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Hans Bühlmann, Zurich, Alois Gisler, Winterthur,
and WilliamS. Jewell, Berkeley*

Excess Claims and Data Trimming in the Context
of Credibility Rating Procedures

1 Motivation

In Ratemaking and in Experience Rating one is often confronted with the
dilemma ofwhether or not to fully charge very large claims to the claims load of
small risk groups or of individual risks. Practitioners typically use an a posteriori
argument in this situation: "If such large claims should be fully charged then the

rates obtained would become 'ridiculous', hence it should not be done." The

present paper aims at explaining this practical attitude from first principles.
Credibility Theory in its standard form makes the first step in the right direction.
It explains to us that all claims should not be fully charged (but only with the

constant fraction of the credibility weight). In many applications, however, it is

still felt that the fraction of this charge should depend on the size ofa claim. This
leads very naturally to the idea of combining credibility procedures and data

trimming.
Of course, such an idea needs to be tested. The first argument in favour of it was

given by Gisler [1 ] who showed that in many cases the mean quadratic loss of the

credibility estimator is substantially reduced if one introduces trimming of
claims data. This paper goes even further. It formalizes the standard way of
thinking about large claims and then shows that "optimal forecasting" of rates

(using Bayes estimation techniques) and forecasting by "credibility techniques
combined with data trimming" lead to almost identical results.

* The authors are greatly indebted to R. Schnieper who did all the numerical work on the ETH
computer.
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2 The Basic Model

Throughout the paper we work with the most simple model in the credibility
context.

X=(XUX2, ...,Xn)

is the random vector representing the experience of a given risk in the years 1, 2,

...,n.

- The quality of the risk is characterized by an unknown parameter value 9,

which we consider as a realisation of a random variable 0 with distribution
function U{9).

- Given the parameter value 0, {Xx ,X2, X„} are i.i.d. with density function
feipc) [mean p. (6), variance c2(0)].

To these standard assumptions in credibility theory we add now some more
structure regarding the distribution of the size of a claim. The main idea is

introduced by the assumption that the claim sizes are drawn from two different
urns (distributions). Mostly, i. e. with probability 1 — n, we observe an ordinary
claim with density p0(x/9) [mean p0(9), variance o20{9)] and occasionally, i.e.
with probability n, we observe an excess claim (catastrophic claim) with density
pe{xj9) [mean pe(9), variance o2e{9)].

Po(x/9)

ordinary
claim amounts

pe(x/9)

excess

claim amounts

occurrence 1 — n n

We have assumed that the mixing probabilities are independent of 9 and from
now on we shall also suppose that the density of the excess claims is independent
of the risk parameter, hence formalizing the idea that large catastrophic claims
have no bearing on the quality of the risk.
In mathematical shorthand all the considerations just made regarding
additional structure are summed up by stating that the density fe(x) has the

following form
/flW (l -n)Po(x/9) + nPe(x). (1)
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3 The Basic Problem

As always in the credibility context our aim is to estimate

H{6)

pure premium for
the given risk

based on the observations of

X=(Xy,X2, ...,X„)
experience of the given risk in the

years 1,2,

One knows that the best estimator (with respect to quadratic loss) for this

problOT,s pw-Ewmm- (2)

Using the special structure of formula (1) we obtain

P[X] nße + (\-n)E [ß0 (0)IX]. (3)

g(Z)

If we use standard credibility techniques we estimate by

f[X] a + b £ Xt (4)
i l

with optimal choice of a, b.

And if in addition we introduce trimming of the data we estimate by

f[X] a + b £ (XtAM) (5)
i 1

with optimal choice of a, b, M.
Using (4) we are committing the following error against optimal estimation

inf E{P{X\-f[X\}2= inf E\nße + (\ -n)g(X)-a-b £ (Z.aM)}
a,b,M a,b,M j 1 J

(1-7r)2 inf E\^^ + g(X)
a,b,M 1

b " V
— X (XtA M)

1 -n iti J

(1-7T)2 inf E\g(X)-a'-b' £ (XiAM)X (6)
a'.b'.M i l J
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The following two problems are therefore equivalent
n

A) Estimate P[X\ (total premium) by a + b £ (Xt a M) with optimal a, b, M
1 1

n

B) Estimate g(W) (ordinary premium) by a' + b' £ (X, a M) with optimal a', b\ M.
i 1

For the optimal choices of the parameters (denoted by we have

ä {\ -n)ä' + nße

E=( 1 — ri)E'
n

In the following we want to illustrate that ä' + E' £ (I,aM) is a good
1 1

approximation of g(X) E[pi0(9)/X] (Problem B above).
We actually shall compare

ä' + E' y (XjA M) with g(x)

for any observation x of X.

4 The Exact Form of g (x)

Writing out the conditional expectation E[/j.0(d)/X=x] we obtain

g(x)=-
1 Po(0)

n

n {(1 -n)Po(xll6) + %Pe(xl)}
1 1

dU(B)

I
n

E[ {(1 -n)po(xl/6) + npe(xl)}
1 1

dU(6)
(8)

Putting /={ 1, 2, and Sei we rewrite

]1 {(1 -n)p0(xJ9) + npe(xl)}= £ (* ~^n~s Yl Poix/O) YlPeix) (9)
i l SCI leS teS

where the sum on the right side must be taken over all subsets

Sei (including </> and 7) with s =|5'|

and n \f\.
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We also use the abbreviations

Po (xs) 1 El Po (xjd) dU (6)
leS

Pe (xs) J n Pe (*.) dU(6) UPe (*,)
ieS leS

T %
71 \"'S Po(Xs)Pe(Xs) r x „

p,{x,)
1]

J Mo(0) YlPo(xJ6)dU(0)
E0 [Mo mxs]= s?-n •

Po (.Xs)

Then introducing (9) into (8) and carrying out the integration we find for the

numerator of g(x)

£ (l -7t)v-s n/>«(*.) J Mo(0)nPo(x,/e)du(0)
SCI isS ieS

or

£ (1 7i)s7in sp„(xs)pe(xs)E0[fi0(6)/xs]
SCI

and for the denominator of g(x)

£ (1 -n)sn"-sp0(xs)pe(xs).
SCI

Dividing both numerator and denominator by (1 —7i)np0{xj) we finally arrive at

Eolßo(0)/x]+ £ L(xs)E0[p„(d)/xs\

g(x) (10)
1 + £ E(xs)

SCI
s^i

Remarks

i) Observe that g (x) is a weighted average of forecasts based on all subsamples

xs of the total sample xt, the forecasts being calculated under the

assumption that the subsample contains only claims of the ordinary type.
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ii) As is usually rather small the weight of L(xs) is rather quickly
1 —71

decreasing with decreasing number of observations in xs; for a fixed number
of observations the weight L (xs) is rather big if both p0 (xs) and pe (xg) are

big i. e. if xs and xg are very likely to come from the ordinary and the excess

urn respectively.

iii) Dividing by p0(xj) is obviously only allowed if all the observed claims are

possibly of ordinary type. The weight function L(xs) is then only positive if
pe(xs) is positive i.e. if the subset xg is possibly of excess type. Thus the

formula does what we would have done by intuition as well, it includes only
predictions based on subsamples which may be of ordinary type. On the
other hand, these predictive subsamples must contain all claims which are
surely of ordinary type.

5 More Insight from the Single Observation Case

At this point it is worthwhile to consider the special case where the whole sample
of observations contains only one observation, i.e.

X (Xj).

