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PHiLippE MAEDER, Lausanne

Asymétrie de la distribution collective
des sinistres et probabilités de ruine!

1. Introduction

1.1  But

Au sein d’un portefeuille d’assurances, il se produit, durant chaque période, un
nombre aléatoire de sinistres, dont les montants eux-mémes dépendent du
hasard. Partant de certaines hypothéses, 'on peut estimer la distribution
collective du montant global des sinistres pour une période, et quantifier le
risque en calculant des probabilités de ruine.

La présente étude vise a ¢établir le lien qui peut exister entre, d’une part,

lasymétrie de cette distribution collective, mesurée par le coefficient

Y1 :f;—g (1)

(ou o et us sont les moments centrés d’ordre deux et trois), et, d’autre part, le

risque de ruine afférent a ce portefeuille. Elle a ét¢ motivée par deux

considérations:

— Premiérement, les principes de calcul des primes les plus «classiques» qui font
intervenir des moments de la distribution globale des sinistres (cf. par exemple
[4]) ne prennent en considération que les deux premiers de ceux-ci. On peut
des lors se demander quelle influence les moments d’ordre supérieur ont sur le
risque couru par I’assureur.

— Deuxiémement, nous savons que 'importance de ce risque a une incidence
certaine sur I’époque ou la probabilit¢ de (premicre) ruine est maximale (cf.
[7]). Il est intéressant, a cet égard, d’examiner I'influence isolée du coefficient
d’asymétrie sur ce moment le plus dangereux pour ’assureur.

Nous chercherons donc, dans cet article, a apporter une réponse au moins

partielle a cette double interrogation.

' L’essentiel de la matiére de cet article a été exposé lors d’une conférence présentée par 'auteur au
groupe ASTIN de 'AAS le 18 septembre 1981, a Berne.
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1.2 Moyens

Notre but étant d’éclaircir les deux points soulevés au paragraphe précédent,
quelle voie faut-il choisir pour y parvenir de fagon satisfaisante?

Il est hautement souhaitable de pouvoir utiliser un modéle non paramétrique ou
il soit possible de faire varier le troisitme moment de la distribution indépendam-
ment des deux premiers. Dans cette optique, une approximation du risque
collectif par un développement «normal power» ([6], [8]) ou par une loi Gamma
([10], [11], etc.) est peu satisfaisante, parce qu’elle fait intervenir une forme bien
définie de loi de distribution, de sorte qu’on pourrait mettre en doute la
généralité de résultats obtenus grace a elle. En outre, de tels développements
seraient numériquement peu commodes dans le cadre de notre étude.

Le modele que nous avons retenu en définitive est basé sur la notion d’entropie
maximale d’une distribution. Nous en verrons les caractéristiques essentielles
apres avoir situé le cadre mathématique général dans lequel s’inscrit le présent
travail.

Puis, ayant mis notre méthode de calcul sur un «banc d’essai» constitué par des
exemples dont les résultats exacts sont connus par ailleurs, nous passerons a
I’examen de diverses applications numériques, dont nous tirerons, dans la
derni¢re partie de cet article, un certain nombre de conclusions.

2. Appareil mathématique

2.1 Modeéle général du risque

Nous allons étudier I’évolution du risque de ruine pendant une durée finie et,
pour simplifier les calculs, avec un temps d’observation discret.

Soit X la variable aléatoire représentant le montant global des sinistres pendant
une période. Elle est définie de la maniére suivante:

X:{ coll i=1,2,...,n
p,-ZPr{szi}

ou h>0.

