**Zeitschrift:** Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

**Swiss Actuaries** 

**Herausgeber:** Vereinigung Schweizerischer Versicherungsmathematiker

**Band:** - (1982)

Heft: 2

**Artikel:** Limite dans l'évolution de la mortalité de la population suisse

Autor: Haldy, Marc

**DOI:** https://doi.org/10.5169/seals-966986

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## B. Wissenschaftliche Mitteilungen

MARC HALDY, Pully

Limite dans l'évolution de la mortalité de la population suisse

### Introduction

Dans son volume 56, fascicule 1, le Bulletin de l'AAS a publié un mémoire qui était le fruit d'une collaboration que j'avais eue avec M. *Eric Taillens*; l'intitulé était «Limites dans l'évolution de la mortalité» [1]. On peut le résumer comme il suit:

Les taux de mortalité par âge et par sexe,  $q_x$  et  $q_y$ , diminuaient assez régulièrement depuis le siècle passé. Aux âges de 20 à 50 ans, cette décroissance était si rapide qu'elle ne pouvait plus continuer longtemps au même rythme, car la courbe d'évolution du taux, à peu près linéaire, plongeait vers zéro entre les années 1965 et 1985.

Constatant l'impossibilité de trouver une formule mathématique de confiance pour donner l'évolution de la mortalité dans l'avenir, nous avions porté notre attention sur les taux de mortalité par cause publiés par l'OFS [3] et négligé toutes les causes décroissantes, ainsi que celles qui, stables, ne revêtaient guère d'importance. Finalement, nous n'avions retenu que les décès imputables

- a) aux maladies de l'appareil circulatoire,
- b) à la sénilité,
- c) au cancer,
- d) aux morts violentes.

Additionnant les taux de la mortalité due à ces causes (selon SM 39/44 et SF 39/44), nous avions obtenu notre variante I pour la limite de la baisse de la mortalité. Puis, admettant que les progrès de la médecine permettraient un jour la guérison du cancer, nous avions construit notre variante II basée sur les causes a), b) et d). Négligeant ainsi 14 des groupes de causes des statistiques officielles, nous étions persuadés que les taux de mortalité ne descendraient jamais plus bas.

Nous avions alors calculé les nombres de commutation correspondant à nos deux variantes, au taux d'intérêt de  $2\frac{1}{2}$ %. Ces tables parurent en 1957 dans la Revue d'économie politique et de statistique [2] avec une étude portant, entre autres, sur l'évolution de l'espérance complète de vie et sur celle de l'âge probable.

Au moyen de ces nombres de commutation, il a été possible de calculer les primes pures de diverses combinaisons d'assurance et de les comparer aux primes selon SM 39/44 à  $2\frac{1}{2}$ %. Les résultats font l'objet de graphiques parus en 1956 [1].

# Après un quart de siècle, il convient de jeter un coup d'œil critique sur ces travaux, à la lumière des observations faites depuis lors

Ma stupéfaction a été grande lorsque j'ai constaté que, d'après la table SM 1968/73 (population générale), la mortalité des hommes âgés de 25 à 29 ans était tombée au-dessous des taux limites des deux variantes 1939/44. Pour le reste les taux de la variante II restent inférieurs à ceux de la population suisse, tandis que c'est le contraire pour la variante I des femmes aux âges de 55 à 86 ans.

Mes travaux antérieurs étant mis en défaut, il faut renoncer à utiliser leurs conclusions (ce sont surtout les maladies du système circulatoire qui sont devenues moins meurtrières).

Cela m'a amené à recalculer les deux variantes selon le même procédé, mais sur la base des statistiques 1968/73, puis à comparer les nouveaux résultats aux taux de la mortalité générale qui sont publiés par l'OMS [4] et ont été partiellement reproduite par la CSR dans sa publication «Sigma» [5]. J'ai été ainsi engagé à éliminer la variante I et à constater qu'aux Etats-Unis d'Amérique l'espérance de vie des femmes âgées de 80 ans et davantage dépassait celle de ma nouvelle variante II (base 1968/73). Dès lors, il fallait chercher quels amendements devraient être apportés à cette dernière.

### Variante III

En recherchant dans quels pays le taux de mortalité pour une cause déterminée, à un âge x, est le plus faible et en l'adoptant, j'ai construit une table de mortalité-limite pour l'ensemble des causes. Un premier essai a dû être abandonné parce que, dans certains pays, trop de décès (parfois plus de 30%) sont attribués aux causes indéterminées, ceci au détriment d'autres causes qui sont ainsi annulées ou ridiculement réduites. Un second essai ne prenant en considération que les pays dont la population est d'au moins un million d'habitants et où les «symptômes et autres états morbides mal définis» ne représentent pas plus du dixième des cas de décès, a conduit à des taux plus crédibles que j'ai dénommés «taux minimums par sélection».

Enfin, le fait que les taux de la mortalité générale aux Etats-Unis d'Amérique sont très faibles aux âges élevés a conduit à l'idée qu'aucun taux-limite ne devait dépasser 60% du taux correspondant SM ou SF 1968/73.

Disposant ainsi de trois taux pour chaque âge et chaque sexe, soit:

- le taux de la variante II 1968/73,
- le «taux minimum par sélection»,
- 60% du taux SM ou SF 1968/73.

J'ai adopté le plus petit des trois et ai désigné la table obtenue sous le nom de «variante III». Après l'âge de 100 ans, j'ai fait un raccordement graphique avec  $q_{109} = 1$ .

Le cheminement qui m'a amené à cette table-limite, ainsi que de nombreux renseignements concernant la mortalité de la population dans le monde, ont été donnés dans une publication récente [6].

J'ai encore passé en revue les tables-limites d'autres auteurs [8]. Cet examen a révélé qu'en général elles étaient dépassées, en certains secteurs d'âges, dans quelques pays qui ne pouvaient être ignorés. Il faut toutefois faire une exception pour l'œuvre de M. S. Hishinuma [12]. Celui-ci a construit une première variante (Hyp. a) en reprenant, pour chaque âge et chaque sexe, le taux le plus bas que l'on trouve pour un pays dans l'annuaire démographique 1974 de l'ONU, puis il a obtenu une seconde variante (Hyp. b) en opérant diverses réductions sur les taux de mortalité d'une table japonaise datant de 1975. Enfin, il a choisi pour chaque âge le taux le plus bas de ces deux variantes (Hyp. c); les espérances de vie auxquelles il a abouti sont un peu inférieures à celles de ma variante III, seule considérée ci-après.