For simplicity we omit the index 1 and write x for the single observation. We
have then

£„[Ä(e)/jc]+ £[*,]£[MS)]
fTZw (11)

with

1-7T p0 (x)

The right hand side is a multiple of the likelihood ratio. If the latter is

monotonically increasing (which is typically the case in applications) so is also

the weight given to the constant estimator E[j.t0(6)]=m0. Assume in addition
that E„ [p0 (6)/x] is of linear form; then our estimator g (x) is a mixture of the two
cases (corresponding to the two pictures)
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the weight being shifted from the estimator on the left to the estimator on the

right as x increases. The resulting estimator is almost of the form a + b min (x, M).
Hence credibility with trimming is almost exact! This fact will be illustrated by a

numerical example in section 6. In fact our numerical example will show that this
fact also carries over to higher dimensions.

6 A Numerical Example

6.1 For explicit calculations we are assuming that for ordinary claims

p0(x/6) is a normal density with mean 6

variance v

9 is normally distributed with mean m0

variance w.

We then have

Po(xs) l EI Po(xi/9)dU(9)
ieS

which turns out to be a multidimensional normal density with mean vector
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/ m0\

hence

Iw + v w w \

w w + v

and covariance matrix

\mo I

with A Y,~1-

Poixs) }^l2 e 2 £ diMi-mo) (Xj-m0)
\+n) ieS

jeS

W + vj

(12)

Proof that p0 (xs) has density (12) :

a) Given 9 any linear combination £ c,X{ is normal with mean £ cfi and
teS ieS

variance £ cjv. Integrating out with respect to the normal structure function
ieS

of 9 we obtain a normal distribution with mean £ ctm0 and variance
/ \2 'eS

£ c, ] cfr. But a sample Zs whose linear combinations are all
\ieS / ieS

normally distributed is multidimensional normal.

b) Let £ (<T:j)
ieS
jeS

atJ Cov (X„ Xj) E[Cov (Xt, XJ)/9] + Cov [£[2f,/0], E[JT,/0]]

+ w q.e.d.

It should be noted that

det ^ if + svs ~1 w (13)

(subtract first row from all other rows and then develop along the first column).
Also observe the explicit form of

E~1=^=K)
ieS
jeS

öijV
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namely _1 / c w
a,J v\,} v + sw

(14)

use (I+aßT) x=7 —
aß1

1 + ccTß'

where a, ß are columnvectors; / identity matrix.

From elementary calculations in credibility theory we finally also know that

E0 [0/xs] xs + m0
v + sw v + sw

(15)

6.2 For the excess claims the probability law is specified by assuming that

pe{x) is a normal density with mean ße

variance at.

7 Numerical Calculations of g (x)

For our calculations we have chosen

mo 10 Aie 50

v= 12.51 cre 20

17 5
ffo 5

w= 12.5

1 —7t= 0.9 71 0.1

and we obtain

a) for n 1 (single observation case)

Table 1

X g(x) X «W X g(x) X g(x)

5. 7.5091 lit. II.985O 23. II+.89I+6 32. 10.0370
6. 8.0068 15. 12.1+755 2l+. 14.3712 33. 10.0151
7- 8.50t9 16. 12.9602 25. 13.1+968 34. 10.0059
8. 9.0033 17. 13.1+31+8 26. 12.1+521 35- 10.0022
9. 9.5017 18. 13.8919 27. II.5065 36. 10.0008

10. 10.0000 19. 11+.3177 28. 10.8265 37- 10.0003
11. 10.t979 20. lit.6876 29. 10.1+153 38. 10.0001
12. 10.9951 21. lU.9586 30. 10.1952 39- 10.0000
13. 11.1+910 22. 15.0602 31. 10.0870 40. 10.0000



b) for n 2 (two observations) g(xi> x2) to
On

Table 2

\ X2 5 6

X
1 \
5 6.68 7.02
6 7.02 7.35
7 7.35 7.68
8 7.68 8.01
9 8.02 8.35

10 8.35 8.68
11 8.68 9.01
12 9.01 9.33
13 9.32 9.65
11» 9.61 9.9b
15 9.86 10.21
16 10.01» HOH

17 10.08 10.50
18 9.92 10.1»2

19 9.53 10.12
20 8.98 9.62
21 8.1» 3 9.07
22 8.02 8.62
23 7.78 8.32
21» 7.65 8.17

7 Ö 9

7.35 7.68 8.02
7.68 8.01 8.35
8.01 8.31» 8.68
8. 3U 8.68 9.01
8.68 9.01 9.3U
9.01 9.31» 9.67
9-3b 9.67 10.00
9.66 9.99 10.32
9.98 10.31 10.65

10.28 10.62 10.96
10.55 10.90 11.25
10.78 11.15 11.52
10.92 11.33 11.72
10.91 11.38 11.83
10.70 11.26 11.79
10.27 10.92 11.55
9.73 10.k2 11.11
9.2H 9.90 10.59
8.90 9.51 10.lU
8.70 9.26 9.81»

10 11 12

8.35 8.68 9.01
8.68 9.01 9-33
9.01 9-3b 9.66
9.3H 9.67 9.99
9.67 10.00 10.32

10.00 10.33 10.66
10.33 10.66 10.99
10.66 10.99 11.32
10.98 11.32 11.65
11.30 11.63 11.97
11.60 11.94 12.29
11.88 12.23 12.59
12.11 12.1*9 12.86
12.27 12.69 13.09
12.30 12.78 13.21»

12.15 12.72 13.26
11.79 12.1»6 13.09
11.30 12.02 12.73
10.8l 11.51 12.23
10.UU 11.08 11.76

13 11» 15

9.32 9.61 9.86
9.65 9.9b 10.21
9.98 10.28 10.55

10.31 10.62 10.90
10.65 10.96 11.25
10.98 11.30 11.60
11.32 11.63 11.9b
11.65 11.97 12.29
11.98 12.30 12.62
12.30 12.63 12.96
12.62 12.96 13.29
12.93 13.27 13.61
13.22 13.57 13.92
13.1»7 13.85 lU.21
13.67 lit.07 1U.U6
13.75 11».22 It.65
13.68 11».23 ll».7l»
13.1»1 11». 06 11». 66
12.97 13.69 11».39
12.1»7 13.20 13.93

16 17 18

lo.oi» 10.08 9.92
10.1»! 10.50 10.1»2

10.78 10.92 10.91
11.15 11.33 11.38
11.52 11.72 11.83
11.88 12.11 12.27
12.23 12.1»9 12.69
12.59 12.86 13.09
12.93 13.22 13.^»7

13.27 13.57 13.85
13.61 13.92 lU.21
13.9b It.26 1U.56
lit.26 11».58 11».90

lit. 56 11». 90 15.22
lit.83 15.19 15.52
15.06 15.1»U 15.79
15.20 15.62 16.01
15.21 15.70 16.13
15.03 15.61 16.12
11». 65 15.31 15.90

19 20 21

9.53 8.98 8.1»3

10.12 9.62 9.07
10.70 10.27 9-73
11.26 10.92 10.1)2
11.79 11.55 11.11
12.30 12.15 11.79
12.78 12.72 12.1»6
13.21» 13.26 13.09
13.67 13.75 13.68
11».07 lU.22 lU.23
ll».l»6 11».65 11».71»

11». 83 15.06 15.20
15.19 15.1»1» 15.62
15.52 15.79 16.01
15.81» 16.12 16.36
16.12 16.U2 16.66
16.36 16.66 16.91
16.51 16.83 17.07
16.5!» 16.87 17.10
16.38 16.73 16.9b

22 23 21»

8.02 7.78 7.65
8.62 8.32 8.17
9.21» 8.90 8.70
9.90 9.51 9.26

10.59 10.lU 9.81»

11.30 10.81 10.1»!»