En d’autres termes, X est une variable aléatoire discréte comprise entre zéro
(inclus) et M, ou

M=mn—1)h )
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Au début de 'observation, soit au temps zéro, I’assureur dispose d’une provision
de fluctuation donnée

Ug=U 3
ou U=0.
A chaque période, il indemnise des sinistres pour un montant X (aléatoire) et
encaisse une prime

H=EX)+n 4)

ou # est une marge de sécurité (en général positive, voire nulle). Supposant que
les excédents (positifs ou négatifs) viennent s’ajouter a la provision de
fluctuation, cette derniére varie selon 1’équation

U=U,_+I1-X (5)
etilya ruine au temps ¢ si U, <0.
L’équation (5) permet donc d’écrire, si 'on désigne la probabilité de premiére
ruine au temps ¢ par ,_,|g (reprenant en cela la notation utilisée dans [1]):
| alg=Y Pr{U=zZU=0 i=0,1,...,0—1}. (6)
<)
Or, apres une période, en vertu des équations (3) et (5), la distribution de la
provision de fluctuation U, est donnée par
coll
Pi‘{Ulmz}:Pi’{XﬂU—I—H—Z} (7

ou la probabilité du membre de droite est celle de la variable aléatoire X définie
au début de ce paragraphe.
Il résulte de (5) que 'on peut calculer la répartition de U, (sous la condition U; =0

i=0,1,...,1—1) par la convolution incompléte
kmax coll
PriU=z}= % Pr(U_,=k} - PriX=0+k—z} (8)
k=kmin
avec:

k min=max (0; z—1II)
k max=min (U+(@¢—VIT; M+z—11)
HH-M<z< U+t

ou M est défini par I’équation (2).
Les limites de la sommation ci-dessus résultent de celles des domaines de
définition des variables aléatoires U,_; et X.
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Le schéma de calcul consiste a partir de (7), calculer o|g par (6), déterminer la
distribution de U, gréce a (8), trouver ,|g grace a (6), etc. La probabilité de se
ruiner pendant un laps de temps (0,7) est donnée par

‘:q: Z j—1|q ©)

=i

2.2 Distribution du risque collectif

Dans I'alinéa précédent, nous avons admis que la variable aléatoire X était
connue. Il s’agit maintenant d’examiner en détail la maniere de la déterminer par
maximisation de son entropie.

La notion d’entropie ressort de domaine de la thermodynamique; elle a été
reprise en théorie de I'information pour caractériser le degré d’indétermination
d’une expérience. Son application a la science actuarielle a été mise en évidence
par les articles de Dubois ([5]) et Berliner et Lev ([3]) notamment. Nous y
renvoyons le lecteur qui voudrait en savoir plus que ce que I’exposé trés succinct
qui suit peut lui apprendre.

Soit une expérience 4 pouvant prendre n valeurs distinctes x; avec une
probabilité p;. Son entropie est définie par

H(A)= -, p;log(p) (10)

i=1

On a évidemment

1=

pi=1 (11)
1

i
La base du logarithme qui apparait dans cette formule peut étre choisie
arbitrairement, et nous avons adopté les logarithmes naturels (pour une raison

de simplicité analytique). Dans le probléme qui nous occupe, nous avons ajouté
trois conditions a (11), a savoir:

Y. pix;=m;  (constante donnée) (12)
i=1

s

Il

s

Il

pixi=my  (idem) (14)
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Notre but est de trouver les probabilités p; qui maximisent I’entropie H(A), c’est-
a-dire, qui laissent a ’expérience le plus haut degré d’incertitude. En d’autres
termes, nous ne prenons de 'information fournie — la valeur des moments — que
le strict minimum.

La maximisation de H(A), fonction des n variables p; sous les conditions (11),
(12), (13) et (14), s’effectue par la méthode classique des multiplicateurs de
Lagrange (voir [3]). Formons I’équation de Lagrange:

f(pla- .- ,pn:k01k1:k27k3):

— % p;log (Pi)_ko(z pi—l)
i=1 i=1

“kl(z Pixi_ml)“kz(z Ping_mz)
i=1 i=1
—k3(z Pix?—m3)-

i=1

I1s’agit de trouver le maximum de cette fonction, ou toutes les dérivées premicres
sont nulles. Les dérivées par rapport aux coefficients de Lagrange k,k,,k, et k3,
¢galées a zéro, nous fournissent les équations de conditions (11) a (14)
respectivement. Quant aux dérivées par rapport aux p;, elles valent:

df
dp;

