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Hans BUaLMANN, Zurich, Avois GISLER, Winterthur,
and WiLLiam S. JEWELL, Berkeley*

Excess Claims and Data Trimming in the Context
of Credibility Rating Procedures

i Motivation

In Ratemaking and in Experience Rating one is often confronted with the
dilemma of whether or not to fully charge very large claims to the claims load of
small risk groups or of individual risks. Practitioners typically use an a posteriori
argument in this situation: “If such large claims should be fully charged then the
rates obtained would become ‘ridiculous’, hence it should not be done.”” The
present paper aims at explaining this practical attitude from first principles.
Credibility Theory in its standard form makes the first step in the right direction.
It explains to us that a// claims should not be fully charged (but only with the
constant fraction of the credibility weight). In many applications, however, it is
still felt that the fraction of this charge should depend on the size of a claim. This
leads very naturally to the idea of combining credibility procedures and data
trimming.

Of course, such an idea needs to be tested. The first argument in favour of it was
given by Gisler [1] who showed that in many cases the mean quadratic loss of the
credibility estimator is substantially reduced if one introduces trimming of
claims data. This paper goes even further. It formalizes the standard way of
thinking about large claims and then shows that “optimal forecasting” of rates
(using Bayes estimation techniques) and forecasting by “credibility techniques
combined with data trimming” lead to almost identical results.

* The authors are greatly indebted to R. Schnieper who did all the numerical work on the ETH
computer.
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2 The Basic Model

Throughout the paper we work with the most simple model in the credibility
context.

X=(X1a XZ: "-aXn)

is the random vector representing the experience of a given risk in the years 1, 2,
oz i

— The quality of the risk is characterized by an unknown parameter value 0,
which we consider as a realisation of a random variable @ with distribution
function U(6).

— Given the parameter value 0, {X 1555 50 ,Xn} are i.1.d. with density function
fo(x) [mean p(0), variance o° (0)].

To these standard assumptions in credibility theory we add now some more
structure regarding the distribution of the size of a claim. The main idea is
introduced by the assumption that the claim sizes are drawn from two different
urns (distributions). Mostly, 1.e. with probability 1 —=n, we observe an ordinary
claim with density p,(x/0) [mean u,(0), variance o2 (0)] and occasionally, i.e.
with probability 7, we observe an excess claim (catastrophic claim) with density
p.(x/0) [mean u,(0), variance o2 (0)].

Po(x/0) pe (x/6)
ordinary €xcess
claim amounts | 1 claim amounts
occurrence 1—= T

We have assumed that the mixing probabilities are independent of 0 and from
now on we shall also suppose that the density of the excess claims is independent
of the risk parameter, hence formalizing the idea that large catastrophic claims
have no bearing on the quality of the risk.

In mathematical shorthand all the considerations just made regarding ad-
ditional structure are summed up by stating that the density f,(x) has the
following form

Jo() =1 —m)po (x/0)+ npe (x). 1)
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3 The Basic Problem

As always in the credibility context our aim is to estimate

1 (6)
pure premium for
the given risk
based on the observations of

X=(X1, XZ: Ry Xn)
experience of the given risk in the
years 1, 2, ..., n.

One knows that the best estimator (with respect to quadratic loss) for this

probiem s PIX]=Elu(O)[x]. @
Using the special structure of formula (1) we obtain
PX]=np.+ (1 —7) Ep, (6)/X]. (3
g(X)

If we use standard credibility techniques we estimate by

flX]=a+b ) X, @)

with optimal choice of a, b.
And if in addition we introduce trimming of the data we estimate by

flH1=a+b 3 (Xind) )

with optimal choice of a, b, M.
Using (4) we are committing the following error against optimal estimation

inf E{P[X]—f[X]}*= inf E{nue-i—(l—n)g()_()—a—b i (Xi/\M)}2
a,b.M =1

a,b,M

1=

a,b,M —T

—(1—n)? inf E{nfe_“+g()_()

b

3 (XA M)}z

=(1—n)* inf E{g(gg”)—a’—b’ i (Xi/\M)}z (6)
a' b’ .M i =

i=1
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The following two problems are therefore equivalent

A) Estimate P[X] (total premium) by a+b il (X; A M) with optimal a, b, M

B) Estimate g (X) (ordinary premium) by a’ + b’ i (X; A M)with optimal a’, b’, M.
i=1

For the optimal choices of the parameters (denoted by ) we have

d=(1—-n)a +nu,
b=(1-m)b’

()

In the following we want to illustrate that @+ 5 (X;A M) is a good
=1

A

approximation of g(X)=FE[u,(0)/X] (Problem B above).
We actually shall compare

a+b"y (x;a M) with g(x)

for any observation x of X.