## Utilité d'une table-limite de la mortalité générale de la population. Nombre de commutation

Les tables de la mortalité générale jouent un très grand rôle dans les études démographiques et d'économie nationale, en particulier dans les domaines du travail et de la sécurité sociale (calcul des primes, évaluation de la situation financière). Elles sont aussi adoptées comme bases de calcul des primes d'assurances au décès dans divers pays, tandis que l'actuaire se voit obligé de recourir à des tables de sélection pour les assurances de rentes viagères individuelles facultatives, ainsi que dans le secteur des caisses de pensions lorsque le personnel assuré est sélectionné par la profession (enseignants, etc.) [7].

Dans les assurances au décès, la baisse de la mortalité se traduit par des bénéfices et l'on ne peut que s'en réjouir. Par contre, nombreux sont les actuaires qui ont été confrontés avec de grandes difficultés résultant de la nécessité de renforcer périodiquement les réserves des assurances de rentes en capitalisation. On change volontiers les bases du bilan technique tous les dix ans, à la lumière des expériences. Il arrive alors d'aboutir à une augmentation de 10% du montant des réserves mathématiques d'une caisse de pensions par le seul fait de cette modification des tables d'estimation (pour les rentes en cours, le phénomène est beaucoup moins marqué).

Il est donc très important de pouvoir mesurer l'évolution encore possible. Dans ce but, l'actuaire se sert de «tables des nombres de commutation».

L'un de mes collaborateurs, M. Claude Richard, a bien voulu s'intéresser à cette question. L'Ecole des HEC de l'Université de Lausanne (professeur Chuard, M. Ruegg assistant) lui a fourni une aide matérielle en confectionnant de telles tables au moyen des taux de mortalité de ma variante III aux taux d'intérêt de 3% et de 4%. Un extrait de ces dernières fait l'objet des annexes n° 3 (hommes) et n° 4 (femmes). M. *Richard* en a calculé diverses applications.

## Quelques conséquences d'une baisse hypothétique de la mortalité jusq'au niveau de la variante III

Etat stationnaire, structure de la population

Comparant avec l'état stationnaire de la population selon SM/SF 1968/73, on constate que les tranches d'âges 0–19 ans et 20 à 65 ans diminuent un peu d'importance, tandis qu'aux âges de 65 ans et plus la proportion passe de 14 à 20% chez les hommes, de 18 à 23% chez les femmes. Le rapport démographique

hommes de 20 à 64 ans vieillards de 65 ans et plus

devient 2,73 au lieu de 4,18.

Ainsi, à très longue échéance, la répartition de la charge des rentes de vieillesse des hommes sur la population masculine de 20 à 64 ans pourrait augmenter de 53% relativement au rapport démographique 1968/73; or celui-ci est encore assez loin d'être effectivement atteint!

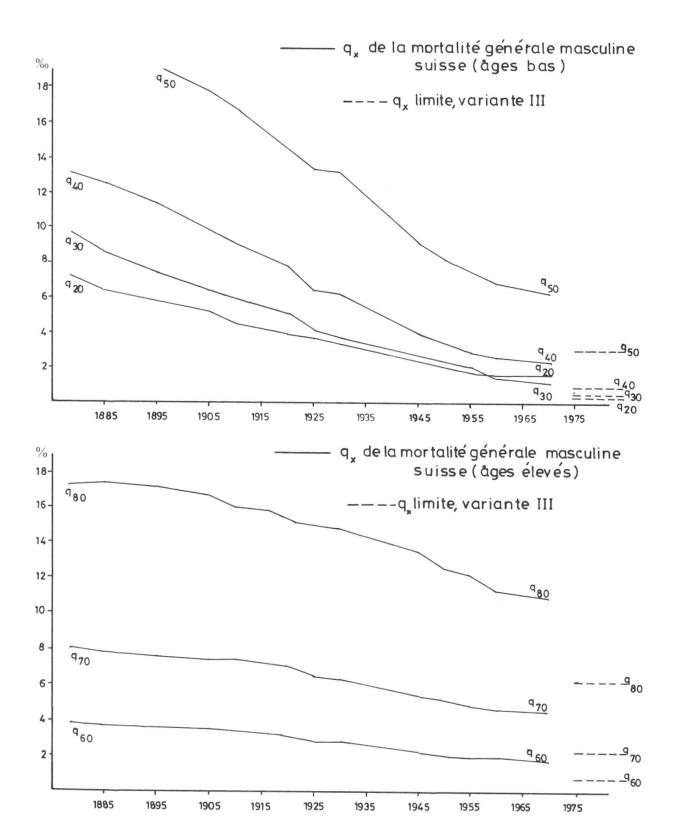
## Quelques exemples

Voici quelques taux de majoration des primes pures des assurances de rentes, par rapport aux primes SM/SF 1968/73.