(15)

= —(108 (pi)+1)_k0"klxi"—kzxiz_k.’:x?- (16)

Rappelons que le logarithme ci-dessus est naturel, et que I'indice i peut varier de
1 & n. Egalons maintenant ’expression (16) a zéro. On en tire:

log (p)= —1—ko —kyx; —kyxi —ksx;. (17)
Posant ensuite
[ kot 1=,
ky =l
| (18)
L ks =4

on obtient I’équation pour les probabilités chercheées:

1

_ 1 3 2 7. .3
Pi =€xp (—Ag—Ayx; — Ay xi — A3x7)

(i=1,...,n). (19)
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Substituant cette expression dans les équations de conditions (11) a (14), on
parvient au systéme de quatre équations a quatre inconnues A; suivant:

( n

3
Y. exp (« Y )ij{)—1=0
j=0

i=1

(20)

3
Y X7 - exp (— b3 /ljx;-")—mzxo
- j=0

AjX{) — My =,

i

> x?-exp(—
i J

Ce systéme d’équations non linéaires peut étre résolu par diverses méthodes, du
nombre desquelles nous avons adopté l'algorithme de Newton-Raphson
généralisé a quatre dimensions. Il se caractérise par un calcul itératif qui
nécessite la connaissance des dérivées des fonctions et d’une solution initiale
(pour plus de détails, voir par exemple [2]).

Dans I’application pratique de cette méthode au calcul d’une distribution
concrete, il faut encore fixer le nombre » de points x; de la variable aléatoire X
ainsi que le pas 4 qui les sépare. Ce choix n’est pas tout-a-fait arbitraire, car il
doit tenir compte des valeurs des trois premiers moments #»1, , 7, et ms de ladite
variable.

3 Résultats obtenus dans des cas connus

3.1 Démarche

On peut se demander, a juste titre, si les distributions obtenues grace a la
méthode développée ci-dessus sont vraisemblables et correspondent plus ou
moins a des répartitions réalistes. Une autre question que 1’on se pose a priori est
de savoir dans quelle mesure I'information consistant dans la connaissance des
trois premiers moments d’une distribution détermine celle-ci complétement.
Ce que nous allons donc étudier dans ce paragraphe, ce sont les différences de
fonctions de répartition et de probabilités de ruine entre la variable aléatoire
d’entropie maximale et un modéle «exact» dont nous avons utilisé les moments
pour calculer celle-c1.



)

Deux cas ont retenu notre attention: le modéle Poisson-exponentiel, d’une part,
et la variable collective Polya-Gauss/Pareto, d’autre part.

3.2 Modeéle Poisson-exponentiel

Nous nous baserons, dans cet alinéa, sur la référence consistant dans les résultats
de Seal [9]. Dans son article, celui-ci a adopté les parameétres suivants:

a) loi de Poisson: A=1

b) loi exponentielle: u=1.

La distribution collective qui en résulte a les trois premiers moments:

m1: 1
m2: 3
n/i3:13

et un coefficient d’asymeétrie égal approximativement a 2,12,
La figure 1 montre que la distribution d’entropie maximale (discrete) corres-
pond étroitement a la distribution exacte. En ce qui concerne les probabilités de

Figure 1
Modeéle Poisson-exponentiel

F(x)
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ruine, certaines différences sont a prévoir, car le modéle défini au paragraphe
2.1 examine ’état — positif ou négatif — de la provision de fluctuation U, en des
époques distinctes et de fagon discontinue dans le temps. Ce processus ignore
donc les cas de ruine légére et passagere, qui sont en revanche comptés comme
tels dans une approche du probléme de la ruine en temps continu. Voila
pourquoi I’on peut s’attendre a obtenir, par I’équation (6), des probabilités de
ruine légérement inférieures a celles de Seal. C’est effectivement ce que nous
montrent les valeurs numériques du tableau I (voir Appendice), qui nous prouve
cependant qu’en dépit des différences de niveau du risque de ruine, celui-ci a une
évolution similaire pour les deux modeles envisagés. Cette constatation est
rassurante dans ’optique des buts que nous nous sommes fixés au paragraphe
1.1.