12.02 11.51 11.08
12.73 12.23 11.76
13.1»1 12.97 12.1»7
lit.06 13.69 13.20
11».66 It.39 13.93
15.21 15.03 11».65

15.70 15.61 15.31
16.13 16.12 15.90
16.51 16.5!» 16.38
16.83 16.87 16.73
17.07 17.10 16.9!»
17.21 17-20 16.97
17.20 17.10 16.76
16.97 16.76 16.28



c) for n 5 (five observations) g(xt, x2, C3, C4, C5)

note: C3, C4, Cs are chosen as "parameters" for the following tables

i) (C3, C4, C5) (10, 10, 10)

Table 3.1

5 8 76 8.86
6 8 86 8.91+

7 8 98 9.06
8 9 13 9.20
9 9 28 9.35

10 9 1+3 9-50
11 9 56 9.62
12 9 66 9.71
13 9 71 9.76
lit 9 71 9.77
15 9 67 9.73
16 9 60 9.67
17 9 53 9.60
18 9 1+7 9.51+

19 9 1+2 9.1+9

20 9 39 9.1+6

21 9 37 9.1+1+

22 9 36 9.1+3

23 9 36 9.1+3
2k 9 35 9.1+3

7 8 9

8 98 9 13 9.28
9 06 9 20 9.35
9 17 9 31 9.1+6

9 31 9 1+1+ 9.58
9 1+6 9 58 9.72
9 60 9 72 9.86
9 72 9 81+ 9.9 8

9 81 9 91+ 10.08
9 86 9 99 10.11+

9 87 10 00 10.15
9 81+ 9 97 10.13
9 78 9 92 10.08
9 71 9 85 10.01
9 65 9 80 9.96
9 61 9 75 9.91
9 58 9 72 9.88
9 56 9 70 9.86
9 55 9 69 9.85
9 5!+ 9 69 9.85
9 51+ 9 69 9.81+

10 11 12

9.1+3 9.56 9-66
9-50 9.62 9.71
9.60 9.72 9.81
9.72 9.8U 9.9I+
9-86 9.98 10.08

10.00 10.12 10.22
10.12 10.25 10.36
10.22 10.36 10.1+6

10.29 10.1(2 10.53
10.31 10.1+5 10.56
10.28 10.1(3 10.55
10.21 10.38 10.50
10.17 10.32 10.1+1+

10.12 10.26 10.38
10.07 10.22 10.33
10.01+ 10.18 10.30
10.02 10.16 10.28
10.01 10.15 10.27
10.00 10.15 10.26
10.00 10.11+ 10.26

13 ll+ 15

9.71 9.71 9.67
9.76 9.77 9.73
9.86 9.87 9.81+

9.99 10.00 9.97
10.11+ 10.15 10.13
10.29 10.31 10.28
10.1+2 10.1+5 10.1+3

10.53 10.56 10.55
10.61 10.61+ 10.63
10.61+ 10.67 10.66
10.63 10.66 10.61+

10.58 10.61 10.60
10.52 10.55 10.53
10.1+6 10.1+8 10.1+7
10.1+1 10.I+3 10.1+1

10.37 10.1+0 10.37
10.35 10.37 10.35
10.31+ 10.36 10.31+

10.33 10.35 10.33
10.33 10.35 10.33

16 17 18

9.60 9-53 9.1+7

9.67 9.60 9.5!+
9.78 9.71 9.65
9.92 9.85 9.80

10.08 10.01 9.96
10.21+ 10.17 10.12
10.38 10.32 10.26
10.50 10.1+1+ 10.39
10.58 10.52 10.1+6
10.61 10.55 10.1+8
10.60 10.53 10.1+7

10.55 10.1+8 10.1+1
10.1+8 10.1+1 10.31+
10.1+1 10.31+ 10.27
10.36 10.29 10.22
10.32 10.25 10.18
10.29 10.22 10.16
10.28 10.21 10.11+

10.27 10.20 10.11+

10.27 10.20 10.13

19 20 21

9.1+2 9.39 9.37
9.1+9 9.1+6 9.1+1+

9.61 9.58 9.56
9.75 9.72 9.70
9.91 9.88 9.86

10.07 10.01+ 10.02
10.22 10.18 10.16
10.33 10.30 10.28
10.1+1 10.37 10.35
10.1(3 10.1+0 10.37
10.1+1 10.37 10.35
10.36 10.32 10.29
10.29 10.25 10.22
10.22 10.18 10.16
10.17 10.13 10.10
10.13 10.09 10.07
10.10 10.07 10.05
10.09 10.06 10.03
10.09 10.05 10.03
10.08 10.05 10.02

22 23 21

9.36 9 - 36 9.35
9.1+3 9.1+3 9.1+3

9-55 9.5!+ 9.51»
9.69 9.69 9.69
9.85 9.85 9.81+

10.01 10.00 10.00
10.15 10.15 10.11+

10.27 10.26 10.26
10.31+ 10.33 10.33
10.36 10.35 10.35
10.31+ 10.33 10.33
10.28 10.27 10.27
10.21 10.20 10.20
10.11+ 10.11+ 10.13
10.09 10.09 10.08
10.06 10.05 10.05
10.03 10.03 10.02
10.02 10.02 10.01
10.02 10.01 10.01
10.01 10.01 10.00



ii) (C3, C4, C5) (10, 10, 25)

Table 3.2

\ x2 5 6

x \1

5 8.59 8.70
6 8.70 8.80
7 8.8U 8.93
8 9.01 9.09
9 9.18 9.26

10 9.35 9.U3
11 9.50 9.57
1? 9.61 9.67
13 9.66 9.73
lU 9.66 9.73
15 9.62 9.69
16 9.5U 9.62
17 9.U6 9.5U
18 9.39 9.U7
19 9.33 9-Ul
20 9.30 9.38
21 9.27 9.36
22 9.26 9-35
23 9.26 9.3U
2U 9.25 9.3U

7 8 9

8.8U 9.01 9.18
8.93 9.09 9.26
9.06 9.22 9.38
9.22 9.37 9.53
9.38 9.53 9.69
9.5U 9.68 9.8U
9.68 9.82 9.98
9.78 9.93 10.09
9.8U 9.99 10.16
9.85 10.00 10.17
9.81 9.97 10.15
9.7U 9.90 10.09
9.67 9.83 10.01
9.60 9.76 9.95
9.5U 9.71 9.90
9.51 9.68 9.86
9.U9 9.66 9.8U
9.U8 9.65 9.83
9.U7 9.6U 9.82
9.U7 9.6U 9.82

10 11 12

9.35 9.50 9-61
9.U3 9.57 9.67
9.5U 9.68 9-78
9.68 9.82 9.93
9.8U 9.98 10.09

10.00 10.lU 10.26
10.lU 10.29 10.Ul
10.26 10.U1 10.53
10.33 10. U8 10.61
10.35 10.51 10.6U
10.33 10.1(9 10.63
10.27 10.UU 10.57
10.20 10.37 10.51
10.13 10.30 10.UU
10.08 10.25 10,38
10.05 10.21 10.3U
10.02 10.19 10.32
10.01 10.18 10.31
10.01 10.17 10.30
10.00 10.17 10.30

13 lU 15

9.66 9.66 9.62
9.73 9.73 9.69
9.8U 9.85 9.81
9.99 10.00 9.97

10.16 10.17 10.15
10.33 10.35 10.33
10.U8 10.51 10.U9
10.61 10.6U 10.63
10.70 10.73 10.72
10.73 10.77 10.75
10.72 10.75 10.71»
10.67 10.70 10.69
10.60 10.63 10.61
10.53 10.56 10. 5l(
10.U7 10.50 10.1(8
10.1(3 10.1(6 10.U3
10.1(0 10.1(3 10.1(1
10.39 10.1(2 10.39
10.38 10.1(1 10.38
10.38 10.1(1 10.38

