 gewählt.

Hinsichtlich der optimalen Plazierung der Intervallgrenzen wurden verschiedene Versuche unternommen. Der unregelmässige Verlauf des Approximationsmasses zeigt, dass durch geschickte Wahl der Intervallgrenzen eine bessere Anpassung erreicht werden kann. Gleichzeitig ist jedoch zu beachten, dass mit zunehmender Anzahl Intervalle der Einfluss der Lage der Intervallgrenzen stark abnimmt, und dass eine lokal bessere Approximation unter Umständen zu einem unerwünschten Kurvenverlauf führt. C. de Boor und Rice [2] haben 1968 eine «Least-squares-Approximation» mit kubischen Splines und variablen Intervallen angegeben. Das Verfahren berücksichtigt leider die Gewichte der einzelnen Datenpunkte nicht. In seinem neueren Buch, A Practical Guide to Splines, 1978, weist de Boor mehrmals darauf hin, dass sich der Versuch, die Intervalle (bei fester Anzahl) optimal zu plazieren, nur lohnt, wenn dadurch die Qualität der Anpassung entscheidend beeinflusst wird und wenn gleichzeitig eine Approximation mit möglichst wenig Parametern erforderlich ist. In allen anderen Fällen führt eine Ausgleichung mit etwas mehr, gut verteilten Intervallen zum Ziel. Abgesehen davon existiert offenbar zu diesem Problem noch kein allgemein verwendbarer Algorithmus. Mc Cutcheon und Eilbeck [5] haben bei der Ausgleichung der «English Life Tables No 13» ein Verfahren von Powell angewendet [8], konnten aber durch leichte Modifikation der automatisch gewählten Punkte die Güte der Ausgleichung noch verbessern.

In der vorliegenden Ausgleichung wurde versucht, mit Hilfe eines Verfahrens von de Boor [1], Kap. XII die Intervallgrenzen zu bestimmen. Ohne diese Methode näher zu beschreiben, seien hier die Erfahrungen kurz erwähnt. Im unteren Altersbereich [0,35] konnten die so gewählten Punkte mit leichten

Modifikationen übernommen werden. Das Verfahren eignet sich nicht im exponentiellen Bereich der Sterbetafel, da die Intervallgrenzen zu stark gegen die hohen Alter hin verschoben werden.

Die endgültigen Intervalle ergaben sich aus den verschiedenen Versuchen mit fixen und variablen Intervallgrenzen unter Berücksichtigung der im folgenden Abschnitt 3.2 beschriebenen Testgrössen und der (subjektiven) Beurteilung des Kurvenverlaufs.

3.2 Beurteilung der Güte der Ausgleichung

Um den subjektiven Ermessensspielraum möglichst einzuschränken, wurde nach messbaren Kriterien gesucht. Neben dem bekannten χ^2 -Test haben sich noch ein Test auf Trend und ein Mass für die Glattheit der Ausgleichsfunktion als geeignet erwiesen.

3.2.1 Der χ^2 -Test

Dieser Test ist im Zusammenhang mit dem Ausgleichsproblem wohl am häufigsten angewendet. Er benutzt die Masszahl

$$\sum_{x_0}^{x_n} \frac{(T_x - \hat{T}_x)^2}{\hat{T}_x} = \sum_{x_0}^{x_n} \frac{R_x}{\hat{q}_x} (q_x - \hat{q}_x)^2$$

Die Ausgleichung mit dem Grad 3 und 14 Intervallen (und 86 Datenpunkten) bestimmt die 17 freien Parameter in der *B*-Spline-Darstellung, sodass sich für die χ^2 -Testgrösse 86-17=69 Freiheitsgrade ergeben.

Aus den statistischen Festsetzungen im Abschnitt 1.1 geht hervor, dass das Beobachtungsmaterial die Voraussetzungen für den χ^2 -Test nicht ganz erfüllt. Die Zähleinheit ist hier nicht die Person, sondern die Police. Da eine Person mehrere Policen haben kann, sind die beobachteten Sterbfälle nicht ganz unabhängig. Daher wird auf weitere wahrscheinlichkeitstheoretische Aussagen des χ^2 -Tests (wie z. B. Irrtumswahrscheinlichkeit) verzichtet. Auf jeden Fall kann die χ^2 -Testgrösse als Anpassungsmass uneingeschränkt verwendet werden.

3.2.2 Test auf Trend

Im Intervall $[x_i, x_k]$ basiert der Test auf der Masszahl

$$R_{[x_i, x_k]} = \sum_{x=x_{i+1}}^{x_k} r_{x-1} r_x$$
 mit $r_x = q_x - \hat{q}_x$.