4 The Exact Form of g (x)

Writing out the conditional expectation E[u,(0)/X=x] we obtain

| 4,(0) [l—l {a —n)po(xf/e)+npe(xi)}}dU(9)

i=1

gX)= 5 (8)
J [I_I {1 =m) p, (x;/0) + mp, (xi)}} du(0)

i=1

Putting I={1, 2, ..., n} and SCI we rewrite

fl {(1 =) po (xi/0) +mp, (x)} = ). (1 —m)°n" ™ [T po (x:/0) TT pe(x) (9)

SCI ieS ieS
where the sum on the right side must be taken over all subsets

SCI (including ¢ and I) with s =|S|
and n=|l|.
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We also use the abbreviations

Po(xs)={ TT p, (x:/6)dU (0)

ieS

Pe(xs)=] TTpe(x)dU(0) =TT p.(x:)

ieS ieS

T \'7F Po(xs) pe(x35)
1 TE po (xI)

(2o (xp) =pe (x4) =1]

J 16(0) TT P, (x,/0)dU (0)

E, [u, (0)/x5]= ie; (xs)

Then introducing (9) into (8) and carrying out the integration we find for the
numerator of g(x)

Y (L=nyn"~* T1 peCxi) § 1o (0) T po(xi/0)dU(0)

ScI ieS ieS
or
>, (1=m’n""°p, (x5) pe(x5) E, [, (0)/x5]

SCI

and for the denominator of g(x)

Y, (1 =m)'n" ™, (xs) e (x3).

ScrI

Dividing both numerator and denominator by (1 —7)"p, (x;) we finally arrive at

Eol1o(0)/x]+ 3, L(xs)Eo[1,(6)/xs]

ScI

g(x)= =2 : (10)
1+ ) L(xs)

ScI
S#1

Remarks

1) Observe that g (x) is a weighted avérage of forecasts based on all subsamples
xs of the total sample x;, the forecasts being calculated under the
assumption that the subsample contains only claims of the ordinary type.
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is usually rather small the weight of L(xg) is rather quickly

i) As —
1—
decreasing with decreasing number of observations in xg ; for a fixed number

of observations the weight L (xg) is rather big if both p,(xs) and p, (x3) are
bigi.e. if xg and x3 are very likely to come from the ordinary and the excess

urn respectively.

ii1) Dividing by p,(x;) is obviously only allowed if all the observed claims are
possibly of ordinary type. The weight function L (xg) 1s then only positive if
P.(x3) 1s positive 1.e. if the subset xg is possibly of excess type. Thus the
formula does what we would have done by intuition as well, it includes only
predictions based on subsamples which may be of ordinary type. On the
other hand, these predictive subsamples must contain all claims which are
surely of ordinary type.

3 More Insight from the Single Observation Case

At this point it is worthwhile to consider the special case where the whole sample
of observations contains only one observation, i.e.

x=(x).

For simplicity we omit the index 1 and write x for the single observation. We
have then

_ Eo[po (0)/x]+ L [x6] £ (140 (0)]

§(x) 1+ L [x,]

(11)
with

T Pe(x)

HST S

The right hand side is a multiple of the likelihood ratio. If the latter is
monotonically increasing (which is typically the case in applications) so is also
the weight given to the constant estimator E[u,(0)]=m,. Assume in addition
that E, [u, (0)/x] is of linear form ; then our estimator g (x) is a mixture of the two
cases (corresponding to the two pictures)
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Eo[po(0)yx]=ax+b

/ > X > X

the weight being shifted from the estimator on the left to the estimator on the
right as x increases. The resulting estimator is almost of the form a + b min (x, M).
Hence credibility with trimming is almost exact! This fact will be illustrated by a
numerical example in section 6. In fact our numerical example will show that this
fact also carries over to higher dimensions.

6 A Numerical Example
6.1  For explicit calculations we are assuming that for ordinary claims

P.(x/0) is a normal density with mean 6
variance v

0 1s normally distributed with mean m,
variance w.