3.3 Modéle Polya-Gauss/Pareto

Notre référence a des résultats exacts repose ici sur une étude personnelle
antérieure [7]. Le nombre des sinistres y est représenté par une variable aléatoire
de Polya (binomiale négative) de parametres =10 et k =1,25 ce qui lui confére

Figure 2
Modele Polya-Gauss/Pareto

F(x)
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une espérance mathématique de 10 et une variance de 90. Leur montant
individuel est déterminé par I’association — sous forme de moyenne pondérée —
d’une variable aléatoire normale tronquée (positive) et d’une variable de Pareto,
ou le choix des parametres est tel que 'espérance mathématique et la variance de
ce montant valent respectivement 1 et 3. La distribution collective qui en résulte
a les caractéristiques suivantes:

E(X)=10
Var (X)=120
Asym (X)=2,1

La figure 2 montre que les fonctions de répartition exacte (calculée par une
méthode directe faisant appel a I'intégration numérique) et d’entropie maximale
(discreéte, donc en escaliers) coincident parfaitement.

Quant aux probabilités de ruine se rapportant a ces deux modeles (telles qu’elles
ressortent du tableau II), dans les trois cas

i) Uy=20
(i) Up=10 (=E(X))
(i) Upy=20 (=2E(X))

elles ne different pas de beaucoup les unes des autres. Un des facteurs qui
contribuent a cette similarité est que 1’approche du probléme de la ruine
s’effectue en temps discret pour la variable «exacte» comme pour celle d’entropie
maximale; les probabilités de ruine s’obtiennent donc par convolutions
(incompletes) successives (intégration numérique dans le premier modéle,
sommation dans le second).

Nous n’avions pas une telle identité d’optique a 'alinéa précédent.

3.4 - Enseignements tirés de ces applications numériques

Nous avons briévement mentionné, au chiffre 2.2, que le choix du pas /4 et du
nombre de points n de la variable aléatoire X d’entropie maximale était quelque
peu arbitraire. En fait, il soit étre guidé par les considérations suivantes:

— Sil’on adopte un pas & trés grand, la variable aléatoire X comprend peu de
points et la courbe des probabilités de ruine reflétera cette simplification
excessive de la représentation du risque par un aspect irrégulier.

— Si Pon choisit un nombre de points » trop petit, il est fort probable que
’algorithme de calcul fournira comme solution une variable aléatoire dont
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I’histogramme des probabilités est en forme d’U; un aggrandissement du pas
h ou du nombre de points n permet ensuite d’obtenir une solution plus
«vraisemblable», qui ne présente pas une telle configuration (irréaliste).

— Pour obtenir une courbe des probabilités de ruine exempte d’irrégularités
dues a la représentation simplificatrice du risque collectif par une variable
aléatoire discréte, on a avantage a faire en sorte que le nombre de valeurs z < 0
de la distribution du U, (cf. équation (6)) soit toujours le méme. Cette
condition est remplie lorsque le pas / est compris un nombre entier de fois
dans la prime I1.

A ces quelques regles, qui dérivent de nos expériences avec cette méthode de

calcul, nous ajouterons encore une constatation: les résultats des paragraphes

précédents prouvent que la variable aléatoire d’entropie maximale remplit une
condition essentielle a notre recherche: elle présente en effet un risque de ruine
dont I’évolution est tres voisine de celle du risque afférent a des mode¢les

«classiques» plus courants et reconnus proches de la réalité. Ceci nous permet

d’affirmer le caractére général des développements qui vont suivre.

4, Etude du risque de ruine
4.1 Bases

La question — a plusieurs volets — que nous nous posons est la suivante:
Quelle est I'influence isolée de I'asymétrie de la distribution collective des
sinistres X sur le niveau et ’évolution du risque de ruine?

Deux groupes de trois répartitions d’entropie maximale vont nous permettre de

’¢tudier.