16 17 18

9-5U 9.1(6 9.39
9.62 9.3k 9.U7
9.7l( 9.67 9.60
9-90 9.83 9.76

10.09 10.01 9.95
10.27 10.20 10.13
10.UU 10.37 10.30
10.57 10.51 10.UU
10.67 10.60 10.53
10.70 10.63 10.56
10.69 10.61 10.5U
10.63 10.55 10.U7
10.55 10.U7 10.39
10.U7 10.39 10.32
10.Ul 10.33 10.25
10.37 10.29 10.21
10.3U 10.26 10.18
10.33 10.2U 10.17
10.32 10.2U 10.16
10.31 10.23 10.16

19 20 21

9.33 9.30 9.27
9-Ul 9.38 9.36
9.5U 9.51 9.U9
9.71 9.68 9.66
9.90 9.86 9.8U

10.08 10.05 10.02
10.25 10.21 10.19
10.38 10.3U 10.32
10.U7 10.U3 10.Uo
10.50 10.U6 10.U3
10.U8 10.U3 10.Ul
10.Ul 10.37 10.3U
10.33 10.29 10.26
10.25 10.21 10.18
10.19 10.15 10.12
10.15 10.11 10.08
10.12 10.08 10.05
10.11 10.07 10.OU
10.10 10.06 10.03
10.10 10.05 10.03

22 23 2U

9.26 9.26 9.25
9.35 9. 3U 9 • 3U

9.U8 9.U7 9.U7
9.65 9.6U 9.6U
9.83 9.82 9.82

10.01 10.01 10.00
10.18 10.17 10.17
10.31 10.30 10.30
10.39 10.38 10.38
10.U2 10.Ul 10.Ul
10.39 10.38 10.38
10.33 10.32 10.31
10.2U 10.2U 10.23
10.17 10.16 10.16
10.11 10.10 10.10
10.07 10.06 10.05
10.OU 10.03 10.03
10.03 10.02 10.02
10.02 10.01 10.01
10.02 10.01 10.01
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8 Optimal Trimming

Gisler has shown [1] that for given M the optimal choice of the approximation

n

nX0j a + b J] (xiA M) to ji{6) [and hence to -P[x]]
i l

can be calculated as follows

$=-, *1 where bx Cov \XxaM, X2\
(n-\)b2+b3

b2 Cov [Xi a M, X2a M] (16)

b3 Var [Xx a M]

ä + nbE[X aM] E[X], (17)

With this optimal choice we then have

E[(jUß)—ß(d))2] w—nb-b1. (18)

Hence the trimming point M is optimal if E b2 is maximum.
In our basic model (cf. section (2)) we find

bx (1 -nf Cov \/if (0), n„ (0)] where Ho (0) E{X a M/0, X ordinary]

fio(0) E[X/0, X ordinary] (19)

b2 (l-nf Var [^(0)]
b3 (1 - n) E [oj M (0)] + na2e M + (1 -nf Var \jg (0)] + tc(1 -tc) E[(ßo (0) - f]

with u„M(0) Var [V a M/6, X ordinary]

ff2 m =yar [x a M/X excess]

/if =E[Xa M/X excess].

Using explicitely the normal distribution as assumed both for ordinary and

excess claims in section 6 we obtain from some rather tedious integrations:

Let <P(.) denote the standardized normal distribution function and cp(.) the
standardized normal density function, then
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fM—rrin \ /bl=(l -n)2w<P (— a0 ]/v + w

b2 (1 -n)2 Cov [Ü! aM,U2a M]

where the covariance is obtained by numerical integration.

(20)

/ mr, _ \ m fv + w w
Notation: (t/j, U2) is iV I £ J with £

w v + w

where

A=( 1 — 7l)

+ n

b2 A-B2

2 2x ^ i M-m0{ml + <To) <P -<J0(M + m0)<p
M —m0

2N ^ I'M-fJ.,
(he + <7e) #

M — n(-oe{M + ne) cp
Op \ (J,

+ M2

B { 1 — 71)

+ 71

,'M—m0\ (M — a,
1 — (1 — 7l)tP | -l-JItP' M

/ °\ (M-m0
(m0 — M) $ —= — cr0<p —

M~ixt
(lle — M) 0

M /i(
| -CTe<P

Oe

+ M

9 Numerical Calculations of a + b Y (*iAM)

Using the same parameter values as in section 7 we obtain the forecasts based on
optimal trimming. To compare with g(x) it is worthwhile to calculate also

f + b' Y (xt a M) with

s,_ä=m s,=_
b

1 —11
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a) Results for n 1 (single observation case)

Truncation point M= 14.68

Formula: P 0.4412 (x/\ M) + 9.5817 g 0.4902 (xa M) + 5.0908

X
5 11.79 7.54
6 12.23 8.03
7 12.67 8.52
8 13.11 9.01
9 13.55 9.50

10 13.99 9.99
11 14.43 10.48
12 14.88 10.97
13 15.32 11.46
14 15.76 11.95
15 16.06 12.29
16 16.06 12.29
17 16.06 12.29
18 16.06 12.29
19 16.06 12.29
20 16.06 12.29

Figure 1 shows a comparison of the true g and the approximation g by
truncation. Observe the «overshoot» of the true regression function. It derives

from the gradual loss ofevidence that the claim is ofordinary type. For very high
observations one settles for the a priori estimate m0 10 which is lower than the
estimate in the 15 to 25 region on the x-axis. On the other hand the

approximation g(x) has the practical advantage of being monotone hence

avoiding the «overshoot» region. Of course there must be a compensation for
this avoidance and indeed for high x's the approximation g leads to higher
values than g.
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Figure 1

g(x)

—r~
40 " x

10 30 35



b) Results for n 2

truncation point M= 19.52

bx) approximation to total premium P[x\
2

formula: P 0.2289 £
i i

Table

•r, 5 6 7 8 9 10 11 12 13 It

5 11.32 11.55 11.78 12.01 12.2t 12.1+7 12.70 12.93 13.16 13-38
6 11.55 11-78 12.01 12.2t 12.1+7 12.70 12.93 13.16 13.38 13.61
7 11.78 12.01 12.21+ 12.1+7 12.70 12.93 13.16 13.38 13.61 13.81+
8 12.01 12.21+ 12.1+7 12.70 12.93 13.16 13.38 13.61 13.81+ It.07
9 12.21+ 12.1+7 12.70 12.93 13.16 13.38 13.61 13.81+ It.07 11+.30

10 12.1+7 12.70 12.93 13.16 13.38 13.61 13.81+ 11+.07 it.30 lit.53
11 12.70 12.93 13.16 13.38 13.61 13.81+ lit.07 It.30 It.53 It.76
12 12.93 13.16 13.38 13.61 13.8t lt.07 lt.30 lt.53 lt.76 lt.99
13 13.16 13.38 13.61 13.8t lt.07 lt.30 lt.53 lt.76 lt.99 15.22
lt 13.38 13.61 13.8t lt.07 lt.30 lt.53 lt.76 lt.99 15.22 15.tt
15 13.61 13.8t lt.07 lt.30 lt.53 lt.76 lt.99 15.22 15.tt 15.67
16 13.8t lt.07 lt.30 lt.53 lt.76 lt.99 15.22 15.tt 15.67 15.90
17 lt.07 lt.30 lt.53 lt.76 lt.99 15.22 15.tt 15.67 15.90 16.13
18 lt.30 lt.53 lt.76 lt.99 15.22 15.tt 15.67 15.90 16.13 16.36
19 lt.53 lt.76 lt.99 15.22 15.tt 15.67 15.90 16.13 16.36 16.59
20 lt.65 lt.88 15.11 15.33 15.56 15-79 16.02 16.25 16.t8 16.71
21 lt.65 lt.88 15.11 15.33 15.56 15-79 16.02 16.25 16.t8 16.71
22 lt.65 lt.88 15.11 15.33 15.56 15-79 16.02 16.25 16.t8 16.71
23 lt.65 lt.88 15.11 15.33 15.56 15.79 16.02 16.25 16.t8 16.71
2t lt.65 lt.88 15.11 15.33 15.56 15-79 16.02 16.25 16.t8 16.71