Theoretische Angaben über die Masszahl R finden sich bei Powell [8] und de Boor [1]. Powell verwendet den Trend-Test in etwas verfeinerter Form zur Bestimmung der optimalen Intervallgrenzen. Werden die Abweichungen r_x durch zufällige, unkorrelierte Fehler dominiert, so ist der Erwartungswert von R gleich Null. Steckt in der r_x noch Information der zugrunde liegenden Funktion, so neigt die Grösse $r_{x-1}r_x$ dazu positiv zu sein. Diese Erscheinung nennt man Trend. Als Grenzwert für den Test auf Trend nimmt man an, dass, falls

$$R_{[x_i, x_k]} \ge \sum_{x=x_i}^{x_k} \frac{r_x^2}{\sqrt{l}}$$
 ($l = \text{Anzahl Summanden}$)

ist, Trend vorliegt.

In der praktischen Anwendung wurde verlangt, dass die Ausgleichung global und in jedem Intervall trendfrei sein muss.

3.2.3 Glattheit

Die Glätte einer Ausgleichskurve muss vor allem bei mechanischen Ausgleichsmethoden geprüft werden. Bei einer glatten Kurve sind die Differenzen höherer Ordnung, z. B. $\Delta^j \hat{q}_x$, gewöhnlich klein. Die Quadratsumme der *j*-ten Differenzen der ausgeglichenen Werte eignet sich deshalb als Mass für die Glätte einer Kurve. Bei einer Ausgleichung durch Splinefunktionen vom Grad k ist die glatte Funktion $\hat{q}(x)$ k-1 mal stetig differenzierbar und für die Differenzen $\Delta^j \hat{q}_x$ und $j \le k-1$ gilt:

$$\Delta^{j} \hat{q}_{x} = h^{j} \hat{q}^{(j)}(\xi), \qquad \xi \in [x, x+j]$$

h ist die Schrittweite (im vorliegenden Fall ist h=1). Das Mass für die Glätte einer Kurve kann daher durch das verallgemeinerte Krümmungsmass

$$\int_{x_0}^{x_n} [\hat{q}^{(j)}(x)]^2 dx$$

ersetzt werden.

Eine andere Überlegung aus der Theorie der Splinefunktionen führt auf dieselbe Masszahl. Splinefuntionen werden oft als Lösung folgender Extremalaufgabe definiert:

Gesucht ist eine im Intervall (x_0, x_n) mindestens j mal stetig differenzierbare Funktion mit den Eigenschaften, dass die Bedingung

$$\sum_{x} w_x (q_x - \hat{q}_x)^2 = S$$

erfüllt ist, und dass die verallgemeinerte Gesamtkrümmung

$$\int_{x_0}^{x_n} [\hat{q}^{(j)}(x)]^2 dx$$

minimal wird.

Die (eindeutige) Lösung dieser Extremalaufgabe ist eine Splinefunktion vom Grad k = 2j-1.

Die Verwendung eines Krümmungsmasses ist notwendig, da die Ausgleichung mit Splinefunktionen beliebig nahe Anpassungen an die Rohwerte erlauben. Im Extremfall wird die Ausgleichungskurve zur Interpolationskurve der rohen Werte.

4 Vergleich mit den früheren Tafeln

Die aufgrund der Testgrössen bestimmten ausgeglichenen Werte sind in der Tabelle auf Seite 50 aufgeführt. Zunächst ist zu prüfen, ob die durch eine neue Ausgleichsmethode gewonnene Tafel sich ohne Einschränkung mit den vorangegangenen Tafeln vergleichen lässt.

4.1 Vergleich mit der Ausgleichsmethode RAE 1961/70

Zu diesem Zweck wurde die Beobachtung 1961/70 mit der neuen Methode noch einmal ausgeglichen. Dabei geht es nicht darum, die publizierten glatten Werte durch eine Splinefunktion darzustellen. Das wäre mit Hilfe einer Interpolations-Spline ohne weiteres möglich. Es handelt sich auch nicht darum gewisse Eigenheiten der Ausgleichung, wie zum Beispiel den Knick in den Tangenten bei den Alter 30 und 45 zu reproduzieren. Die Aufgabe besteht vielmehr darin, die Ausgleichung sozusagen ohne Kenntnis der publizierten glatten Werte vorzunehmen.

Die neue Ausgleichung liefert im Altersbereich 0 bis 50 etwas abweichende Werte, insbesondere auch im Bereich der Verbindungsparabel. Im Abschnitt über 50 können die Abweichungen vernachlässigt werden.

