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F. DE VYLDER, Denderleeuw, and M. GoovaerTts, Leuven

Upper and Lower Bounds on Stop-loss Premiums in Case of
Known Expectation and Variance of the Risk Variable

1 Primal problems

Let [a,b] be a finite interval, e, m, m, real numbers. We consider the following
problems

pi(m,my)= sup(? (x —e)  dF(x)/ ; xdF (x)=m, f xzdF(x):mz,?dF(x) = 1),

qy (m,m,) = inf(lf (x —e)+dF(x)/}xdF(x) =, Jl: X*dF(x)=m,, E dF(x)= 1),

where the supremum (infimum) is over the distributions F on [a,b] satisfying the
constraints indicated after the slash. Thus, m is the first-order and m, the second
order moment of the probability distribution F. The corresponding variance is
s* =m, —m*. We consider m,m, as independent parameters with domain C’ to be
specified later and s? as an abbreviation for m, —m?. Of course, we assume that
the retention e is in the interval [a,b]. We assume a and b to be finite, but it is
possible to let 5Tco in most of the final results.

The value of problem p,(m,m;) is the indicated supremum p;(m,m,). No
confusions arise from the fact that p, (m,m,) denotes at the same time the whole
problem and its value. A solution of problem p,(m,m,) is a distribution F
satisfying the constraints of that problem and such that

b

[ (x—e)  dF (x)=p, (m,my).
Similar agreements and terminology are applied to problem ¢, (m,m,) and to
other problems to be considered later.
Using the methods developed in De Vylder (1982), we shall find the value and
solution of problem p,(m,m,). Of course, these methods also apply, after
obvious adaptations, to problem g, (m,m,). The just mentioned paper shall be
abbreviated as DV in the rest of this note.

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 1, 1982
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Some aspects of problem py(m,m,) are developed by Bowers (1969), Taylor
(1977) and Heilmann (1981).

We say that a probability distribution F is n-atomic if all its probability mass is
concentrated in » points at most. Then the latter are called the atoms of the
distribution. From a general result by Taylor (1977) (or DV 2.6.2) results that the
problems p,(m,m,), ¢q,(m,m,) have 3-atomic solutions. We shall see that
p1(m,m,) has in fact a 2-atomic solution and ¢, (m,m,) a 3-atomic one.

If o,p are two different atoms of the 2-atomic probability distribution F
satisfying the first-order moment constraint [ xdF=m, then the corresponding
probability masses p,, p; must necessarily be

m—f m—ao
pﬁ:ﬁ—oﬁ *

If o, 8, y are different atoms of the 3-atomic probability distribution Fsatisfying
the moment constraints [xdF=m, [x*dF=m,, then the corresponding pro-
bability masses can only be

) _ S+ m—p)(m—y) ) _ S+ (m—a)(m—y) i _ S+ (m—o) (m—p)
T @=Re-y T B-wB-p T G—0@G—p)

Indeed (in case of the 3-atomic distribution), the moment constraints and the
relation expressing that /' is a probability distribution furnish three linear
equations in p,, ps, p, with the unique indicated solution.

Thus the 2 and 3-atomic solutions of the problems p, (m,m,), q,(m,my,) are
completely specified by the atoms of these solutions.

Before we state the unique theorem of this paper, it is a pleasure to mention that
this note has been motivated by the intrest of Dr. H. Schmitter, as results from
private correspondence with one of the authors.

The rest of this paper is devoted to the demonstration of the following theorem.

Theorem

For (m,m,) belonging to the domain C’ (defined and explicited in 3.1), the
problems p, (m,m5), g, (m,m,) have the value and solution indicated in table 1 (at
the end of the note).
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Z Related problems

To the problems p; (m,m,), g, (m,m;), we associate the dual problems (DV 1.4.2,
1.7.3, 2.3.1)

pa(mmy)=inf (yym—+y,my+y3/yix+y2X° +y3=(x—e),, (a<x<b)),

G2 (m,my) =sup(yy m+y,my+ y3 /1 x+ 1, X2 +y3 < (x —e) 1, (a<x <)),
where the infimum (supremum) is over the triplets ( vy, y,, y3)e R satisfying the

constraints indicated after the slash.
With the change of variables

V=243, V2=2, Y3=23—%,
we have
p2(m,my) =% (m—e)+ ps(m,my), q,(m,my) =5 (m —e)+qs(m,my),
where
p3(m,my) =inf(zym +z,my + z3/z,x + 2,x6° + 23 > 3| x —e], (a<x<D)),