(1) Le premier comporte trois variables aléatoires ayant toutes trois une
espérance mathématique E(X)=1 et une variance Var (X)=2 mais
présentant un coefficient d’asymétrie y, valant 1, 2 et 3 respectivement.

(i) Le second se compose de trois distributions ou I'espérance mathématique
E(X)=1, la variance Var (X)=2 et le coefficient d’asymétrie y, =2, 3 et 4
respectivement.

Le tableau III indique les valeurs numériques et paramétres afférents a ces six
cas. Les notations qui y apparaissent ont été définies sous chiffre 2.2, notamment
al’équation (19) qui indique les valeurs des probabilités p; en fonction des quatre
coefficients Ay, A1, 45 €t As.
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Ces six variables aléatoires nous permettent de calculer et de comparer des
probabilités de ruine a partir de diverses provisions initiales U. Nous suppose-
rons toujours que IT=1,1 (la prime renferme donc un marge de sécurité de 10 %))
et nous ferons varier U en nous basant sur le critére bien connu de la borne
supérieure de la probabilité de ruine a I'infini

e<exp (—RU) (21)

ou R est la solution positive de I’équation

n

Y pi-exp (—Rx)=1. (22)

=1

La méthode de Newton-Raphson se préte bien au calcul du facteur R (& partir
des p; donnés par (19)), que I'on détermine précisément apres quelques itérations
seulement (cf. aussi [7]).

Les développements qui suivent reposent sur les calculs numériques effectués a
partir des cas types décrits dans les tableaux IV et V. Le premier de ceux-ci
présente cing situations faisant appel aux variables du premier groupe : les cas n®
1, 3 et 5 sont obtenus lorsque 'on désire que la borne supérieure ¢ de la
probabilité de ruine selon (21) soit égale a 10 9 pour chacune de ces trois
distributions. Les cas n* 2 et 4 sont ceux pour lesquels nous appliquons a la
premiére et a la troisiéme variable (respectivement) la provision U pour laquelle
la borne supérieure ¢ de la deuxiéme est de 10 9. Le tableau } caractérise cing
cas similaires appliqués aux trois répartitions du deuxiéme groupe.

La comparaison de ces divers exemples nous permettra d’étudier I'influence de
1’asymétrié de la variable aléatoire X sur

— le niveau du risque de ruine,

— son évolution,

— le moment le plus dangereux pour I’assureur.

4.2 Niveau du risque de ruine

Reprenons, dans le tableau 1V, les cas n* 2, 3 et 4. Une méme provision U
=25,14 est appliquée aux trois variables du premier groupe.

Nous constatons tout d’abord qu’a long terme, la borne supérieure de ces trois
risques varie de 9 a 11,19 selon le coefficient d’asymétrie. Cette premiere
indication du fait que le niveau du risque présenté par ces trois cas est
significativement différent est confirmée par le calcul des probabilités de ruine
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exactes |,¢, dont quelques valeurs figurent au tableau VI, et dont le graphique fait
I'objet de la figure 3. Nous avons représenté ces courbes de manicre continue
pour améliorer la lisibilité de ces graphiques; une représentation correcte
consisterait en effet en une courbe en escaliers, puisque aucun cas de ruine n’est
observé entre les époques entieres t =0, 1,2, . . . Une remarque similaire pourrait
étre faite a propos de la figure 4, qui représente la probabilité de ruine périodique
.-1]g. Nous y observons que les trois courbes des cas n® 2, 3 et 4, qui sont tres
séparées au début (pour de petites valeurs de ), se coupent dans la région 1 = 140,
puis forment un fuseau assez serré. Le temps qui s’écoule semble gommer les
différences de risque et éliminer I'effet de ’asymétrie. Sans doute s’agit-il la d'une
application du théoréme central limite: la distribution conditionnelle de U,
(selon (8)) tend vers un histogramme assez symétrique. De fait, a la fin des 150
périodes, nous constatons que le mode de la répartition des valeurs de U, 5, est
assez constant d’un cas a 'autre, si ’on déduit les écarts diis aux différences de
provisions initiales U (voir tableau 1V).