Die beiden Ausgleichungen unterscheiden sich vor allem im Anpassungsmass. Sind T_x die beobachteten Sterbefälle vom Alter x und \hat{T}_x die gemäss der

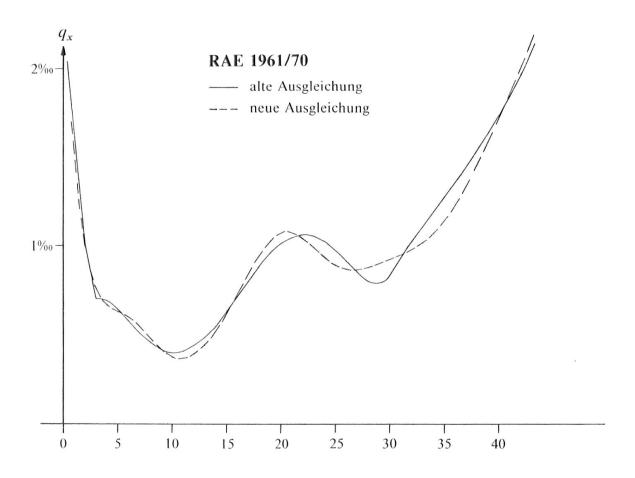
ausgeglichenen Tafel zu erwartenden, so ist die im χ^2 -Test verwendete Masszahl

$$\sum_{x_1}^{x_2} \frac{(T_x - \hat{T}_x)^2}{\hat{T}_x}$$

ein Mass für die Güte der Approximation. Die beiden Ausgleichungen liefern folgende Werte

Alter	alte Ausgleichung	neue Ausgleichung
9–19	19,72	20,08
20-44	57,08	41,07
0-85	128,73	111,61

Die nachfolgende Grafik zeigt den Verlauf der alten und der neuen Ausgleichung im Altersbereich 0 bis 40.



Für weitere Vergleiche wurde die mittlere Lebenserwartung ℓ_x neu berechnet. Die nachfolgende Gegenüberstellung der alten und der neuen Werte zeigt praktisch keine Differenzen, sodass die üblichen Vergleiche ohne Einschränkung vorgenommen werden können.

Alter alter Wert neuer Wert 0 74,78 74,78 20 55.81 55.82 30 46.30 46.31 40 36,80 36,78 50 27,59 27,58

19,14

Mittlere Lebenserwartung nach RAE 1961/70

4.2 Die zeitliche Entwicklung der Sterblichkeit

19,14

60

Zur Beurteilung der zeitlichen Entwicklung der Sterblichkeit dient die nachfolgende Tabelle. Dazu wurden für alle Vergleichabschnitte die nach der Tafel RAE 1971/80 zu erwartenden Sterbefälle berechnet und folgende Verhältnis gebildet:

$$Q = \frac{\text{beobachtete Sterbefälle}}{\text{nach RAE 1971/80 zu erwartende Sterbefälle}}$$

Dieser Quotient wurde für die Beobachtung 1971/80 auf 100 % normiert.

Altersgruppe	1921/31	1930/40	1940/50	1950/60	1961/70	1971/80
0-9	505	428	325	163	138	100
10–19	364	296	202	150	132	100
20–29	262	236	179	107	92	100
30–39	303	272	201	142	120	100
40-49	257	220	155	125	107	100
50-59	242	213	164	130	110	100
60–69	241	203	161	141	117	100
70–79	272	215	181	157	137	100
20–69	260	227	169	130	110	100

Obwohl die Sterblichkeit gesamthaft betrachtet weiterhin abnimmt, ist doch eine deutliche Verlangsamung des Rückganges zu beobachten. Gegenüber der letzten Messung beträgt der Rückgang noch 9 %. In der Altersgruppe 20 bis 29 ist jedoch eine deutliche Zunahme zu beobachten. Ohne in dieser Arbeit näher auf die Todesursachen einzugehen, soll darauf hingewiesen werden, dass in dieser Altersgruppe 55 % der Todesfälle durch Unfälle verursacht werden.