, (a<x<b)),

g3 (m,my) =sup(zym +zm, + 232X +2,3° + 23 <3|x —e

where the infimum (supremum) is over the triplets (z,, z;, z3)e R? satisfying the
constraints indicated after the slash.
This change of variables has nothing essential, but it makes some discussions more

symmetric.

3 Domain of parameters. Solution of the problems on the frontier of this
domain

3.1

The domain of the parameters m,m, is defined to be the set
b b
C’:{(] xdF, | xzdF)/F probability distribution on [a,b]}

of all possible values of the couple (m,m,) corresponding to some probability
distribution F on [a,b].
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Let E" be the curve (fig. 1, see p. 154) with parametric equations
X=u, ¥Y=2%, (agx<b).

Then the interior C"° of (" is the interior of the smallest convex set containing E’
(DV 1.2.2,1.10.3, A19). This smallest convex set is delimited by the curve E” and
by the straight line segment joining the extremities a’, b’ of E'.

The equation of £ is Y= X" (a < X <b). Writing m for X and m, for Yitis also
s*=0 (a<m<b). The equation of the segment a’b’ is

Yb—a)=(X—a)b* +(b—X)a*, (a<X<b)
or
s“=(m—a)(b—m), (a<m<b).
Thus,
C={(mmyfa<m<b, 0<s* <(m—a)(b—m)}.
We shall prove that

C'={(m,my)ja<m<b, 0<s*<(m—a) (b —m)],

i.e. that all frontier points of C"® belong to C".

3.2

Let m, m, satisfy a <m <b, s* =m, —m?*=0. Then the 1-atomic distribution with
probability mass 1 at m has m and m, for first and second-order moments resp.
This means that all points of E” belong to C".

We notice that the relation s*=0 is characteristic of the 1-atomic probability
distributions.

3.3

Let m,m, satisfy a<m<b, s* =(m —a)(b—m). Then the 2-atomic distribution
with probability masses

_b—m m—a
m_b—a’

= b—a
at the points a, b resp. has m and m, for first and second-order moments resp. This
means that all points of the segment a'd” belong to C'.

The relation s*=(m —a)(b—m) is characteristic of the 2-atomic probability
distributions with probability mass concentrated at the extremities of [a,b].
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Indeed, let F be any probability distribution on [a,h] such that s* = (m —a) (b —m).
Then

b
| x —a) (b —x)dF (x)=mb+am —ab —m, =0.

Then the nonnegative function (x —a)(b—x) on [a,b] must be zero F-almost
everywhere on [a, b], i.e. that F has all its mass concentrated at a and b.
Conversely, if the probability distribution F has all its mass concentrated at «
and b, then it is easily verified that s*=(m —a) (b —m).

3.4

For (m, m,) on the frontier of C’, the direct verification of the validity of table 1 is
easy now.

From now on (except, of course, in the final table 1) only points (m,m,) in the
interior C'° of C’ shall be considered.

4 General method of demonstration

Let E be the curve with parametric equations
X=x, Y=x*, Z=%|x—e|, (asx<b).

Let E| (£,) be the part of £ corresponding to the parameter values x <e (x> e). See
fig. 2. The projection of E on the X Y-plane is the curve £’ considered before. Let C
be the smallest convex set containing £. Then the projection of C on the X Y-plane
is the domain of parameters C'.

Let (m,m,) be a point in C"°. The vertical through (m,m,,0) intersects the upper
frontier of C in a point, say P = (m,m,,p). It intersects the lower frontier of C'in a
point, say Q =(m,m,,q). Then, by DV 1.10.1, p = p; (m,m,) is the value of problem
p3(m,m,). Similarly, ¢= g5 (m,m,) is the value of problem g (m,m,).