Nous avons pu vérifier que les variables aléatoires du deuxiéme groupe nous
conduisent a des conclusions semblables, dans les cas n*™ 7, 8 et 9 (voir les
tableaux V et VII, ainsi que les figures 5 et 6).

4.3 FEvolution du risque

Nous nous situons ici dans un contexte ou les trois variables du premier groupe
se voient appliquer la méme prime /1 = 1,1 et une provision de fluctuation propre
a leur conférer une borne supérieure de 10 %,. Il s’agit donc d’examiner ici les cas
n® 1, 3 et 5 du tableau IV.

On remarque tout d’abord que les provisions U ainsi déterminées varient de 24 a
26, ce qui n’est pas beaucoup par rapport a ces valeurs d’U, mais ce qui n’est pas
négligeable comparé a la valeur de la prime I1. En fait, il serait impensable, pour
une compagnie d’assurance, de constituer une provision de fluctuation de plus
de 24 primes annuelles! Ce qu’il faut bien observer ici, c’est que 'unité de temps
n’est pas précisée; elle est certainement beaucoup plus courte que I’'année, de
’ordre de grandeur de la semaine peut-étre. Dans ces conditions, I'invraisem-
blance apparente de la valeur d’U par rapport a IT disparait, car IT n’est la prime
que d’une trés courte période. Une réflexion analogue nous permet de vérifier
que le choix de la valeur de Var (X)) par rapporta £(X)est d"un ordre de grandeur
acceptable dans la réalité.

Reprenons a nouveau la figure 3, pour y constater que, pour =150, le risque le
plus élevé est celui du cas n® 1. Apres réflexion, ce n’est pas trés étonnant sil’on se
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rappelle que plus une distribution de probabilités est «dangereuse», et plus la
limite effective du risque de ruine a l'infini est basse par rapport a la borne
supérieure ¢ (cf. [12]). Comme les trois cas que nous observons ont la méme
borne ¢, et comme ils présentent un coefficient d’asymétrie (donc un «danger»)
croissant, la courbe du cas n® 1 tend vers une probabilité de ruine a 'infini qui est
plus élevée que celle des cas n® 3 et 5. Cette caractéristique se marque déja apres
150 périodes.

Au début du temps d’observation, en revanche, les trois risques présentent un
classement inverse jusqu’a un point d’intersection commun aux trois courbes.
La comparaison des figures 4 et 6 révele une similarité certaine dans I’évolution
des risques présentés par les variables du premier et du second groupe. Dans ce
dernier, les trois graphes ont ¢galement une intersection commune, puis tendent,
pour de grandes valeurs de ¢, a devenir paralléles a des niveaux de risque
différents.

4.4  Moment le plus dangereux pour ['assureur

Cette période particuliére se caractérise par le fait que la probabilité de
(premiere) ruine, — |¢ y est maximale. En termes mathématiques, on définit donc
ce moment 7" par la relation

T tel que ,_4|¢<7_i|g pour tout . (23)

[l est notoire que le niveau du risque a une influence sur cette époque 7" (voir par
exemple [7]); ce qu’il nous parait intéressant de voir ici, ¢’est 'importance du
coefficient d’asymétrie y; a cet égard.

Revenons par conséquent a I’étude des cas n® 2, 3 et 4, qui ne se différencient que
par la valeur de y, (E(X), Var(X), II et U étant par ailleurs identiques dans ces
trois exemples). La figure 4 et le tableau IV nous montrent que plus le coefficient
d’asymétrie est grand, et plus I'instant 7"est proche de I'origine du temps (ce qui
est conforme a 'intuition). Il convient de relever que ampleur des différences
dues a I’accroissement de I’asymétrie n’est pas négligeable ; de plus, le deuxiéme
groupe de variables aléatoires (cas n® 7, 8 et 9) nous indique qu’a un niveau de
risque (variance) plus élevé, la modification de 7" est supérieure en valeur
absolue, mais moindre comparativement a I’ordre de grandeur de T (cf. tableau
V et figure 6).