(x,AM) + 9.0351

4

15 16 17 18 19 20 21 22 23 2t

13.61 13.8t lt.07 lt.30 lt.53 lt.65 lt.65 lt.65 lt.65 lt.65
13.8t lt.07 lt.30 lt.53 lt.76 lt.88 lt.88 lt.88 lt.88 lt.88
lt.07 lt.30 lt.53 lt.76 lt.99 15.11 15.11 15.11 15.11 15.11
lt.30 lt.53 lt.76 lt.99 15.22 15.33 15.33 15.33 15.33 15.33
lt.53 lt.76 lt.99 15.22 15.tt 15.56 15.56 15.56 15.56 15.56
lt.76 lt.99 15.22 15.tt 15.67 15-79 15.79 15.79 15.79 15.79
lt.99 15.22 15.tt 15.67 15.90 16.02 16.02 16.02 16.02 16.02
15.22 15.tt 15.67 15.90 16.13 16.25 16.25 16.25 16.25 16.25
15.tt 15.67 15.90 16.13 16.36 16.t8 16.t8 16.t8 16.t8 16.t8
15.67 15.90 16.13 16.36 16.59 16.71 16.71 16.71 16.71 16.71
15-90 16.13 16.36 16.59 16.82 16.9t 16.9t 16.9t 16.9t 16.9t
16.13 16.36 16.59 16.82 17.05 17.17 17.17 17.17 17.17 17.17
16.36 16.59 16.82 17.05 17.28 17.39 17.39 17.39 17.39 17-39
16.59 16.82 17.05 17.28 17.50 17.62 17.62 17.62 17.62 17.62
16.82 17.05 17.28 17.50 17.73 17.85 17.85 17-85 17.85 17.85
16.9t 17.17 17.39 17.62 17.85 17.97 17.97 17-97 17-97 17-97
16.9t 17.17 17.39 17.62 17.85 17.97 17.97 17-97 17-97 17-97
16.9t 17.17 17.39 17.62 17.85 17.97 17.97 17.97 17.97 17-97
16.9t 17.17 17.39 17.62 17.85 17.97 17.97 17.97 17-97 17.97
16.9t 17.17 17-39 17.62 17.85 17.97 17.97 17-97 17-97 17.97



b2) approximation to ordinary premium g(x)
2

formula: g 0.2543 £ (x;aM) +4.4834

7afr/e 5

\ x2 5 6 7 8 9 10 11 12 13 l1* 15 16 17 18 19 20 21 22 23 2k

Xl\
5 7.03 7.28 7.53 7.79 8.0U 8.30 8.55 8.81 9.06 9.32 9-57 9-82 10.08 10.33 10.59 10.72 10.72 10.72 10.72 10-72
6 7.28 7.53 7-79 8.0k 8.30 8.55 8.81 9.06 9.32 9-57 9.82 10.08 10.33 10.59 10.8k 10.97 10.97 10.97 10.97 10.97
7 7.53 7.79 8.0k 8.30 8.55 8.81 9.06 9.32 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.23 11.23 11.23 11.23 11.23
8 7.79 8.0k 8.30 8.55 8.81 9.06 9.32 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.k8 11.k8 11.k8 11.k8 11.k8
9 8.0k 8.30 8.55 8.81 9-06 9.32 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.7k 11.7k 11.7k 11.7k 11.7k

10 8.30 8.55 8.81 9.06 9.32 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 11.99 11.99 11.99 11.99 11.99
11 8.55 8.81 9.06 9-32 9.57 9-82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.2k 12.2k 12.2k 12.2k 12.2k
12 8.81 9.06 9.32 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.50 12.50 12.50 12.50 12.50
13 9.06 9.32 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.62 12.75 12.75 12.75 12.75 12.75
lk 9.32 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.62 12.88 13.01 13.01 13.01 13.01 13.01
15 9.57 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.62 12.88 13.13 13.26 13.26 13.26 13.26 13.26
16 9.82 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.62 12.88 13.13 13.38 13-52 13.52 13.52 13-52 13-52
17 10.08 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.62 12.88 13.13 13.38 13.6k 13.77 13.77 13.77 13.77 13.77
18 10.33 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.62 12.88 13.13 13-38 13.6k 13.89 lk.02 lk.02 lk.02 lk.02 lk.02
19 10.59 10.8k 11.10 11.35 11.60 11.86 12.11 12.37 12.62 12.88 13.13 13.38 13.6k 13.89 lk.15 lk.28 lk.28 lk.28 lk.28 lk.28
20 10.72 10.97 11.23 11.k8 11.7k 11.99 12.2k 12.50 12.75 13.01 13.26 13.52 13-77 lk.02 lk.28 lk.kl lk.kl lk.kl lk.kl lk.kl
21 10.72 10.97 11.23 11.k8 11.7k 11.99 12.2k 12.50 12.75 13.01 13.26 13.52 13.77 lk.02 lk.28 lk.kl lk.kl lk.kl lk.kl lk.kl
22 10.72 10.97 11.23 11.k8 11.7k 11.99 12.2k 12.50 12.75 13.01 13.26 13-52 13.77 lk.02 lk.28 lk.kl lk.kl lk.kl lk.kl lk.kl
23 10.72 10.97 11.23 11.k8 11.7k 11.99 12.2k 12.50 12.75 13.01 13.26 13.52 13.77 lk.02 lk.28 lk.kl lk.kl lk.kl lk.kl lk.kl
2k 10.72 10.97 11.23 11.k8 11.7k 11.99 12.2k 12.50.12.75 13.01 13.26 13.52 13.77 lk.02 lk.28 lk.kl lk.kl lk.kl lk.kl lk.kl
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Figure 2

The equidistance of the contours equals 0.25.
The top-level contour line corresponds to the value 17.0, whereas the contour-
lme nearest to the point (0,0) corresponds to the value 3.5

The contour-line to the upper right corresponds to the value 10 25.
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Figure 3

The contour line to the upper right corresponds to the value 14.41 (xj and x2

^trimming point).
The next contour line corresponds to the value 14.25.

The equidistance of the other contour lines equals 0.25.