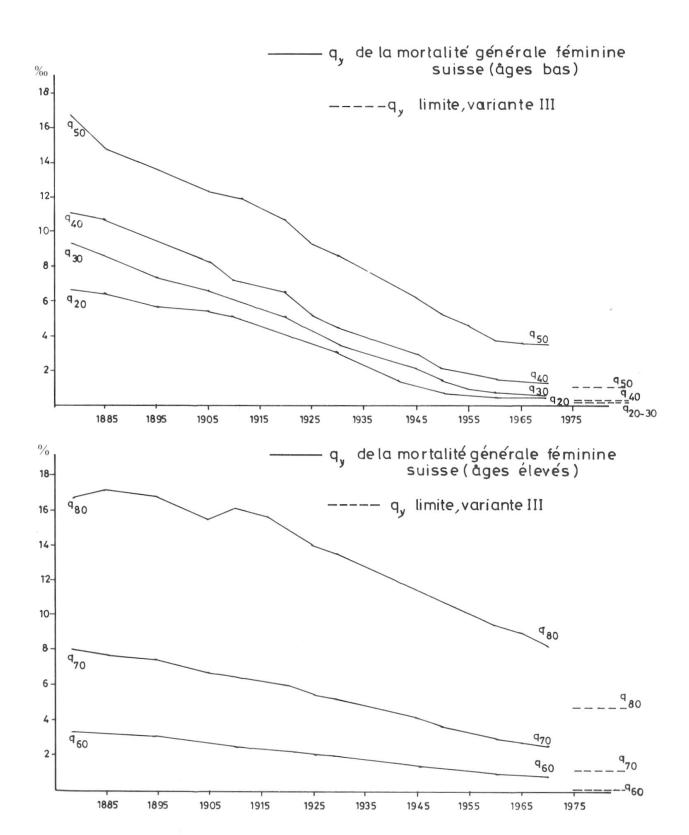
| Age | Rente viagère différé<br>Prime unique |        | e<br>Prime annuelle |        | Rente viagère<br>immédiate<br>Prime unique |       | Rente temporaire<br>Prime unique |        |
|-----|---------------------------------------|--------|---------------------|--------|--------------------------------------------|-------|----------------------------------|--------|
|     | H   F                                 |        | Н                   | I F    |                                            | F     | Н                                | F      |
|     | S = 65                                | S = 62 | S = 65              | S = 62 |                                            |       | S = 65                           | S = 62 |
|     | %                                     | %      | %                   | %      | %                                          | %     | %                                | %      |
| 0   | 50,2                                  | 27,7   | 45,9                | 25,1   | 4,87                                       | 3,78  | 2,96                             | 2,06   |
| 20  | 46,8                                  | 25,5   | 44,0                | 24,2   | 5,67                                       | 4,34  | 1,94                             | 1,06   |
| 40  | 45,0                                  | 24,5   | 40,9                | 22,4   | 11,02                                      | 8,53  | 2,85                             | 1,72   |
| 60  | 34,8                                  | 18,4   | 32,0                | 18,1   | 23,36                                      | 16,04 | 2,07                             | 0,25   |
| 80  |                                       |        |                     |        | 36,63                                      | 31,69 |                                  |        |

## Remarques finales

J'ai limité la présente publication aux aspects les plus intéressants pour l'actuaire, car je pense devoir livrer une courte notice à la Revue suisse d'économie politique et de statistique. Il s'agira de rectifier le mémoire [2] qu'elle a publié en 1957. Ce sera l'occasion de donner quelques précisions sur l'évolution de l'espérance de vie, de l'âge probable et de la «pyramide des âges» à l'état stationnaire.


Il me reste l'agréable devoir de remercier «La Suisse», sociétés d'assurances sur la vie et contre les accidents, ainsi que la Caisse cantonale vaudoise des retraites populaires pour la confection des graphiques et la dactylographie.

Marc Haldy 8, av. Senalèche 1012 Pully


## **Bibliographie**

- [1] *Haldy, Marc* et *Taillens, Eric*: «Limites dans l'évolution de la mortalité», Bulletin de l'Association des actuaires suisses, vol. 56, fascicule 1, 30.4.1956.
- [2] Mêmes auteurs: La baisse de la mortalité se poursuivra-t-elle encore longtemps au même rythme? «Revue suisse d'économie politique et de statistique, 93e année, fascicule 2, 1957.
- [3] Bureau fédéral de statistique (BFS), 3003 Berne, actuellement Office fédéral de statistique: a) «Tables de mortalité de la population suisse de 1876 à 1932» (Berne 1935);
  - b) Tables de mortalité de la population suisse 1931/41, 1939/44, 1941/50, 1948/53, etc., tout particulièrement les probabilités annuelles dépendantes de décès par causes, par sexe et par état civil 1939/44, 1948/53, 1958/63 et 1968/73.
- [4] Annuaire de statistiques sanitaires mondiales OMS, Genève 1978, volume 1, mouvement de la population et causes de décès.
- [5] CSR (Compagnie suisse de réassurances, C. P. 172, Zürich): L'espérance de vie dans le monde, périodique «Sigma», nº 5, mai 1978.
- [6] *Haldy, Marc*: «Limites dans l'évolution de la mortalité», Bulletin de l'Association des actuaires diplômés de l'Institut de science financière et d'assurances (ISFA, Lyon), nº 43, septembre 1981, éd. MM. Dulac et Cie, 8, rue Lamartine, Paris IX<sup>e</sup>.
- [7] Desplanques, Guy: «La mortalité des adultes suivant le milieu social, 1955–1971», INSEE (Institut national de la statistique et des études économiques), Ministère de l'économie et des finances, Paris, cahier 44 D, avril 1976.
- [8] Mazoué, L.: «Mortalité». Les cahiers de techniques sociales, nº 5, série statistique nº 3, Paris 1968
- [9] Merlin, Pierre: «Le problème de l'ajustement mathématique des tables de mortalité et l'établissement de tables de génération». Bulletin trimestriel de l'Institut des actuaires français, nº 249, décembre 1964.
- [10] US Departement of health, education and welfare, Social security administration, Actuarial study No.77, June 1978: «United States population projections of OASDHI cost estimates». Hew Publication No. (SSA) 78-11523.
- [11] Leutwiler, Oskar: Extrapolation der Sterblichkeit und deren Anwendung in der Lebensversicherung. Bulletin de l'Association des actuaires suisses, 79e volume, tome 2, Bern 1979, p. 121.
- [12] *Hishinuma*, S.: Historical Review on the longevity of the Human Beings, 20th Intern. Congress of Actuaries, Tokyo 1976.