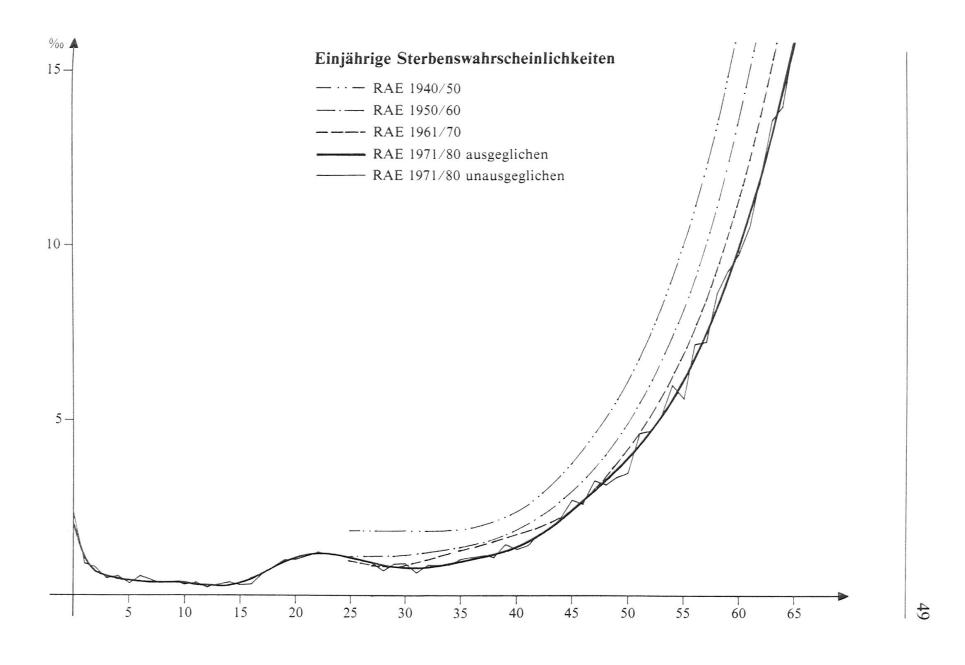
Der verlangsamte Rückgang der Sterblichkeit zeigt sich auch in der folgenden Zusammenstellung über die mittlere Lebenserwartung. Gegenüber dem letzten Jahrzehnt kann für die 0-jährigen eine Verlängerung der Lebenserwartung von etwa 1,4 Jahren beobachtet werden.

Mittlere Lebenserwartung in den verschiedenen Beobachtungsperioden

Alter	Sterbetafel								
	RAH 21/31	RAH 30/40	RAE 40/50	RAE 50/60	RAE61/70	RAE 71/80			
20	46,90	49,45	52,20	54,20	55,81	56,98			
30	37,91	40,50	43,04	44,75	46,30	47,53			
40	28,79	31,39	33,78	35,29	36,80	37,94			
50	20,14	22,77	24,85	26,17	27,59	28,72			
60	12,67	15,26	16,85	17,91	19,14	20,18			
0	63,84	66,78	70,04	72,44	74,78	76,22			

Die zeitliche Entwicklung der einjährigen Sterbenswahrscheinlichkeiten ist auf Seite 49 grafisch dargestellt.

Franz Vogel Schweizerische Lebensversicherungs- und Rentenanstalt Postfach 8022 Zürich



Aggregat-Tafel RAE 1971/80 der Schweizerischen Lebensversicherungs- und Rentenanstalt für Einzelkapitalversicherungen