We then have
Po(xs)=] TT po(x;/0)dU(0)

ieS

which turns out to be a multidimensional normal density with mean vector
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my w o w4v...

and covariance matrix ) =

my w w+v
hence
(x5)= |4 e“%_ Y a;;(x; —mg) (x;—my) (12)
Do\ Xs _(271)3/2 & ij\Xi 0 j )
jesS
with A=) "1

Proof that p,(xg) has density (12):

a) Given 6 any linear combination ) ¢.X; is normal with mean ) ¢;0 and
ieS ieS
variance Y cfv. Integrating out with respect to the normal structure function
ieS
of 6 we obtain a normal distribution with mean ) ¢m, and variance

2 ieS
(Z ci) w+ Y civ. But a sample Xg whose linear combinations are all
ieS ieS

normally distributed is multidimensional normal.

b) Let Z = (Gij)_

o;;=Cov (X;, X;)=E[Cov (X;, X})/0]1+Cov [E[X;/0], E[X;/0]]
= ;v + W q.e.d.
It should be noted that
det Y =v°*+s0° 'w (13)

(subtract first row from all other rows and then develop along the first column).
Also observe the explicit form of

Z_l =A =(aij). S,
P
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1

af”
use (I+af") t=1——"r|
U+af’) 1+a’B

where o, f# are columnvectors; 7 identity matrix.
From elementary calculations in credibility theory we finally also know that

SW v
+m

E, [0/xs]=Xs P

(15)

0 .
v+ sw

6.2  For the excess claims the probability law is specified by assuming that

D.(x) 1s a normal density with mean g,
variance o>.

7 Numerical Calculations of g (x)

For our calculations we have chosen

My =10 11, =50
p=12.5 g.,=20
w=12.5[ %=>

1—n= 0.9 7= 0.1

and we obtain

a) for n=1 (single observation case)

Table 1
x g(x) x g(x) x g(x) X g(x)
5. 7.5091 | 1b. 11.9850 | 23. 14,8946 | 32. 10.0370
6. 8.0068 | 15. 12.4755 | 2k, 1k,3712 | 33. 10.0151
Ts 8.50L9 | 16. 12.9602 | 25. 13.4968 | 3k. 10.0059
8. 9.0033 | 17. 13.4348 | 26. 12.4521 | 35. 10.0022
9. 9.5017 | 18. 13.8919 | 27. 11.5065 | 36. 10.0008
10. 10.0000 | 19. 1k.3177 | 28. 10.8265 | 37. 10.0003
11. 10.4979 | 20. 14,6876 | 29. 10.4153 | 38. 10.0001
T, 10.9951 | 21. 14.9586 | 30. 10.1952 | 39. 10.0000
13; 11.4910 | 22. 15.0602 | 31. 10.0870 | Lo. 10.0000
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8 Optimal Trimming
Gisler has shown [1] that for given M the optimal choice of the approximation

ﬂﬂ\):aﬁ-b i (x;AM) to w(0) [and hence to P[x]]

i=1

can be calculated as follows
b,

5:
(n—l)b2+b3

where b;=Cov [X; A M, X,]
b,=Cov [XyAM, X; A M] (16)
b’_:,:Var [XI/\M]

d+nbE[X A M]=E[X]. (17)
With this optimal choice we then have

E[(H(©0) —p(0)21=w—nb - b,. (18)

Hence the trimming point M is optimal if 5 - b, is maximum.
In our basic model (cf. section (2)) we find
b= —n)* Cov [uM(0), u,(0)] where uX(0)=E[X A M/0,X ordinary]
U, (0) =E[X/0, X ordinary] (19)
by=(1—m)* Var [u," (0)]
by=(1 —m) E[os™ (0)] +moz™ + (1 —m)* Var [ (O)]+ 7 (1 —m) E[(1,(60) —pe)?]
with a2 (0)=Var [X A M/0, X ordinary]

oM =Var [X A M/ X excess]

pM =E[X A M/X excess].
Using explicitely the normal distribution as assumed both for ordinary and
excess claims in section 6 we obtain from some rather tedious integrations:

Let @(.) denote the standardized normal distribution function and ¢ (.) the
standardized normal density function, then
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M —
b1=(1—7r)2wd)( mO) a,=)v+w

b2=(1 —75)2 Cov [U1 /\M, Uz/\M]

where the covariance is obtained by numerical integration.