### Annexe no 1



## Annexe no 2



Annexe n° 3 *Variante III, hommes* Extrait de la table des nombres de commutation i = 0.04

| х  | $q_{X}$  | e°x    | ≥1 <sub>x</sub> | $^{\mathrm{D}}\mathbf{x}$ | $^{ m N}$ x | M <sub>X</sub> | a<br>x |
|----|----------|--------|-----------------|---------------------------|-------------|----------------|--------|
| 0  | 0,001 02 | 78,922 | 8 013 496       | 100 897                   | 2 473 524   | 5 761,7        | 24,515 |
| 1  | 0,000 50 | 78,002 | 7 912 598       | 96 918                    | 2 372 627   | 5 662,8        | 24,481 |
| 2  | 0,000 50 | 77,041 | 7 811 804       | 93 143                    | 2 275 709   | 5 616,2        | 24,432 |
| 3  | 0,000 50 | 76,079 | 7 711 060       | 89 516                    | 2 182 566   | 5 571,4        | 24,382 |
| 4  | 0,000 50 | 75,117 | 7 610 367       | 86 030                    | 2 093 049   | 5 528,3        | 24,329 |
| 5  | 0,000 47 | 74,155 | 7 509 723       | 82 680                    | 2 007 019   | 5 487,0        | 24,275 |
| 6  | 0,000 43 | 73,189 | 7 409 131       | 79 463                    | 1 924 339   | 5 449,6        | 24,217 |
| 7  | 0,000 35 | 72,221 | 7 308 585       | 76 374                    | 1 844 876   | 5 416,8        | 24,156 |
| 8  | 0,000 27 | 71,246 | 7 208 083       | 73 410                    | 1 768 503   | 5 391,1        | 24,091 |
| 9  | 0,000 20 | 70,265 | 7 107 615       | 70 568                    | 1 695 092   | 5 372,0        | 24,021 |
| 10 | 0,000 17 | 69,279 | 7 007 175       | 67 840                    | 1 624 525   | 5 358,4        | 23,946 |
| 11 | 0,000 17 | 68,290 | 6 906 755       | 65 220                    | 1 556 684   | 5 347,3        | 23,868 |
| 12 | 0,000 21 | 67,302 | 6 806 352       | 62 701                    | 1 491 465   | 5 336,7        | 23,787 |
| 13 | 0,000 27 | 66,316 | 6 705 967       | 60 276                    | 1 428 764   | 5 324,0        | 23,704 |
| 14 | 0,000 34 | 65,334 | 6 605 602       | 57 943                    | 1 368 487   | 5 308,4        | 23,618 |
| 15 | 0,000 43 | 64,356 | 6 505 264       | 55 695                    | 1 310 545   | 5 289,4        | 23,531 |
| 16 | 0,000 53 | 63,383 | 6 404 961       | 53 530                    | 1 254 850   | 5 266,4        | 23,442 |
| 17 | 0,000 63 | 62,417 | 6 304 700       | 51 444                    | 1 201 320   | 5 239,1        | 23,352 |
| 18 | 0,000 70 | 61,456 | 6 204 493       | 49 434                    | 1 149 876   | 5 208,0        | 23,261 |
| 19 | 0,000 74 | 60,498 | 6 104 349       | 47 499                    | 1 100 442   | 5 174,7        | 23,168 |
| 20 | 0,000 76 | 59,543 | 6 004 275       | 45 639                    | 1 052 943   | 5 140,9        | 23,071 |
| 21 | 0,000 74 | 58,588 | 5 904 275       | 43 850                    | 1 007 304   | 5 107,5        | 22,972 |
| 22 | 0,000 72 | 57,631 | 5 804 351       | 42 132                    | 963 454     | 5 076,3        | 22,867 |
| 23 | 0,000 71 | 56,672 | 5 704 501       | 40 483                    | 921 322     | 5 047,2        | 22,758 |
| 24 | 0,000 70 | 55,712 | 5 604 722       | 38 898                    | 880 839     | 5 019,5        | 22,645 |
| 25 | 0,000 69 | 54,750 | 5 505 015       | 37 376                    | 841 941     | 4 993,3        | 22,526 |
| 26 | 0,000 69 | 53,788 | 5 405 378       | 35 913                    | 804 566     | 4 968,5        | 22,403 |
| 27 | 0,000 69 | 52,825 | 5 305 809       | 34 508                    | 768 652     | 4 944,7        | 22,274 |
| 28 | 0,000 68 | 51,861 | 5 206 309       | 33 158                    | 734 144     | 4 921,8        | 22,141 |
| 29 | 0,000 68 | 50,896 | 5 106 877       | 31 861                    | 700 986     | 4 900,1        | 22,001 |
| 30 | 0,000 69 | 49,930 | 5 007 513       | 30 615                    | 669 125     | 4 879,3        | 21,856 |
| 31 | 0,000 72 | 48,964 | 4 908 217       | 29 417                    | 638 510     | 4 859,0        | 21,705 |
| 32 | 0,000 76 | 47,999 | 4 808 990       | 28 265                    | 609 093     | 4 838,6        | 21,549 |
| 33 | 0,000 80 | 47,035 | 4 709 833       | 27 158                    | 580 828     | 4 818,0        | 21,387 |
| 34 | 0,000 85 | 46,072 | 4 610 752       | 26 092                    | 553 670     | 4 797,1        | 21,220 |
| 35 | 0,000 90 | 45,111 | 4 511 751       | 25 067                    | 527 578     | 4 775,8        | 21,047 |
| 36 | 0,000 96 | 44,151 | 4 412 833       | 24 081                    | 502 511     | 4 754,1        | 20,867 |
| 37 | 0,001 03 | 43,193 | 4 314 005       | 23 133                    | 478 429     | 4 731,8        | 20,682 |
| 38 | 0,001 11 | 42,237 | 4 215 271       | 22 220                    | 455 296     | 4 708,9        | 20,490 |
| 39 | 0,001 20 | 41,284 | 4 116 639       | 21 342                    | 433 076     | 4 685,2        | 20,292 |
| 40 | 0,001 30 | 40,333 | 4 018 117       | 20 497                    | 411 734     | 4 660,6        | 20,088 |
| 41 | 0,001 45 | 39,385 | 3 919 713       | 19 683                    | 391 237     | 4 635,0        | 19,877 |
| 42 | 0,001 60 | 38,441 | 3 821 436       | 18 898                    | 371 555     | 4 607,5        | 19,661 |
| 43 | 0,001 73 | 37,502 | 3 723 302       | 18 142                    | 352 657     | 4 578,5        | 19,439 |
| 44 | 0,001 88 | 36,566 | 3 625 326       | 17 414                    | 334 515     | 4 548,3        | 19,209 |
| 45 | 0,002 04 | 35,634 | 3 527 518       | 16 713                    | 317 100     | 4 516,8        | 18,973 |
| 46 | 0,002 20 | 34,706 | 3 429 895       | 16 037                    | 300 387     | 4 484,0        | 18,730 |
| 47 | 0 002 38 | 33,781 | 3 332 471       | 15 387                    | 284 350     | 4 450,1        | 18,480 |
| 48 | 0,002 58 | 32,861 | 3 235 261       | 14 760                    | 268 963     | 4 414,9        | 18,223 |
| 49 | 0,002 80 | 31,944 | 3 138 282       | 14 155                    | 254 204     | 4 378,3        | 17,958 |
| 50 | 0,003 05 | 31,033 | 3 041 554       | 13 573                    | 240 048     | 4 340,2        | 17,686 |