Let Z=1z,X +z, Y+ z; be (the equation of) a plane through P tangent to C. Then,
by DV 1.10.1, (z4,2,,23) is a solution of problem p;(m,m,). Similarly, if Z=z, X
+2z,Y+2z;3 is a plane through Q tangent to C, then (zy,z,,z3) is a solution of
problem g5 (m,m,). Only in exceptional cases, the considered planes and
corresponding solutions are not unique.

From the value and solution of problem ps (m,m,) (g3 (m,m,)), we obtain the value
and solution of problem p, (m,m,) (g, (m,m,)).
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ters C'

Fig. 1

Domain of parame
Fig. 2
Convex set C
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By DV 2.4.1, the problems p, (m,m,) and p, (m,m,) have the same value: p, (m,m,)
=py (m,m,). Similarly, g, (m,my)=gq, (m,m,).

Finally, if (y;,2,3) is a solution of problem p, (m,m,) (¢, (m,m,)), then by DV
2.5.1, the atoms of any atomic solution of problem p, (m,m,) (¢, (m,m,)) must be
roots of the atoms equation in x,

X+ X2+ =%(x—e),.

In most cases (exceptions follow), this equation completely determines the atoms
of the solution and then also the solution itself (see discussion in section 1).
Once an atomic solution of problem p, (m,m;,) (¢, (m,m,)) is found, the following
verifications must be possible (they are left to the reader in most cases, in the
sequel):

— the atoms are in [a, b]

the corresponding probability masses are nonnegative

the sum of all probability masses is 1

the two moment constraints are satisfied

— for the solution, say F, the integral [ (x —e) , dF equals the value of the problem
(obtained more directly from the upper or lower frontier of C, as described
before)

the duality equality (see DV 1.6.1)

|

f(xwe)+dF:y1m+y2m2 + Vs,

where (y1,),,)3) is solution of p, (m,m,) (g, (m,m,)), must be satisfied.

That duality equality can also be used in order to extend to C” results proved for
C". In section 3, we already justified in a more direct way the validity of table 1 on
the frontier of C".

5 Geometry of the curve E

3.1

The main problem left is the determination of the smallest convex set C containing
E. This smallest convex set C is the intersection of all half-spaces containing E.
(Any plane in R* divides R® in two half-spaces.) The determination of C shall be
immediate from the considerations of this section.

For any number x in [a,b], we also denote by x the point of E corresponding to the
value x of the parameter, i.c. the point (x,x*,7|x —e|). Accents are systematically
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used for projections on the XY-plane of points or sets in R>. Thus,
a,x,...,E,C,... are the projections on the XY-plane of the points a,x, . ..
and the sets E, C, ... respectively.

) .
The curve E; is in the plane Z =% (e — X). The curve E, is in the plane Z=1% (X —e).

5.3

The plane through the points a,e, b of E is

(—(a+b+2e) X+2Y+(a+b)e).

ZmZ(b—a)

5.4
Let x be a point of Ey, y a point of E,. Then the plane through x and y, tangent to
E, at y, is

1
“ :W(((x+y)2—4ey)X+ 2(e—x) Y +e(y” —x* +2xy) —2x)7).

Indeed, if Z=z,X+2z,Y+z; is the equation of that plane, then z,,z,,z; must
satisfy the relations

3(e—x)=z,x+z,x*+2z; (the plane contains x)
$(y—e)=z,y+2z,y*+2z3 (the plane contains y)
1=z, +2z,y

The last equation, expressing the tangency at y, is the derivative in y of the
preceding equation.

3.3

Let x be a point of £}, y a point of E,. Then the plane through x and y, tangent to
E; at x, 1s

1

7 TR
2(y—x)*

(dex —(x+»)*)X+2(y —e) X +e(y* —x* —2xp) +2x%).
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5.6

In 5.4 and 5.5, suppose that the points x and y are at the same height 5 (e —x)
=4 (y—e). Then the plane of 5.4 is the same as the plane of 5.5. Its equation is

1

Z:4(e_x) (—2eX+ Y+e*+(e—x)).