x	1 x	1000 q _x	х	1 _×	1000 q _x
0	100 000.00	2.096 1	50	94 613.77	3.929 1
1	99 790.39	1.074 7	51	94 242.02	4.279 8
2	99 683.15	0.659 2	52	93 838.68	4.669 1
3	99 617.44	0.545 9	53	93 400.54	5.106 1
4	99 563.06	0.483 5	54	92 923.63	5.600 1
5	99 514.92	0.428 3	55	92 403.25	6.159 1
6	99 472.30	0.388 7	56	91 834.13	6.786 4
7	99 433.64	0.369 9	57	91 210.91	7.484 5
8	99 396.86	0.363 9	58	90 528.24	8.255 6
9	99 360.69	0.359 3	59	89 780.88	9.102 0
10 11 12 13	99 324.99 99 290.75 99 259.63 99 232.03 99 206.62	0.344 7 0.313 4 0.278 1 0.256 1 0.264 6	60 61 62 63 64	88 963.69 88 071.75 87 100.35 86 045.07 84 901.87	10.025 9 11.029 7 12.115 7 13.286 1 14.544 4
15	99 180.37	0.321 0	65	83 667.02	15,897 8
16	99 148.53	0.435 6	66	82 336.90	17,355 0
17	99 105.34	0.591 2	67	80 907.94	18,924 3
18	99 046.75	0.763 6	68	79 376.81	20,614 4
19	98 971.12	0.928 7	69	77 740.50	22,433 6
20	98 879.21	1.062 2	70	75 996.50	24.390 4
21	98 774.18	1.145 3	71	74 142.91	26.516 4
22	98 661.05	1.180 9	72	72 176.91	28.935 1
23	98 544.54	1.177 0	73	70 088.46	31.792 9
24	98 428.55	1.141 7	74	67 860.14	35.236 4
25	98 316.17	1.083 1	75	65 468.99	39.412 2
26	98 209.68	1.009 8	76	62 888.71	44.466 8
27	98 110.51	0.931 7	77	60 092.25	50.546 6
28	98 019.10	0.859 1	78	57 054.79	57.798 3
29	97 934.89	0.802 2	79	53 757.12	66.368 3
30	97 856.33	0.771 5	8.0	50 189.35	76.403 2
31	97 780.83	0.774 0	8.1	46 354.72	88.049 4
32	97 705.15	0.804 7	8.2	42 273.21	101.453 6
33	97 626.53	0.855 3	8.3	37 984.44	116.762 2
34	97 543.03	0.917 5	8.4	33 549.29	134.121 8
35	97 453.53	0.983 2	85	29 049.60	153.679 0
36	97 357.71	1.046 7	86	24 585.29	175.486 8
37	97 255.81	1.112 7	87	20 270.90	199.452 0
38	97 147.59	1.188 3	88	16 227.83	225.430 2
39	97 032.15	1.280 8	89	12 569.59	253.176 0
40	96 907.87	1.397 5	90	9 387.27	282.344 1
41	96 772.44	1.545 6	91	6 736.83	312.501 8
42	96 622.87	1.730 0	92	4 631.56	343.150 9
43	96 455.71	1.946 9	93	3 042.24	373.760 2
44	96 267.92	2.190 1	94	1 905.17	403.800 7
45	96 057.08	2,453 6	95	1 135.36	432.782 5
46	95 821.39	2,731 2	96	644.28	460.284 6
47	95 559.68	3,016 8	97	347.73	485.976 0
48	95 271.40	3,306 8	98	178.74	509.626 7
49	94 956.36	3,607 9	99	87.65	531.106 6
			100	41.10	550.376 9

Literaturverzeichnis

- [1] De Boor C.: A Practical Guide to Splines, Springer-Verlag, New York, 1978.
- [2] De Boor C., Rice J. R.: Least squares cubic spline approximation I and II, CSD TR 20 and 21, Purdue University, West Lafayette, IN, 1968.
- [3] Berghoff W.: Sterblichkeitsbeobachtungen 1950/60 bei den Einzelkapitalversicherungen der Schweizerischen Lebensversicherungs- und Rentenanstalt, MVSM Band 62, Heft 1.
- [4] Cleuvenot P. F., Stampfli J., Steinmann E.: Die Sterblichkeit bei den Einzelkapitalversicherungen der Schweizerischen Lebensversicherungs- und Rentenanstalt in den Jahren 1961 bis 1970, MVSM Band 73, Heft 1.
- [5] Mc Cutcheon J. J., Eilbeck J. C.: Experiments in the graduation of the English Life Tables (No. 12) data, T.F.A. 35 (3), 1977.
- [6] Mc Cutcheon J. J.: Some Remarks on Splines, T.F.A. 37 (4), 1981.
- [7] Frauenfelder W.: Beobachtungen über die Sterblichkeit bei den Einzelkapitalversicherungen der Schweizerischen Lebensversicherungs- und Rentenanstalt, MVSM Band 54, Heft 1.
- [8] *Powell M. J. D.*: Numerical Approximation to Functions and Data, (ed. J. G. Hayes), Athlone Press, 1970.
- [9] Schäfer K. A.: Ausgleichung durch Splinefunktionen und ihre Anwendung auf Sterbetafeln, Sonderhefte zum «Allgemeinen Statistischen Archiv» Nr. 14 (1978).

Zusammenfassung

Aus den Beobachtungen der Jahre 1971 bis 1980 im Bestand der Schweizerischen Einzelkapitalversicherungen der Rentenanstalt wird die Sterbetafel RAE 1971/80 abgeleitet. Die Ausgleichung wird mit Hilfe von Splinefunktionen vorgenommen. Abschliessend wird die neue Tafel mit den früheren Beobachtungen der Rentenanstalt verglichen.

Résumé

La table de mortalité RAE 1971/80 a été établie d'après les observations faites durant les années 1971 à 1980 par la Rentenanstalt sur son portefeuille des assurances individuelles de capitaux. L'ajustement de cette table fut effectué au moyen de fonctions de spline. Enfin elle est comparée aux observations faites précédemment par la Rentenanstalt.

Summary

From observations in the individual life insurance portfolio of Swiss Life Insurance and Pension Company during the years 1971 to 1980, a mortality table RAE 1971/80 is derived. Graduation is made by using splines. Finally, the new mortality table is compared with earlier observations by Swiss Life.