| Annexe nº 3 (suite)        |                                                          |                                                | Variar                                                   | te III, hommes                               |                                                          |                                                     |                                                |
|----------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| х                          | $\mathbf{q}^{\mathbf{x}}$                                | é <sub>x</sub>                                 | $\mathbf{\Sigma}_{1_{x}}$                                | $^{\mathrm{D}}\mathrm{x}$                    | $^{ m N}_{ m x}$                                         | M <sub>x</sub>                                      | a'x                                            |
| 51<br>52<br>53<br>54       | 0,003 32<br>0,003 61<br>0,003 94<br>0,004 30             | 30,126<br>29,225<br>28,329<br>27,439           | 2 945 09<br>2 848 93<br>2 753 08<br>2 657 59             | 3 12 469<br>9 11 946                         | 226 476<br>213 465<br>200 996<br>189 050                 | 4 300,3<br>4 258,8<br>4 215,5<br>4 170,3            | 17,407<br>17,120<br>16,825<br>16,523           |
| 55<br>56<br>57<br>58<br>59 | 0,004 73<br>0,005 19<br>0,005 69<br>0,006 24<br>0,006 87 | 26,555<br>25,679<br>24,810<br>23,949<br>23,097 | 2 562 46<br>2 467 75<br>2 373 49<br>2 279 71<br>2 186 47 | 7 10 483<br>2 10 027<br>6 9 586,9            | 177 608<br>166 654<br>156 171<br>146 144<br>136 557      | 4 123,0<br>4 073,1<br>4 020,8<br>3 966,0<br>3 908,5 | 16,214<br>15,898<br>15,574<br>15,244<br>14,907 |
| 60<br>61<br>62<br>63<br>64 | 0,007 61<br>0,008 42<br>0,009 29<br>0,010 27<br>0,011 39 | 22,253<br>21,420<br>20,597<br>19,786<br>18,986 | 2 093 81<br>2 001 79<br>1 910 46<br>1 819 91<br>1 730 20 | 1 8 347,3<br>8 7 958,7<br>3 7 581,5          | 127 396<br>118 648<br>110 301<br>102 342<br>94 761,0     | 3 847,9<br>3 783,9<br>3 716,3<br>3 645,3<br>3 570,4 | 14,563<br>14,214<br>13,859<br>13,499<br>13,134 |
| 65<br>66<br>67<br>68<br>69 | 0,012 69<br>0,014 15<br>0,015 73<br>0,017 49<br>0,019 46 | 18,199<br>17,427<br>16,669<br>15,928<br>15,203 | 1 641 40<br>1 553 62<br>1 466 96<br>1 381 52<br>1 297 42 | 8 6 511,0<br>2 6 172,0<br>2 5 841,3          | 87 545,9<br>80 687,4<br>74 176,4<br>68 004,3<br>62 163,0 | 3 491,4<br>3 407,7<br>3 319,1<br>3 225,7<br>3 127,5 | 12,765<br>12,392<br>12,018<br>11,642<br>11,265 |
| 70<br>71<br>72<br>73<br>74 | 0,021 70<br>0,024 11<br>0,026 69<br>0,029 53<br>0,032 76 | 14,494<br>13,805<br>13,133<br>12,480<br>11,844 | 1 214 80<br>1 133 78<br>1 054 52<br>977 17<br>901 89     | 3 4 894,2<br>3 4 592,5<br>5 4 298,0          | 56 644,6<br>51 441,8<br>46 547,5<br>41 955,0<br>37 657,0 | 3 024,2<br>2 915,7<br>2 802,2<br>2 684,4<br>2 562,3 | 10,887<br>10,511<br>10,136<br>9,761<br>9,389   |
| 75<br>76<br>77<br>78<br>79 | 0,036 48<br>0,040 65<br>0,045 18<br>0,050 16<br>0,055 68 | 11,229<br>10,635<br>10,064<br>9,517<br>8,993   | 828 83<br>758 16<br>690 07<br>624 75<br>562 38           | 3 3 455,8<br>4 3 187,8<br>2 926,7            | 33 646,3<br>29 916,2<br>26 460,5<br>23 272,7<br>20 346,0 | 2 436,0<br>2 305,2<br>2 170,1<br>2 031,6<br>1 890,4 | 9,020<br>8,657<br>8,301<br>7,952<br>7,612      |
| 80<br>81<br>82<br>83<br>84 | 0,061 81<br>0,068 65<br>0,076 11<br>0,084 13<br>0,092 23 | 8,494<br>8,020<br>7,575<br>7,158<br>6,769      | 503 14<br>447 19<br>394 71<br>345 82<br>300 66           | 7 2 189,5<br>1 1 960,7<br>9 1 741,8          | 17 673,0<br>15 245,9<br>13 056,5<br>11 095,8<br>9 353,93 | 1 747,3<br>1 603,1<br>1 458,6<br>1 315,1<br>1 174,2 | 7,282<br>6,963<br>6,659<br>6,370<br>6,098      |
| 85<br>86<br>87<br>88<br>89 | 0,099 96<br>0,108 09<br>0,116 63<br>0,125 61<br>0,135 01 | 6,406<br>6,062<br>5,736<br>5,427<br>5,135      | 259 30<br>221 75<br>187 96<br>157 82<br>131 19           | 7 1 158,7<br>3 993,72<br>1 844,06            | 7 820,00<br>6 481,10<br>5 322,39<br>4 328,67<br>3 484,61 | 1 038,1<br>909,44<br>789,01<br>677,57<br>575,63     | 5,841<br>5,593<br>5,356<br>5,128<br>4,910      |
| 90<br>91<br>92<br>93<br>94 | 0,144 90<br>0,155 20<br>0,165 90<br>0,177 10<br>0,188 80 | 4,859<br>4,597<br>4,350<br>4,116<br>3,894      | 107 91<br>87 77<br>70 55<br>56 00<br>43 87               | 6 485,30<br>5 394,21<br>8 316,16             | 2 774,96<br>2 184,73<br>1 699,43<br>1 305,22<br>989,059  | 483,50<br>401,27<br>328,85<br>265,96<br>212,12      | 4,701<br>4,502<br>4,311<br>4,128<br>3,954      |
| 95<br>96<br>97<br>98<br>99 | 0,200 90<br>0,213 40<br>0,226 40<br>0,239 80<br>0,253 60 | 3,684<br>3,484<br>3,294<br>3,111<br>2,935      | 33 88<br>25 78<br>19 31<br>14 22<br>10 28                | 8 149,93<br>5 113,40<br>4 84,351<br>5 61,657 | 738,895<br>543,767<br>393,837<br>280,438<br>196,087      | 166,71<br>129,02<br>98,251<br>73,565<br>54,116      | 3,787<br>3,627<br>3,473<br>3,325<br>3,180      |
| 100                        | 0,268 00                                                 | 2,762                                          | 7 29                                                     | 1 44,251                                     | 134,430                                                  | 39,081                                              | 3,038                                          |