The contour line nearest to the point (0,0) corresponds to the value 4.75.
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Figures 2 and 3 allow again a comparison of g and g (now in the case of two
observations xx and x2). Both functions are represented by contour lines. The

comparison shows similar qualitative phenomena as in the single observation
case.

c) Results for n 5

truncation point M 22.83

5

formulae: F 0.1241 Y (xiAM) + 7.0561 total premium
i i

5

g =0.1378 Yj (xia M) + 2.2845 ordinary premium
i i



,Y

cx) approximation to total premium P[x] P[x)l,X2,C3,C4.,C5\

chosen as fixed parameter values

i) (C3,C4,C5) (10,10,10)

Table 6.1

"2 6 T 8 9 10 11 12 13 it 15 16 17 18 19 20 21 22 23 2t

"l X

5 12.02 12.lt 12.27 12.39 12.52 12.6t 12.76 12.89 13.01 13.lt 13-26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.23 lt.23
6 12.1t 12.27 12.39 12.52 12.6t 12.76 12.89 13.01 13.1t 13.26 13.39 13-51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.36 lt.36
7 12.27 12.39 12.52 12.6t 12.76 12.89 13.01 13.lt 13.26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.t8 lt.t8
8 12.39 12.52 12.6t 12.76 12.89 13.01 13.lt 13.26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.6l lt.6l
9 12.52 12.6t 12.76 12.89 13.01 13.1t 13.26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.73 lt.73

10 12.6t 12.76 12.89 13.01 13.1t 13.26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.85 lt.85
11 12.76 12.89 13.01 13.1t 13.26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 lt.98 lt.98
12 12.89 13.01 13.1t 13.26 13.39 13.51 13.63 13.76 13-88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.10 15.10
13 13.01 13.1t 13.26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.23 15.23
lt 13.1t 13.26 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.25 15.35 15.35
15 13.26 13.39 13.51 13.63 13.76 13-88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15-00 15.12 15.25 15.37 15.t7 15.t7
16 13.39 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.25 15.37 15.t9 15.60 15.60
17 13.51 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15-00 15.12 15.25 15.37 15.t9 15.62 15.72 15.72
18 13.63 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.25 15.37 15.t9 15-62 15.7t 15.85 15.85
19 13.76 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.25 15.37 15.t9 15-62 15.7t 15.87 15-97 15-97
20 13.88 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.25 15.37 15.t9 15.62 15.7t 15.87 15-99 16.09 16.09
21 lt.01 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.25 15-37 15.t9 15.62 15.7t 15.87 15.99 16.12 16.22 16.22
22 lt.13 lt.25 lt.38 lt.50 lt.63 lt.75 lt.87 15.00 15.12 15.25 15.37 15.t9 15.62 15.7t 15.87 15-99 16.12 l6.2t 16.3t 16.3t
23 lt.23 lt.36 lt.t8 lt.6l lt.73 lt.85 lt.98 15.10 15.23 15.35 15.t7 15.60 15.72 15.85 15-97 16.09 16.22 16.3t l6.t5 l6.t5
2t lt.23 lt.36 lt.t8 lt.6l lt.73 lt.85 lt.98 15.10 15.23 15-35 15.t7 15.60 15.72 15.85 15.97 16.09 16.22 16.3t 16.t5 l6.t5



ii) (C3,C4,C5) (10,10,25)

Table 6.2

\ x2 5 6 7 8 9 10 11 12 13 lU

xl\
5 13.61 13.7*t 13.86 13.98 lU.ll lit.23 lit.36 lit.U8 1U.61 lit.73
6 13.Tit 13.86 13.98 lit.11 lit.23 lit.36 lU.1*8 lit.6l lU.73 lit.85
7 13.86 13.98 lit. 11 lit.23 lit.36 lit.1*8 lit.61 lit.73 lit.85 lit.98
8 13.98 lU.11 lit.23 lU.36 lit. 1*8 lU.61 lit.73 lit.85 lit.98 15.10
9 lit.11 lU.23 lit.36 lit.1*8 lit.61 lit.73 lit.85 lit.98 15.10 15.23

10 lU.23 lit.36 lU.1+8 lit.61 lit.73 lU.85 lit.98 15.10 15.23 15.35
11 lU.36 lit.U8 lU.6l lU.73 lit.85 lU.98 15.10 15.23 15.35 15.1*7
12 lit. 1*8 lit.61 lit.73 lit.85 lit.98 15.10 15.23 15.35 15-1*7 15.60
13 lU.61 lit.73 lU.85 lit.98 15.10 15.23 15.35 15.1*7 15.60 15.72
lit lit.73 lit.85 lit.98 15.10 15.23 15-35 15.1*7 15.60 15.72 15.85
15 lit.85 lit.98 15.10 15.23 15.35 15.1*7 15.60 15.72 15.85 15.97
16 lU.98 15.10 15.23 15.35 15.1*7 15.60 15.72 15.85 15.97 16.09
17 15.10 15.23 15.35 15.1i7 15.60 15.72 15.85 15.97 16.09 16.22
18 15.23 15.35 15.1+7 15.60 15.72 15.85 15.97 16.09 16.22 16.31*
19 15-35 15.1*7 15.60 15.72 15.85 15.97 16.09 16.22 16.3!* 16.U7
20 15.1*7 15.60 15.72 15.85 15.97 16.09 16.22 16.3U 16.1*7 16.59
21 15.60 15.72 15.85 15.97 16.09 16.22 16.31* 16.1+7 16.59 16.71
22 15.72 15.85 15.97 16.09 16.22 l6.3lt 16.1*7 16.59 16.71 16.8U
23 15.83 15.95 16.07 16.20 16.32 16.1*5 16.57 16.69 16.82 16.9!*
2 It 15.83 15.95 16.07 16.20 16.32 16.1(5 16.57 16.69 16.82 16.91*

15 16 17 18 19 20 21 22 23 2It

lit.85 lit.98 15.10 15.23 15.35 15.1+7 15.60 15.72 15.83 15.83
lit.98 15.10 15.23 15-35 15.1*7 15.60 15.72 15.85 15.95 15.95
15.10 15.23 15.35 15.1*715.60 15.72 15.85 15.97 16.07 16.07
15.23 15.35 15.1*7 15.60 15.72 15.85 15.97 16.09 16.20 16.20
15.35 15.1*7 15.60 15.72 15.85 15-97 16.09 16.22 16.32 16.32
15.1*7 15.60 15.72 15.85 15-97 16.09 16.22 16.3!+ 16.1+5 16.1*5
15.60 15.72 15.85 15-97 16.09 16.22 16.31* 16.1*7 16.57 16.57
15.72 15.85 15-97 16.09 16.22 16.31* 16.1*7 16.59 16.69 16.69
15.85 15.97 16.09 16.22 16.31* 16.U7 16.59 16.71 16.82 16.82
15.97 16.09 16.22 16.31+ 16.1*7 16.59 16.71 16.81* 16.91+ 16.91+
16.09 16.22 16.31* 16.1+7 16.59 16.71 16.8U 16.96 17.07 17.07
16.22 16.3!* 16.1*7 16.59 16.71 16.81+ 16.96 17.09 17-19 17.19
l6.3lt 16.1*7 16.59 16.71 16.81* 16.96 17.09 17.21 17.31 17.31
16.1*7 16.59 16.71 16.81* 16.96 17.09 17.21 17.31* 17.1*1* 17. It It

16.59 16.71 16.81* 16.96 17.09 17.21 17.31* 17.1*6 17.56 17.56
16.71 16.81* 16.96 17.09 17.21 17.3I1 17.1*6 17.58 17.69 17.69
16.81* 16.96 17.09 17.21 17.31+ 17.U6 17.58 17.71 17.81 17.81
16.96 17.09 17.21 17.3!* 17.1*6 17.58 17.71 17.83 17-93 17.93
17.07 17.19 17.31 17.1*1* 17.56 17.69 17.81 17.93 18.01* 18. oU

17.07 17.19 17.31 17.1*1* 17.56 17.69 17.81 17.93 18. oU 18. oU



c2) approximation to ordinary premium g(x)=g(xl,x2,C1,C2,C3)

i) (C3,Q,C5) (10,10,10)

chosen as fixed parameters

\ X2 5 6 7 8 9

X1 \
5 7.80 7.93 8.07 8.21 8.35
6 7.93 8.07 8.21 8.35 8.t9
7 8.07 8.21 8.35 8.t9 8.62
8 8.21 8.35 8.t9 8.62 8.76
9 8.35 8.t9 8.62 8.76 8.90