On releve enfin, et ce dans les deux groupes de cas-types, que si la variation de
I'asymétrie est compensée par une modification d’U en sorte que la borne
supérieure ¢ de la probabilité de ruine reste la méme (cas n™ 1, 3 et 5,
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respectivement 6, 8 et 10), la valeur de 7" demeure assez constante. Il s’agit la
d’une propriété intéressante, dont il reste toutefois a démontrer strictement la
généralité!

5. Conclusion

Nous avons voulu mettre en évidence l'influence isolée de I'asymétrie de la
distribution collective des sinistres sur le risque de ruine auquel est soumis le
portefeuille d’assurances. Pour ce faire, nous avons mis sur pied un modéle non
paramétrique basé sur la notion d’entropie d’une expérience, qui nous permet de
calculer des fonctions de répartition, étant donné un certain nombre de moments
—en 'occurrence trois. Il s’avére que ce modele est efficace, parce qu’il permet
une représentation réaliste du risque collectif moyennant un nombre restreint
d’hypothéses de départ et des calculs dont 'ordinateur vient a bout en quelques
secondes seulement.

Nous avons, par cette méthode, déterminé deux groupes de distributions dont
les deux premiers moments sont identiques respectivement, seul le troisiéme (et
les suivants) étant différents d’une répartition a I'autre. La comparaison des
probabilités de ruine afférentes a ces diverses variables nous a permis de mettre
en évidence certains résultats dignes d’intérét.

En premier lieu, 'augmentation de 'asymétrie de la distribution du montant
total des sinistres contribue a accroitre le risque significativement, mais dans une
mesure bien moindre que celle de la variance on de I’espérance mathématique.
Deuxi¢émement, selon que I’asymétrie est forte ou non, le danger pour I’assureur
n’évolue pas de maniere identique; et si ce dernier fait usage, pour fixer le niveau
de la provision de fluctuation nécessaire a sa stabilité, du critére de la borne
supérieure ¢ de Lundberg, le risque qu’il encourt réellement par la suite est
d’autant plus faible que ’asymétrie de la distribution du risque collectif est forte.
Ce résultat pargdoxal provient de ce que la marge de sécurité offerte par ledit
critére est inversément proportionnelle au risque inhérent au portefeuille assuré.
Enfin, nous avons pu observer que la variation des moments supérieurs au
deuxieme a une incidence certaine sur le «moment critique» pour 'assureur (a
savoir ’époque ou la probabilité de se ruiner est la plus forte); plus ’asymétrie
est ¢levée, et plus vite ce cap délicat est atteint.

Notre conclusion rejoint celle de ’article de Berliner et Lev [3], a savoir que le
concept d’entropie maximale ouvre des possibilités nouvelles d’investigation des
problemes actuariels. Les quelques applications que nous avons effectuées dans
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cette publication ont montré que le modéle exposé a des avantages certains, par
rapport & d’autres approches plus traditionnelles; il peut fournir des solutions
numériques a des problémes concrets de maniére relativement aisée, et ¢’est 1a un
aspect auquel nul praticien ne restera insensible.

Philippe Maeder
Avenue du Temple 19
1012 Lausanne
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Appendice

Tableau [

Probabilités de ruine du modeéle Poisson-exponentiel

3
E(X)=1 Var(X)=2 Asym(X):17§2,12
2
a) [1=1 (marge: 0) R=0
Cas Y= U = 10

N |£9 entrople q entropie
exacte maximale exacte niaximale

1 0,24594 0,14373 0,00033 0,00000
2 0,37196 " 0,24482 0,00149 0,00057
bl 0,45089 0,31867 0,00370 0,00200
4 0,50611 0,37507 0,00696 0,0043%4
5 0,54748 0,41973 0,01119 0,00754
6 0,57995 0,45612 0,01624 0,01151
T 0,60632 0,486438 0,02200 0,01613
8 0,62828 0,51228 0,02831 0,02131
9 0,64093 0,53457 0,03507 0,02693
10 0,606303 0,55406 0,04218 0,03293
20 0,75499 0,66956 0,11863 0,10058
30 0,79802 0,72571 0,18z09 0416525
40 0,82423% 0,76044 0,24605 0,22075
50 0,84232 0,78463 0,29422 0,26774
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b) II=1,1 (marge: 10%) R=0,0909091 (exact)