Notation: (U, Uy) 1s N (ZO, Z) with Z=(
0

b3=A —B2

where

A=1—n) _(m8+a§) @ (M_m°)—oo(M+mo)<p (

M—
+n | (ui+o3 45( H") —ae(M+ue)q)(
g

+M? | 1—(1—n)@ (M_m0>~nd5 (M_“eﬂ
. o, O,

B=(1—1) _(mo —M) @ (M_m())—a(,(p (M"m(’ﬂ

+M

(xi/\ M)

M:

9 Numerical Calculations of G+ b

i=1

v+w  w
w o v+w

(20)

Using the same parameter values as in section 7 we obtain the forecasts based on
optimal trimming. To compare with g(x) it is worthwhile to calculate also

a+b Y (x; A M) with
i=1
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a) Results for n=1 (single observation case)
Truncation point M =14.68

Formula: P=0.4412 (xA M) +9.5817 $=0.4902 (xA M)+ 5.0908
X
5 11.79 7.54
6 12.23 8.03
7 12.67 8.52
8 13.11 9.01
9 13.55 9.50
10 13.99 9.99
11 14.43 10.48
12 14.88 10.97
13 15.32 11.46
14 15.76 11.95
15 16.06 12.29
16 16.06 12.29
17 16.06 12.29
18 16.06 12.29
19 16.06 12.29
20 16.06 12.29

Figure 1 shows a comparison of the true g and the approximation g by
truncation. Observe the «overshoot» of the true regression function. It derives
from the gradual loss of evidence that the claim is of ordinary type. For very high
observations one settles for the a priori estimate my =10 which is lower than the
estimate in the 15 to 25 region on the x-axis. On the other hand the
approximation g(x) has the practical advantage of being monotone hence
avoiding the «overshoot» region. Of course there must be a compensation for
this avoidance and indeed for high x’s the approximation ¢ leads to higher
values than g.
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The equidistance of the contours equals 0.25.

The top-level contour line corresponds to the value 17.0, whereas the contour-
line nearest to the point (0,0) corresponds to the value 3.5.

The contour-line to the upper right corresponds to the value 10.25.
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Figure 3
40

354
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254

20+

X2:
154
10+
15)
5 10 15 20
X4

0
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25 30 3 40
The contour line to the upper right corresponds to the value 14.41 (x; and x,
= trimming point).

The next contour line corresponds to the value 14.25.

The equidistance of the other contour lines equals 0.25.

The contour line nearest to the point (0,0) corresponds to the value 4.75.
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Figures 2 and 3 allow again a comparison of g and ¢ (now in the case of two
observations x; and x,). Both functions are represented by contour lines. The
comparison shows similar qualitative phenomena as in the single observation

casc.

¢) Results for n=>5

truncation point A =22.83

5
formulae: 2=0.1241 5 (x;A M)+7.0561 total premium
i=1

S
£=0.1378 > (x;A M)+2.2845 ordinary premium
i=1



¢, ) approximation to total premium P[x]=P[x;,x,,C;3,Cy,Cs]
W ——

chosen as fixed parameter values

1) (C3,C4:C5)m(10)10310)
Table 6.1

\\X2 5 6 7 8 9 10 1 12 13 14 15 16 17 18

S 12.02 12.1Lk 12.27 12.39 12.52 12.64 12.76 12.89 13.01 13.1L 13.26 13.39 13.51 13.63
6 12.1L 12.27 12.39 12,52 12.6L 12.76 12.89 13.01 13.1k 13.26 13.39 13.51 13.63 13.76
7 12.27 12.39 12.52 12.6L4 12.76 12.89 13.01 13.1L 13.26 13.39 13.51 13.63 13.76 13.88
8 12.39 12.52 12.64 12.76 12.89 13,01 13.1bh 13.26 13.39 13.51 13.63 13.76 13.88 1k4.01
9 12.52 12.64 12.76 12.89 13.01 13.1k 13.26 13.39 13.51 13.63 13.76 13.88 1L.01 14.13

10 12.6L4 12.76 12.89 13.01 13.1L4 13.26 13.39 13.51 13.63 13.76 13.88 14,01 1L4.13 14.25

11 12.76 12.89 13.01 13.1h4 13.26 13.39 13.51 13.63 13.76 13.88 1L.01 14.13 1L.25 14.38