Thus, this plane contains x and y and is tangent to £, at x and tangent to E, at y.

6 Value and solution of the primal maximization problem

6.1. Partition of the domain of parameters in the case e<c

We use ¢ as an abbreviation for ¥ (a +5).
Let us assume first that the point 4 is higher than the point a,i.e. ¥ (e —a)<% (b —e)
ore<c. Let a; be the point of E, at the same height asa,i.e. 3 (e —a) =% (a; —e) or
a+a,; =2e. In the variables m =X and m, =Y, the equation of the straight line
through the projections @', ay is s* = (m —a) (a; —m) (compare with the equation of
the straight line through «’, 5" in 3.1), or

Spe =€ —a,

where we use the abbreviation

Sme=+ (8% + (m —e)*)'2.
We denote by C{, C; the parts of C’ characterized by the relations

Ci: spe<e—a (delimited by £’ and the segment a’a}),

Cy: Spe=>e—a (delimited by E; and the segments a’ay,a'b’).

6.2. Case C|

On C{ the upper frontier of C is composed of horizontal straight segments xy
joining points x of £; and y of E,. This follows from 5.6. The plane of 5.6 is tangent
to C along the segment xy. The points of the projected segment x'y’ are
characterized by the relation s,,, = e —x (compare with the equation of the straight
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line through «’, ai in 6.1). Let (mm,m,) be a fixed point on the segment x'y". Then

1
(_zem +m; +g2+g;‘);u):§ Sme>»

pS(memZ) =

4Sme
pl (mamZ) =P2(M,m2) =p3(mam2) +% (m —€) :% (Sme +m —6’).

The solution of problem p;(m,m,) is

2
e 1 450,
Zz e ) 23 = .
4Sme

&y = )

2 S"IE 4Sme

The corresponding solution of problem p,(m,m,) is

1 ( ) 1 (€ _Sme)2
= =€~ Spe)s e 5 =
& 2Sme 2 4sme rs 4Sme

The atoms equation is

—2((3 —S'"e)x +X2 + (€ _Sme)2 =4sme(x —€)+
or
()C _(e _Sme))2 :4()(? _€)+Sme.

The roots of this equation are e —s,,, and e +s,,.. These roots are in [a,b] because
y—e=e—x=s,, and the points x, y are on E.
The points ¢ —s,,., ¢ +35,, are the atoms of the 2-atomic solution of p,(m,m,).

6.3. Case C;.

On C} the upper frontier of Cis composed of the straight segments ay joining the
point a of E; to a higher point y of E,. Let x=a in 5.4. Then the plane of 5.4 is
tangent to C along the segment ay. The points of the projected segment a’y” are
characterized by the relation

SZ

s’=(m—a) (y—m) or y=m+ .
m—a

Let (m,m,) be a fixed point of a'y’. The height of a, y is respectively 3 (e —a),
$(y —e). Then, by the linear interpolation formula (in symmetric form),

1

Ps(m,mz)=ia (m—a) 3z (v —e)+(y —m) 3 (e—a))

5 (m—a)*(m—e)+s>(m—a)+5*(e —a))

(m—a)*+s

o = =
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Then

pi(m,my) =p,(m,m,) =py(m,m,) JF%(m —ig)

and this gives the value indicated in table 1.
From the equation of the plane in 5.4 (with x = a), we find the solution (z;,z,,2;) of
problem p5(m,m;). The corresponding solution of problem p,(m,m,) is

a*+y* —2ey e—a 2eay —ea® —ay?
Sy, T . V3=
N I R e,

The corresponding atoms equation is the equation in x

(@ +1* —=2ey)x+ (e —a)x* + (2eay —ea* —ay*)=(x —e) . (y —a)*.

For x> e, this equation is (e —a) (x —y)* =0. Its unique root is y. Clearly e <y <b
because the point y is on E,. For x <e, the atoms equation becomes

(x—a) ((e—a)x+y* —2ey+ea)=0.

Only the root @ is in [a,b] (the other is always smaller than a).
Summarizing, the atoms equation has exactly the roots @, y in [a,b]. They are the
atoms of the 2-atomic solution of problem p, (m,m,).