10 8.t9 8.62 8.76 8.90 9.0t
11 8.62 8.76 8.90 9.0t 9.17
12 8.76 8.90 9.0t 9.17 9.31
13 8.90 9.0t 9.17 9.31 9.t5
It 9.0t 9.17 9.31 9.t5 9.59
15 9.17 9.31 9.t5 9-59 9.73
16 9.31 9-t5 9.59 9-73 9.86
17 9.t5 9.59 9.73 9.86 10.00
18 9.59 9.73 9.86 10.00 10.lt
19 9-73 9.86 10.00 10.lt 10.28
20 9.86 10.00 10.lt 10.28 10. tl
21 10.00 10.lt 10.28 10.tl 10.55
22 10.lt 10.28 10. tl 10.55 10.69
23 10.25 10.39 10.53 10.67 10.80
2t 10.25 10.39 10.53 10.67 10.80

Table 7.1

10 11 12 13 It 15 16 17 18 19 20 21 22 23 2t

8.U9 8.62 8.76 8.90 9.0U 9.17 9.31 9-t5 9-59 9-73 9.86 10.00 10.lt 10.25 10.25
8.62 8.76 8.90 9-0t 9.17 9.31 9.t5 9.59 9.73 9.86 10.00 10.lt 10.28 10.39 10.39
8.76 8.90 9.0t 9.17 9-31 9-t5 9.59 9.73 9.86 10.00 10.lt 10.28 10.tl 10.53 10.53
8.90 9 *0t 9.17 9.31 9.t5 9.59 9.73 9.86 10.00 10.lt 10.28 10.tl 10.55 10.67 10.67
9.0t 9.17 9.31 9-15 9.59 9.73 9.86 10.00 10.lt 10.28 10.tl 10.55 10.69 10.80 10.80
9.17 9.31 9.t5 9-59 9.73 9.86 10.00 10.lt 10.28 10.tl 10.55 10.69 10.83 10.9t 10.9t
9.31 9-t5 9.59 9-73 9.86 10.00 10.lt 10.28 10.tl 10.55 10.69 10.83 10.97 11.08 11.08
9.t5 9.59 9.73 9.86 10.00 10.lt 10.28 10.tl 10.55 10.69 10.83 10.97 11.10 11.22 11.22
9-59 9-73 9.86 10.00 10.lt 10.28 10.tl 10.55 10.69 10.83 10.97 11.10 11.2t 11.36 11.36
9.73 9.86 10.00 10.lt 10.28 10.tl 10.55 10.69 10.83 10.97 11.10 11.2t 11.38 11.t9 11.t9
9.86 10.00 10.lt 10.28 10.tl 10.55 10.69 10.83 10.97 11.10 11.2t 11.38 11.52 11.63 11.63

10.00 10.lt 10.28 10.tl 10.55 10.69 10.83 10.97 11.10 11.2t 11.38 11.52 11.65 11.77 11.77
10.lt 10.28 10.tl 10.55 10.69 10.83 10.97 11.10 11.2t 11.38 11.52 11.65 11.79 11.91 11.91
10.28 10.tl 10.55 10.69 10.83 10.97 11.10 11.2t 11.38 11.52 11.65 11.79 11.93 12.04 12.Ot
10.tl 10.55 10.69 10.83 10.97 11.10 11.2t 11.38 11.52 11.65 11-79 11.93 12.07 12.18 12.18

10.9t 11.08 11.22 11.36 11.t9 11.63 11.77 11.91 12.Ot 12.18 12.32 12.t6 12.60 12.71 12.71
10.9t 11.08 11.22 11.36 11.t9 11.63 11.77 11.91 12.0t 12.18 12.32 12.t6 12.60 12.71 12.71

I



ii) (C3,C4,C5) (10,10,25)

Table 7.2

\ x2 5 6 7 8 9 10 11 12 13 lU
cA

5 9.56 9.70 9.8U 9.98 10.12 10.25 10.39 10.53 10.67 10.80
6 9.70 9.81* 9.98 10.12 10.25 10.39 10.53 10.67 10.80 10.91*
7 9.8U 9.98 10.12 10.25 10.39 10.53 10.67 10.80 10.91* 11.08
8 9-98 10.12 10.25 10.39 10.53 10.67 10.80 10.9U 11.08 11.22
9 10.12 10.25 10.39 10.53 10.67 10.80 10.9I* 11.08 11.22 11.36

10 10.25 10.39 10.53 10.67 10.80 10.91* 11.08 11.22 11.36 11.1*9
11 10.39 10.53 IO.67 10.80 10.9k 11.08 11.22 11.36 11.1*9 11.63
12 10.53 10.67 10.80 10.91* 11.08 11.22 11.36 11.1*9 11.63 11.77
13 10.67 10.80 10.91* 11.08 11.22 11.36 11.1*9 11.63 11-77 11.91
lU 10.80 10.91* 11.08 11.22 11.36 11.1*9 11.63 11.77 11.91 12.01*
15 10.91* 11.08 11.22 11.36 11.1*9 11.63 11.77 11.91 12.01* 12.18
16 11.08 11.22 11.36 11.1*9 11.63 11.77 11.91 12.01* 12.18 12.32
17 11.22 11.36 11.1*9 11.63 11.77 11.91 12.01* 12.18 12.32 12.U6
18 11.36 11.1*9 11.63 11.77 11.91 12.01* 12.18 12.32 12.1*6 12.60
19 11.1*9 11.63 11.77 11.91 12.Ol* 12.18 12.32 12.1*6 12.60 12.73
20 11.63 11.77 11.91 12.Ol* 12.18 12.32 12.1*6 12.60 12.73 12.87
21 11.77 11.91 12.01* 12.18 12.32 12.1*6 12.60 12.73 12.87 13.01
22 11.91 12.01* 12.18 12.32 12.1*6 12.60 12.73 12.87 13.01 13.15
23 12.02 12.16 12.30 12.1*3 12.57 12.71 12.85 12.99 13.12 13.26
2l* 12.02 12.16 12.30 12.1*3 12.57 12.71 12.85 12.99 13.12 13.26

15 16 17 18 19 20 21 22 23 21*

10.91* 11.08 11.22 11.36 11.1*9 11.63 11.77 11.91 12.02 12.02
11.08 11.22 11.36 11.1*9 11.63 11.77 11.91 12.Ol* 12.16 12.16
11.22 11.36 11.1*9 11.63 11.77 11.91 12.01* 12.18 12.30 12.30
11.36 11.1*9 11.63 11.77 11.91 12.01* 12.18 12.32 12.1*3 12.1*3
11.1*9 11.63 11.77 11.91 12-OU 12.18 12.32 12.1*6 12.57 12-57
11.63 11.77 11.91 12.01* 12.18 12.32 12.1*6 12.60 12.71 12.71
11.77 11.91 12.01* 12.18 12.32 12.1*6 12.60 12.73 12.85 12.85
11.91 12.01* 12.18 12.32 12.1*6 12.60 12.73 12.87 12.99 12.99
12.01* 12.18 12.32 12.1*6 12.60 12.73 12.87 13.01 13.12 13-12
12.18 12.32 12.1*6 12.60 12.73 12.87 13.01 13.15 13.26 13.26
12.32 12.1*6 12.60 12.73 12.87 13.01 13.15 13.29 13.1*0 13-1*0
12.1*6 12.60 12.73 12.87 13.01 13.15 13.29 13.1*2 13.51* 13.51*
12.60 12.73 12.87 13.01 13.15 13.29 13.1*2 13.56 13.68 13.68
12.73 12.87 13.01 13.15 13.29 13.1*2 13.56 13.70 13.81 13.81
12.87 13.01 13.15 13.29 13.1*2 13.56 13.70 13.81* 13.95 13-95
13.01 13.15 13.29 13.1*2 13.56 13-70 13-81* 13-97 ll*.09 ll*.09
13.15 13-29 13.1*2 13.56 13.70 13.81* 13.97 lU.ll ll*.23 lU.23
13.29 13.1*2 13.56 13-70 13.81* 13.97 llt.ll ll*.25 lU.36 ll*.36
13.1*0 13.5l* 13.68 13.81 13.95 ll*.09 lU.23 lU.36 ll*.U8 lU.1*8
13.1*0 13.51* 13.68 13.81 13.95 1U.09 lU.23 ll*.36 lU. 1*8 lU.U8
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10 Final Remarks

The Data Trimmed Credibility Formulae seem quite appropriate for Experience

Rating in the presence of catastrophic (or as called in this paper excess) claims.