12 12.89 13.01 13.1k 13.26 13.39 13.51 13.63 13.76 13.88 1h4.,01 1L4.13 14.25 1L4.38 14.50

13  13.01 13.1h4 13.26 13.39 13.51 13.63 13.76 13.88 14.01 14.13 1Lk.25 14.38 1L.50 14.63

14 13.1Lh 13.26 13.39 13.51 13.63 13.76 13.88 1L.01 1L4.13 14.25 14.38 14.50 1L.63 14.75

15 13.26 13.39 13.51 13.63 13.76 13.88 1Lk.01 14.13 1L.25 14.38 1L4.50 1L.63 1L.75 14.87

16 13.39 13.51 13.63 13.76 13.88 1L.01 14.13 14.25 1L.38 14.50 1L.63 1k4.75 1L.87 15.00

17  13.51 13.63 13.76 13.88 1L4.01 1Lk.13 1k.25 14,38 1L.50 14.63 1L.75 14.87 15.00 15.12

18 13.63 13.76 13.88 1L.01 1L4.13 14.25 1L.38 14.50 1L.63 14.75 14.87 15.00 15.12 15.25

19  13.76 13.88 14.01 14.13 1L4.25 14.38 1L4.50 14.63 1L.75 14.87 15.00 15.12 15.25 15.37
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10  Final Remarks

The Data Trimmed Credibility Formulae seem quite appropriate for Experience
Rating in the presence of catastrophic (or as called in this paper excess) claims.
With this intuitive background in our minds we have in our explicit calculations
been looking at deviations from ordinary claims towards the higher side only.
Obviously the normal distribution being symmetric one could also observe
“outliers” to ordinary claims towards the lower side hence leading to a
truncation at the lower end as well. But of course our assumption of normally
distributed claims should only be seen as an approximation to the real world,
and it is our feeling that the approximation is particularly bad at the lower tail of
the distribution.

In any case truncation at the upper end of the distribution is introducing an
additional parameter into the credibility formulae and we hope to have
demonstrated in this paper that the labour caused by the new parameter can be
worthwhile indeed.
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Appendix

For the interested reader we are attaching the explicit calculations leading to
formulae (19) and (20).

A: Calculations leading to formula (19)
by =FE[Cov [X; AM, X,/0]]+Cov [E[X, A M/0], E[X,/0]]
Cov [X; A M, X,/0]1=0, because X, X, are conditionally independent.
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Hence
by =Cov [(1 —m) ug"(0) +mpd’, (1 —m) o(0) + maee],
or

by=(1—mn)* Cov [1,"(0), u,(0)]

and analogously (with X, A M instead of X))

by=(1—m)* Var [1'(0)].

Let be Y=1, where 4 denotes the event {X is ordinary}. Then

Var [X A M/g] = E[Var [X A M/p, Y1/0]+Var [E[X A M/p,Y]/6]
= (1 = m)o2(0) + mo2 + (1 —m) (ul(0) — pi1Y.
Hence
by=Var [X A M]
= E[Var [X A M/0]]+ Var [(1 —m)puX(0) + '], or

by=(1—m E[o3"(0)]+noe™ +n(1 —m) E[(15"(0) — wd)*]+ (1 —n)* Var 1'(0)].

B:  Calculations leading to formula (20)
1) Preparations

In the following we put r :W, = W and g,=|/v+w=|/r*+5*. Furthermore
we denote by @(x) the standardized normal distribution function and by ¢ (x)
the standardized normal density function.

By convolution we get

Lo (o) neef2)
—y S r Oy
e 1 X—u M—x 1 M—pu
| = @ dx=— ¢ _
S T8 s r Go Go

Noting that ¢'(x)= —x@(x) integration by parts gives

0 _ _ 2 _ _
| (xw)qo(%mﬁ)@(Mr x)dx-—' —%; | @(xs‘u)cp(Mr x)d’x
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and thus

T — M — M — ? M—
- s r O 0y Oo

Because of
X —U M—x M— X—
o(5H)o ()= (o ()
S r o,
where
N_r2u+szM and s
K=y 0_00
we obtain

s T M —x M— o
[ o5 )o (1 Jasmo () 50
o s r o

o X — M—x M — s
[ oo )acmo (22 5. e

Integration by parts gives

< X—U M —x 2 7 AP M—x d
§ stomo(E)o (5o J o ()05
£ =2 X —u M—x
- d
- Lo (7)o (%)
and thus using the above formulae