6.4. Partition of the domain of parameters in the case e>c

In this case the point a is higher than the point » and some point b, of E, is at the
same height as ». The domain C’is now partitioned in two parts by the straight line
through b{ and b'. The equation of that line is s,,, =5 —e. Thus we consider the
subdomains C3, C; of C’ characterized by

C:; 3 Smegb —€,
Ci: Spe=b—e.
6.5. Case C;

This case is treated in the same way as case C{ and gives the same results.

6.6 Case C;

On Cj the upper frontier of C is composed of the straight segments yb joining the
point b of E, to a higher point y of E;. In 5.5, substitute y for x and b for y. Then
the plane of 5.5 is tangent to C along the segment yb. The points of the projected
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segment y’b’ are characterized by the relation

SZ

s=m—-y)(b—m) or y=m-— .
b—m

Similarly as in case C;, the value of problem p;(m,m,) is found to be

py(m,m,) = (b—m)*(e —m)+s*(b—m) +5*(b—e))

1
2 FrGomp

The corresponding value of problem p,(m,m,) is indicated in table 1.

Using the plane of 5.5 (with the indicated substitutions), the solution (z,z,,z3) of
problem p5(m,m,) is easily written down and then also the solution (y,,),,v3) of
problem p,(m,m,). The corresponding atoms equation is the equation in x

—2y(b—e)x+(b—e)x* +y*(b—e)=(x—e),(b—y)*.

For x <e, its unique root is y. Of course a <y <e, because the point yis on £, . For
X =e, the equation becomes

(b—x) ((b—e)x —(y* +eb—2ey))=0.

Only the root b can be used (the other is always larger than b).
Summarizing, the atoms equation has exactly the roots y, b in [a,b]. They are the
atoms of the 2-atomic solution of problem p,(m,m,).

7 Value and solution of the primal minimization problem

7.1.  Partition of the domain of parameters

We consider the points a’,e’,b" of £’ corresponding to the value a,e,b of the
parameter X, respectively. The equation of the straight line through «’ and ¢’, ¢’
and o', @' and b’ 1s, resp.

ae': s*=(m—a) (e—m),

eb': sf=(m—e) (b—m),

ab': s*=(m—a)(b—m).
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We consider the subdomains Cs, Cg, C; of C’ defined by:

Ci: s#<(m—a) (e—m), (delimited by £’ and the segment a’¢’)
Cé: s <(m—e) (b—m), (delimited by E’ and the segment ¢'b")
Cy: s >(m—a) (e—m), s*>(m—e) (b—m),

(delimited by a’e’, 'b’, b'a’).
7.2. Case C;

On C! the lower frontier of C is the corresponding part of the plane Z=3(e — X)
(see 5.2). Let (m,m,) be fixed in Cs. Then

gs(m,my) =% (e —m),

q1(m,my) = g,(m,my) = g3 (m,m,) +%(m —e)=0.

The solution of g;(m,m,) is z; = —%, 2z, =0, z; = ;. The corresponding solution of
g2(m,my) 18 yy =y, =y3=0.

The atoms equation is (x —e) . =0. Its set of roots in [a,b] is [a,e]. Because there
are more than 3 roots in [a,b], we cannot conclude to an atomic solution of
problem g, (m,m,). We shall try the 3-atomic solution with atoms a, y,e, where y is
unspecified in (a,e) for the moment. The corresponding masses must be (see
section 1):

s —(m—y)(e—m)  (m—a)(e-m)—s’>  s*+(m—a)(m-y)
T e—a—a T oo T e—a ey

The points a, y,e shall be the atoms of a 3-atomic solution iff p,,p,,p; are >0. This
is the case for y=m and then also for all y close enough to m (note that s*>0
because we are always supposed to be in C’°). We conclude that the problem
q,(m,m,) has the 3-atomic solution with atoms a,m,e but that this solution is not
unique. It is easily verified that the atoms of a 3-atomic solution of problem
q,(m,m,) cannot be chosen arbitrarily in [a,e].