Une table plus complète, jusqu'à l'âge de 109 ans, avec les  $l_x, d_x, p_x, \mu_x, S_x, C_x$ ,  $R_x$  au taux de 3% ou de 4% peut être obtenue à la Caisse cantonale vaudoise des Retraites populaires (M.Richard), Caroline 11, 1003 Lausanne.

Annexe nº 4  $Variante\ III, femmes$  Extrait de la table des nombres de commutation i=0,04

| У  | $\mathbf{q}^{\mathbf{\lambda}}$ | e<br>y | $\mathbf{\Sigma}_{1_{\mathbf{y}}}$ | Dy      | $^{\mathrm{N}}{}_{\mathrm{Y}}$ | M <sub>y</sub> | a<br>y |
|----|---------------------------------|--------|------------------------------------|---------|--------------------------------|----------------|--------|
| 0  | 0,000 68                        | 83,773 | 8 462 569                          | 100 419 | 2 497 389                      | 4 365,5        | 24,870 |
| 1  | 0,000 27                        | 82,829 | 8 362 150                          | 96 491  | 2 396 970                      | 4 299,9        | 24,841 |
| 2  | 0,000 26                        | 81,852 | 8 261 799                          | 92 755  | 2 300 479                      | 4 274,8        | 24,802 |
| 3  | 0,000 25                        | 80,873 | 8 161 475                          | 89 164  | 2 207 724                      | 4 251,6        | 24,760 |
| 4  | 0,000 24                        | 79,893 | 8 061 178                          | 85 713  | 2 118 560                      | 4 230,2        | 24,717 |
| 5  | 0,000 22                        | 78,912 | 7 960 906                          | 82 397  | 2 032 847                      | 4 210,4        | 24,671 |
| 6  | 0,000 19                        | 77,929 | 7 860 657                          | 79 210  | 1 950 450                      | 4 193,0        | 24,624 |
| 7  | 0,000 15                        | 76,944 | 7 760 431                          | 76 149  | 1 871 240                      | 4 178,5        | 24,573 |
| 8  | 0,000 13                        | 75,955 | 7 660 224                          | 73 209  | 1 795 090                      | 4 167,5        | 24,520 |
| 9  | 0,000 11                        | 74,965 | 7 560 032                          | 70 385  | 1 721 881                      | 4 158,4        | 24,464 |
| 10 | 0,000 11                        | 73,973 | 7 459 852                          | 67 670  | 1 651 496                      | 4 150,9        | 24,405 |
| 11 | 0,000 11                        | 72,981 | 7 359 684                          | 65 060  | 1 583 826                      | 4 143,8        | 24,344 |
| 12 | 0,000 13                        | 71,989 | 7 259 527                          | 62 551  | 1 518 766                      | 4 136,9        | 24,280 |
| 13 | 0,000 14                        | 70,999 | 7 159 381                          | 60 137  | 1 456 215                      | 4 129,1        | 24,215 |
| 14 | 0,000 15                        | 70,009 | 7 059 248                          | 57 816  | 1 396 078                      | 4 121,0        | 24,147 |
| 15 | 0,000 17                        | 69,019 | 6 959 129                          | 55 584  | 1 338 262                      | 4 112,6        | 24,076 |
| 16 | 0,000 19                        | 68,031 | 6 859 025                          | 53 437  | 1 282 677                      | 4 103,5        | 24,003 |
| 17 | 0,000 21                        | 67,043 | 6 758 938                          | 51 372  | 1 229 240                      | 4 093,8        | 23,928 |
| 18 | 0,000 23                        | 66,057 | 6 658 870                          | 49 386  | 1 177 868                      | 4 083,4        | 23,850 |
| 19 | 0,000 24                        | 65,072 | 6 558 823                          | 47 476  | 1 128 482                      | 4 072,5        | 23,770 |
| 20 | 0,000 25                        | 64,088 | 6 458 799                          | 45 639  | 1 081 006                      | 4 061,5        | 23,686 |
| 21 | 0,000 26                        | 63,104 | 6 358 799                          | 43 872  | 1 035 367                      | 4 050,6        | 23,600 |
| 22 | 0,000 27                        | 62,120 | 6 258 824                          | 42 174  | 991 495                        | 4 039,6        | 23,510 |