Ojo x2<p<x_ﬂ>¢(M_x>dx:s(,u2+52)<D(M_u>
L s r G,

—(i) (2r2u+(M+ms2)<p(M _“).
(0] )

(4] 0

i1) Actual calculations

Moy /x—0
tl(0)=| -cp(
T ¥

)dx+M- PriX=M/|0]

= —ro (Mr_9>+9Pr[X§M/6]+MPr[X_2_M/9]

=M+ (0 —M)@(@)—rqo(M_Q)

p
1,(0)=0.
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Applying the formulae derived in 1) we get by straightforward calculations

- 1 [0—mg
ERO)] = | u;“(e);q)( - )d@

M — M —
mM—(M—mO)@< mo)—onqo( Gmo)
O-O (]

M — M —m
E[f).‘LLT(O)]:MmO+(SZ+m(Z)~Mm0)d5< Gm())—morrnqo( S 0).

Hence

M—
Cov [1¥(0), pn(0)]=E[0 - 1¥(0)] —moE[ur(m]:szcb(ﬂ)

and

o

by=(1 —n)zqu(M_mO).

As Cov [X; AM, X, AM[X,, X, ordinary]
=Cov [UjAM, U, A M]
=FE[Cov [UAM, Uy AM|/0]]14+Cov [E[U; A M[0], E[U, A M/0]]
=Var [u}(0)], we conclude from 19)

by=(1—m)* Cov [U, A M, U, A M].

To obtain a closed formula for b3, observe

M

J x(x—p) L ool —xafp<x_ﬂ>
g o

— 0

M M .
+a | (p(x 'u)dx

— o0 0

M — M —
= ~aM(p< H—»)+62<P( . ﬂ)
o

Af x* };» o(x —p)dx = —J(Miru)go(Mo__N)+(,u2+02)@<MT_>.

According to 1) the density function of X is

fx)=] (1 =m)po(x/0)dU(0) +mpo(x) = (1 = 1) po(X) + 7p(X)
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with (see 6.1 and 6.2)

1 X—m
Po(X)=— qo( 0)

O—O 0—0

1 X — [,
pe(x)ﬂ__ QD( = )

Ue O-e

Hence
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0

=A

The same calculations as at the beginning of ii) leading to the formula for p)'(0)
are repeated to obtain E[XA M], of course with different parameter values.
From this calculation we obtain

E[X AM]=M+(1-7) {(m0 —M)di(

M —my

0

M —my
—0,Q .

M_.ue

+n{(,ue—M)d5<

e
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)_O-eq)

&

)

We can now, finally, write

by=Var [XAM]=4—B>
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Summary

Very large claims represent a dilemma to the Ratemaker: To what extent should they be included in
the claims load? We advocate that Credibility Techniques combined with Data Trimming provide
the right tool for this problem. This is illustrated in the context of a model which generates both
“ordinary” and “excess” (=catastrophic) claims. In this situation “optimum forecasting” (using
Bayes estimation techniques) and “credibility techniques combined with data trimming” lead to
almost identical results.

Zusammenfassung

Sehr grosse Schéden stellen ein besonderes Problem fiir die Primienberechnung dar: Wie weit sollen
sie in die Schadenlast eingeschlossen werden? Wir sind der Meinung, dass «Credibility mit Stutzen»
das richtige Werkzeug fiir diese Situation darstellt. Dies ist illustriert im Rahmen eines Modells,
welches «gewohnliche» und «Exzess»-(Katastrophen-)Schidden produziert. In dieser Situation
liefern «optimale Voraussage» (durch Bayes-Schitzungen) und «Credibility mit Stutzen» gleichwer-
tige Resultate.

Résume

Les sinistres de trés grande importance posent un probléme pour la détermination d’une prime: dans
quelle mesure faut-il les prendre en considération? Pour résoudre ce probléme, nous proposons la
technique de la «crédibilité combinée avec la troncation». Notre point de vue est présenté a I’aide
d’un modéle qui produit des sinistres «ordinaires» et des sinistres «excédents» (catastrophiques).
Dans cette situation les résultats obtenus par la «prévision optimale» (selon les méthodes de Bayes) et
par la technique de la «crédibilité combinée avec la troncation» sont presque identiques.






	Excess claims and data trimming in the context of credibility rating procedures