FB. Cdse Ce

This case is similar to case C:. Now the plane Z=4(X —e) is used. The value of
problem ¢, (m,m,), for (m,m,) in C¢, is found to be equal to (m —e). The atoms
equation is (x —e)=(x —e), . Again, it has more than 3 roots and we cannot
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conclude directly to a specific 3-atomic solution. Problem g, (m,m,) has several 3-
atomic solutions, in particular the one with atoms e,m,b. (For the verification of
the latter fact, the already obtained value m —e must be used.)

7.4. Case (3

On (5, the lower frontier of C is the corresponding part of the plane considered in
5.3. Let (m,m,) be a fixed point in C;. Then

q3(m,my) = (—(a+b+2e)ym+2m,+(a+b)e).

2(b—a)
The corresponding value of problem ¢, (772,m,) is indicated in table 1.

From the plane in 5.3, we find the solution (z,,z,,23) of problem ¢;(m,m,) and
then the following solution of problem ¢, (m,m,):

a+te B 1 _ae
b_a: yZ—b_aa .V3—b_a~

V1=

The corresponding atoms equation is
—(a+e)x+x*+ae=(x—e), (b—a).

[ts roots are a,e,b. These are the atoms of the 3-atomic solution of problem

q1 (m:m2)'

8 Remark about verifications

The atoms of any atomic solution of problem p,(m,m,) (g,(m,m,)) must
necessarily satisfy the atoms equation. From this fact and the discussion in section
1 it easily follows that, if the atoms equation has 3 roots at most in [a,b], they lead
to an atomic solution of the problem. Then the verifications indicated in section 4
may be interesting, but are in fact superfluous. In that case, the value of the
problem can also be calculated from its solution. It is not necessary then to
calculate it independently.

The situation is different if the atoms equation has more than 3 roots in [a,b] (see
cases Cs, Cg).
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Abbreviations :

Table 1
Value and solution of the primal problems

c=%a+b), s*=m, —m?, s,=5*+(m—e)

Domain of parameters: a<m<b, 0<s*<(m—a) (b—m).

Conditions Value of problem Atoms of solution
eXC, SpeSe€—d %(Sme"_m“e) € —Smes e+5me
§*+(m—e) (m—a) 2 5
< >e— - > g=!
e<e, Sye=e—a (m—a) P 7 a, m+m—a (=e) _§
EZC, Smegb“e %(sme+m—-e) € —Sme> €+Sme g
3]
; =
(b—e)s? s*
= >bh— B T s <e), b
E_C, Sme—b € S2+(b*—m)2 b—m ( )
s*<(m—a) (e—m) 0 a, m, e g
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Summary

We consider a risk R with values in a given interval and with known expectation and variance. Under

that incomplete information on the distribution function F of R, we solve the following problems:

— Find the maximum value of the stop-loss premium E(R —e), corresponding to the retention
limit e.

— Find the minimum value of E{R—e),.

— Find the distribution F leading to the maximum of E(R—e), .

— Find the distribution F leading to the minimum of E{R—e),.

Zusammenfassung

Die Autoren betrachten ein Risiko R mit Werten in einem gegebenen Intervall und mit bekannten
Erwartungswert und Varianz. Bei diesen unvollstindigen Informationen werden die folgenden
Probleme gelost:

— Man finde den maximalen Wert der Stop-Loss-Priamie E(R—e/, mit Selbstbehalt e.

— Man finde den minimalen Wert von E(R—e¢), .

— Man finde die Verteilung F, die zum Maximum von E{R—e¢); fiihrt.

— Man finde die Verteilung F, die zum Minimum von E(R—e¢), fiithrt.

Résumeé

Les auteurs considérent un risque R prenant des valeurs dans un intervalle donné et au sujet duquel

on connait 'espérance mathématique et la variance. Ils résolvent, sur la base de cette information

incomplete, les problémes suivants: ‘

— Trouver la valeur maximum de la prime stop-loss £(R—ej; correspondant & un plein de
conservation e.

— Trouver la valeur minimum de £{R—e),.

— Trouver la distribution F conduisant au maximum de E(R—e¢)_ .

— Trouver la distribution F conduisant au minimum de E{R—e¢)..
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