| 23 | 0,000 27                        | 61,137 | 6 158 875                          | 40 541  | 949 321                        | 4 028,6        | 23,416 |
| 24 | 0,000 26                        | 60,153 | 6 058 953                          | 38 971  | 908 780                        | 4 018,1        | 23,319 |
| 25 | 0,000 26                        | 59,169 | 5 959 058                          | 37 463  | 869 809                        | 4 008,4        | 23,218 |
| 26 | 0,000 26                        | 58,184 | 5 859 188                          | 36 012  | 832 346                        | 3 999,0        | 23,113 |
| 27 | 0,000 25                        | 57,199 | 5 759 345                          | 34 618  | 796 334                        | 3 990,0        | 23,003 |
| 28 | 0,000 25                        | 56,213 | 5 659 528                          | 33 278  | 761 716                        | 3 981,7        | 22,889 |
| 29 | 0,000 25                        | 55,227 | 5 559 736                          | 31 991  | 728 437                        | 3 973,7        | 22,770 |
| 30 | 0,000 25                        | 54,241 | 5 459 969                          | 30 752  | 696 447                        | 3 966,0        | 22,647 |
| 31 | 0,000 26                        | 53,254 | 5 360 226                          | 29 562  | 665 694                        | 3 958,6        | 22,518 |
| 32 | 0,000 27                        | 52,268 | 5 260 509                          | 28 418  | 636 132                        | 3 951,2        | 22,385 |
| 33 | 0,000 29                        | 51,282 | 5 160 818                          | 27 317  | 607 714                        | 3 943,8        | 22,246 |
| 34 | 0,000 30                        | 50,297 | 5 061 153                          | 26 259  | 580 397                        | 3 936,2        | 22,103 |
| 35 | 0,000 32                        | 49,312 | 4 961 518                          | 25 242  | 554 138                        | 3 928,6        | 21,953 |
| 36 | 0,000 34                        | 48,327 | 4 861 912                          | 24 263  | 528 896                        | 3 920,9        | 21,798 |
| 37 | 0,000 37                        | 47,343 | 4 762 338                          | 23 322  | 504 633                        | 3 912,9        | 21,638 |
| 38 | 0,000 39                        | 46,361 | 4 662 798                          | 22 417  | 481 311                        | 3 904,6        | 21,471 |
| 39 | 0,000 42                        | 45,379 | 4 563 295                          | 21 546  | 458 894                        | 3 896,2        | 21,298 |
| 40 | 0,000 45                        | 44,398 | 4 463 830                          | 20 709  | 437 348                        | 3 887,5        | 21,119 |
| 41 | 0,000 48                        | 43,417 | 4 364 408                          | 19 903  | 416 640                        | 3 878,6        | 20,933 |
| 42 | 0,000 52                        | 42,438 | 4 265 030                          | 19 128  | 396 737                        | 3 869,4        | 20,741 |
| 43 | 0,000 56                        | 41,460 | 4 165 700                          | 18 383  | 377 608                        | 3 859,8        | 20,541 |
| 44 | 0,000 60                        | 40,483 | 4 066 421                          | 17 666  | 359 225                        | 3 849,9        | 20,334 |
| 45 | 0,000 66                        | 39,507 | 3 967 198                          | 16 977  | 341 559                        | 3 839,7        | 20,119 |
| 46 | 0,000 71                        | 38,532 | 3 868 035                          | 16 313  | 324 582                        | 3 829,0        | 19,897 |
| 47 | 0,000 78                        | 37,559 | 3 768 937                          | 15 674  | 308 269                        | 3 817,8        | 19,667 |
| 48 | 0,000 85                        | 36,588 | 3 669 910                          | 15 060  | 292 595                        | 3 806,1        | 19,429 |
| 49 | 0,000 94                        | 35,619 | 3 570 959                          | 14 468  | 277 535                        | 3 793,8        | 19,182 |
| 50 | 0,001 05                        | 34,652 | 3 472 093                          | 13 899  | 263 067                        | 3 780,7        | 18,928 |