With this intuitive background in our minds we have in our explicit calculations
been looking at deviations from ordinary claims towards the higher side only.
Obviously the normal distribution being symmetric one could also observe

"outliers" to ordinary claims towards the lower side hence leading to a

truncation at the lower end as well. But of course our assumption of normally
distributed claims should only be seen as an approximation to the real world,
and it is our feeling that the approximation is particularly bad at the lower tail of
the distribution.
In any case truncation at the upper end of the distribution is introducing an
additional parameter into the credibility formulae and we hope to have

demonstrated in this paper that the labour caused by the new parameter can be

worthwhile indeed.
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Abt. Mathematik Winterthur Insurances IEOR, 4173 EH
ETH-Zentrum General-Guisan-Strasse 40 University of California
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Appendix

For the interested reader we are attaching the explicit calculations leading to
formulae (19) and (20).

A: Calculations leading to formula (19)

bx=E[Cov [Zi aM, Z2/0]] + Cov [E^aM/O], E[X2/6]]

Cov [Xt aM, X2/0] 0, because Xx,X2 are conditionally independent.
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Hence

b1= COV [(1-71)^(0) +^, (1-71)^(0) +^],
or

b\ =(1 — 7t)2 CovUC(d), ^(0)]

and analogously (with X2aM instead of X2)

b2 (\-n)2 Var [^(9)].

Let be 7=1,4 where A denotes the event {X is ordinary}. Then

Var [Z A M/g] £ [Var [X A M/g, Y]/g] + Var [£[X A M/g, Y]/g~]

(1 — ri)<j2M(9) + na2eM + 7t(1 -n) (/rf(0)-/if)2.
Hence

b3 Var [X a M]

£[Var [ZAM/0]]+Var [(l—n)fi%l(ß) +(*¥], or

b3 1 -7c)£[(j2M(0)] + 7rcr2M + 7r(l -7t)£[(/7f(0)-^f)2] + (1 -tt)2 Var jxf(0)].

B: Calculations leading to formula (20)

i) Preparations

In the following we put r \/v, s ]/w and a0 |/v + w \/r2 + s2. Furthermore
we denote by <P(x) the standardized normal distribution function and by <p(x)

the standardized normal density function.
By convolution we get

~S\S/\r J \ ao

Noting that <p'(x)= — x<p(x) integration by parts gives

x—fi\^fM—x\J s2 (x—\i\ (M—x^
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j *«,1—W

and thus

-co \ " / \ ' / V"o / ®0 V

Because of
fx — u\ [M — x\ (M — u\ fx —aA~n~rv^rr

where
r2p.Ps2M rs

u —= =— and a —r+s a0

we obtain

7 fx-/j.\ (M-x\ (M-n\ _ _I vrs~7

Integration by parts gives

s2 ® fx — u\ [M — x\
-7 L^y—M—r

and thus using the above formulae

1
— 1 — 1(2r2ß + {M +ß)s2)<p'M ^

\G0 J \ Oo

ii) Actual calculations
M x fx-6\

Vo(0)= | j (p\——jdx + M Pr[X^M/0]

- rep (^—) + Qpr [X£ M/9 ] + MPr [X^ M/0 ]

\ Y

Ho(0) 0.
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Applying the formulae derived in i) we get by straightforward calculations

E[p?m I tf{0) -s
cp I de

M — (M — m0) <P [M ~ m°
| —cr

(M — m0\'i~)
E[9 n%I(0)] Mmo + (s2+ ml—Mm0)<P

M — m0
-m0aocp

M — m0

Hence

Cov [^(0), ßo(0)] E[0 Ju^(0)]-wOJ&[Mr(ö)] 52^/ M m°

and

bi =(1 —n)2w<P
M — rric

As Cov [Xx a M, X2 a MjXx, X2 ordinary]

Cov [UiaM, U2aM]

E[Cov [UiaM, U2aM/9]\ + Cov [E^aM/0], E[U2 a M/9]]

Var [^(0)], we conclude from 19)

b2 (1 — n)2 Cov [C/i a M, U2 a M],

To obtain a closed formula for b2, observe

M |
| x{x— p.) — cp(x— jl)dx= —xocp

M
M( lx~tx \+ g J cp\ |ax

-co — co

—a/

(X)

M 1 /M-u\f x2 — cp(x — ji)dx — g(M + n)cp\ + (fJ.2 + g2)<P
-CO ® \ a J

According to 1) the density function of X is

/(*) (1 -n)p0(x/9)dU(9) + npe{x) (l -n)p0(x) + npe(x)

M — p.
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with (see 6.1 and 6.2)

1 (x-m0Po(x)=— (p\
°0 V ®0

1 fx-fi,Pe(x)=— <P[
(JO \ (Jo

Hence

E[XAM)2] (1 — 7t) \ +
W°

-<jo(M + m0)(p
M—m0

2 2\^.l M — ße\ _ ^ (M~ßi+ n<(f4 + <j2e)<P -ae(M + jAe)(p

+ M2<' 1 —(1 -7r)<^fM m°
1-7i<P

A

The same calculations as at the beginning of ii) leading to the formula for /fv'(0)
are repeated to obtain E[XaM], of course with different parameter values.

From this calculation we obtain

E[XaM] M + (1 -n) |(mo-M)<P^M^
^

m°

T 71

B.

We can now, finally, write

h3 Var [Xa M] A-B2
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Summary

Very large claims represent a dilemma to the Ratemaker To what extent should they be included m
the claims load9 We advocate that Credibility Techniques combined with Data Trimming provide
the right tool for this problem This is illustrated m the context of a model which generates both
"ordinary" and "excess" catastrophic) claims. In this situation "optimum forecasting" (using
Bayes estimation techniques) and "credibility techniques combined with data trimming" lead to
almost identical results.

Zusammenfassung

Sehr grosse Schäden stellen em besonderes Problem fur die Pramienberechnung dar. Wie weit sollen
9ie in die Schadenlast eingeschlossen werden? Wir sind der Meinung, dass «Credibility mit Stutzen»
das richtige Werkzeug für diese Situation darstellt Dies ist illustriert im Rahmen eines Modells,
welches «gewöhnliche» und «Exzess»-(Katastrophen-)Schaden produziert In dieser Situation
liefern «optimale Voraussage» (durch Baycs-Schätzungen) und «Credibility mit Stutzen» gleichwertige

Resultate

Resume

Les simstres de tres grande importance posent un probleme pour la determination d'une prime dans

quelle mesure faut-il les prendre en consideration9 Pour resoudre ce probleme, nous proposons la

technique de la «credibihte combinee avec la troncation» Notre point de vue est presente ä l'aide
d'un modele qui produit des simstres «ordmaires» et des simstres «excedents» (catastrophiques).
Dans cette situation les resultats obtenus par la «prevision optimale» (selon les methodes de Bayes) et

par la technique de la «credibihte combinee avec la troncation» sont presque identiques.
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