| Anne                       | exe no 4 (                                          | suite)                              |                                                               | ante III, fem                 | ames                                                     |                                                     |                                                |
|----------------------------|-----------------------------------------------------|-------------------------------------|---------------------------------------------------------------|-------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| У                          | $\mathbf{q}^{\mathbf{\lambda}}$                     | e y                                 | $\mathbf{\Sigma}_{1_{\mathbf{y}}}$                            | $^{\mathrm{D}}\mathbf{y}$     | Ny                                                       | M<br>Y                                              | <br>а<br>У                                     |
| 51<br>52<br>53<br>54       | 0,001 1<br>0,001 2<br>0,001 4<br>0,001 6            | 32,727<br>44 31,768                 | 3 373 320<br>3 274 650<br>3 176 095<br>3 077 667              | 12 822<br>12 313              | 249 168<br>235 818<br>222 996<br>210 684                 | 3 766,7<br>3 751,8<br>3 735,9<br>3 718,8            | 18,664<br>18,392<br>18,111<br>17,821           |
| 55<br>56<br>57<br>58<br>59 | 0,001 7<br>0,001 9<br>0,002 0<br>0,002 3<br>0,002 6 | 28,913<br>08 27,968<br>31 27,025    | 2 979 381<br>2 881 252<br>2 783 295<br>2 685 525<br>2 587 958 | 10 894<br>10 455<br>10 032    | 198 862<br>187 513<br>176 619<br>166 165<br>156 133      | 3 700,6<br>3 681,5<br>3 661,5<br>3 640,6<br>3 618,3 | 17,522<br>17,213<br>16,894<br>16,564<br>16,224 |
| 60<br>61<br>62<br>63<br>64 | 0,002 9<br>0,003 2<br>0,003 7<br>0,004 2<br>0,004 9 | 28 24,226<br>71 23,304<br>25 22,389 | 2 490 616<br>2 393 528<br>2 296 724<br>2 200 238<br>2 104 109 | 8 848,3<br>8 480,1<br>8 123,7 | 146 510<br>137 280<br>128 432<br>119 952<br>111 828      | 3 594,3<br>3 568,3<br>3 540,4<br>3 510,1<br>3 476,9 | 15,874<br>15,515<br>15,145<br>14,766<br>14,378 |
| 65<br>66<br>67<br>68<br>69 | 0,005 7<br>0,006 6<br>0,007 7<br>0,009 0            | 19,703<br>76 18,832<br>04 17,976    | 2 008 390<br>1 913 144<br>1 818 448<br>1 724 386<br>1 631 054 | 7 114,2<br>6 794,9<br>6 482,8 | 104 050<br>96 608,4<br>89 494,2<br>82 699,3<br>76 216,5  | 3 439,9<br>3 398,5<br>3 352,8<br>3 302,1<br>3 245,7 | 13,982<br>13,580<br>13,171<br>12,757<br>12,339 |
| 70<br>71<br>72<br>73<br>74 | 0,012 3<br>0,014 2<br>0,016 4<br>0,019 0<br>0,022 2 | 28 15,512<br>47 14,729<br>13,967    | 1 538 566<br>1 447 059<br>1 356 684<br>1 267 599<br>1 179 982 | 5 580,6<br>5 289,3<br>5 002,1 | 70 039,4<br>64 162,9<br>58 582,2<br>53 292,9<br>48 290,8 | 3 182,7<br>3 112,8<br>3 036,2<br>2 952,4<br>2 860,6 | 11,918<br>11,497<br>11,076<br>10,654<br>10,235 |
| 75<br>76<br>77<br>78<br>79 | 0,025 8<br>0,029 8<br>0,034 3<br>0,038 6<br>0,043 4 | 35 11,838<br>37 11,187<br>54 10,568 | 1 094 036<br>1 010 003<br>928 144<br>848 728<br>772 041       | 4 154,7<br>3 875,6<br>3 598,5 | 43 572,8<br>39 137,2<br>34 982,5<br>31 106,9<br>27 508,5 | 2 759,7<br>2 649,4<br>2 530,1<br>2 402,0<br>2 268,3 | 9,823<br>9,420<br>9,026<br>8,644<br>8,270      |
| 80<br>81<br>82<br>83<br>84 | 0,048 9<br>0,054 7<br>0,061 3<br>0,067 9<br>0,075 3 | 76 8,860<br>12 8,345<br>98 7,855    | 698 318<br>627 801<br>560 731<br>497 335<br>437 813           | 2 797,8<br>2 542,9<br>2 295,7 | 24 182,1<br>21 122,7<br>18 324,9<br>15 782,0<br>13 486,3 | 2 129,3<br>1 985,4<br>1 838,1<br>1 688,7<br>1 538,6 | 7,904<br>7,550<br>7,206<br>6,875<br>6,555      |
| 85<br>86<br>87<br>88<br>89 | 0,083 3<br>0,091 7<br>0,100 7<br>0,110 2<br>0,120 2 | 79 6,541<br>74 6,151<br>22 5,784    | 382 337<br>331 043<br>284 024<br>241 321<br>202 920           | 1 612,2<br>1 407,9<br>1 217,3 | 11 429,0<br>9 599,91<br>7 987,76<br>6 579,90<br>5 362,57 | 1 389,5<br>1 242,9<br>1 100,6<br>964,26<br>835,25   | 6,249<br>5,955<br>5,674<br>5,405<br>5,149      |
| 90<br>91<br>92<br>93<br>94 | 0,130 8<br>0,141 9<br>0,153 6<br>0,166 0<br>0,178 8 | 4,808<br>69 4,521<br>00 4,251       | 168 752<br>138 692<br>112 564<br>90 146<br>71 174             | 736,31<br>607,48<br>494,34    | 4 321,06<br>3 440,04<br>2 703,73<br>2 096,25<br>1 601,91 | 714,83<br>604,00<br>503,49<br>413,72<br>334,81      | 4,905<br>4,672<br>4,451<br>4,240<br>4,041      |
| 95<br>96<br>97<br>98<br>99 | 0,192 3<br>0,206 4<br>0,221 0<br>0,236 3<br>0,251 8 | 3,537<br>01 3,326<br>15 3,128       | 55 350<br>42 358<br>31 864<br>23 537<br>17 050                | 243,06<br>185,47<br>138,92    | 1 205,48<br>892,496<br>649,437<br>463,963<br>325,039     | 266,62<br>208,73<br>160,49<br>121,08<br>89,535      | 3,852<br>3,672<br>3,502<br>3,340<br>3,186      |
| 100                        | 0,268 (                                             | 2,762                               | 12 095                                                        | 73,407                        | 223,002                                                  | 64,830                                              | 3,038                                          |

Une table plus complète jusqu'à l'âge de 109 ans, avec les  $l_y$ ,  $d_y$ ,  $p_y$ ,  $\mu_y$ ,  $S_y$ ,  $C_y$ ,  $R_y$  au taux de 3% ou de 4% peut être obtenue auprès de la Caisse cantonale vaudoise des Retraites populaires (M.Richard), Caroline 11, 1003 Lausanne.

#### Résumé

Après un quart de siècle d'expériences, l'auteur a fait la critique d'un mémoire paru sous le même titre en 1956. A sa stupéfaction, il a constaté qu'à certains âges la mortalité baisserait peut-être audessous de la limite trouvée en son temps, et il a construit une nouvelle table-limite.

### Zusammenfassung

Nach einem Vierteljahrhundert der Erfahrung unterzieht der Autor seine 1956 unter demselben Titel erschienene Arbeit einer kritischen Durchsicht. Zu seinem grossen Erstaunen stellt sich heraus, dass die damals ermittelten Grenzsterblichkeiten bei gewissen Altern durch die heute erreichten Werte unterschritten werden. Er konstruiert daher eine neue Grenztafel.

## Summary

After a 25-year period of experience the author examines an article of his on the development of mortality rates which appeared in 1956. To his amazement he confirmed that for certain ages the mortality could even go below the lower limit calculated at the time and he has constructed a new limit table.