R=0,0910315 (entropie maximale)

Cas =1 U =10

. q entropie q entropie

exacte maximale exacte maximale

1 0, 23806 0,17561 0,00031 0,000C1

2 0,35457 0, 28081 0,00135 0,00054

3 0,42598 0,35148 0,00323 0,00178

4 0,47528 0,40265 0,00590 0,00371

5 0,51189 0,44166 0,00923 0,00625

6 0,54043 0,47257 0,013%12 0,00931

7 0,56347 0,497178 0,01742 0,01278

8 0,58255 0,518:3 0,02204 0,01657

9 0, 54370 0,53674 0,02689 0,02061

10 0,61258 0, hH5e21 0,03120 0,02483
20 0,69001 0,64036 0,08215 0,06906
30 0, 72607 0,62097 0,1241¢€ G,10774
40 0,74711 0,70520 0,15731 0,13903
50 0,76128 0,72157 C,1E369 0,16430
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Tableau II
Probabilités de ruine du modele Polya-Gauss/Pareto

E(X)=10 Var(X)=120 Asym(X)=2,1

Modeéle original: R=0,026237 Entropie maximale: R=0,026416

I1=12 (marge: 20%)

Cas W=0 U=10 U=20

t ltq entropie |+Q entropie [+2 entropie

exacte maximale exacte maximale exacte maximale

d. 0,297022 | 0,281312 0,123118 | 0,123380 0,051490 | 0,048059

2 0, 408658 | 0,390256 0,201800 | 0,202233 0,097356 | 0,092350

b 0,469972 | 0,450980 0,255631 | 0,256123 0,134832 | 0,129000

4 0,509569 | 0,490631 0,294954 | 0,295449 0,165494 | 0,159084

5 0,537622 | 0,518934 0,325081 | 0,325559 0,190773 | 0,184028

6 0,558716 | 0,540328 0,348991 | 0,349444 0,211952 | 0,204987

7 0,575246 | 0,557158° 0,368481 | 0,368309 0,229940 | 0,222823

8 0,588599 | 0,570793 0,384706 | 0,385108 0,245405 | 0,238191

9 0,599640 | 0,582092 0,398443 | 0,398821 0,258841 | 0,251556

10 0,608939 | 0,591625 0,410236 | 0,410591 0,270624 | 0,263289
11 0,616887 | 0,599786 0,420477 | 0,420810 0,281041 | 0,273671
12 0,623766 | 0,606857 0,429458 | 0,429769 0,290315 | 0,282919
13 0,629781 | 0,613046 0,437400 | 0,437691 0,298624 | 0,291210
14 0,635087 | 0,618510 0,444475 | 0,444747 0,306109 | 0,298682
15 0,639803 | 0,623370 0,450817 | 0,451070 0,312886 | 0,305450
16 0,644024 | 0,627721 0,456534 | 0,456770 0,319048 | 0,311607
17 0,647822 | 0,631640 0,461714 | 0,461932 0,324676 | 0,317230
18 0,651259 | 0,635186 0,466428 | 0,466630 0,329832 | 0,322384
19 0,654382 | 0,638411 0,470734 | 0,470921 0,334574 | 0,327124
20 0,657233 | 0,641354 0,474684 | 0,474355 0,338946 | 0,331496
21 0,659845 | 0,644051 0,478317 | 0,478474 0,342990 | 0,335540
22 0,662245 | 0,646531 0,481670 | 0,481812 0,346739 | 0,339289
23 0,664458 | 0,648818 0,484772 | 0,484901 0,350223 | 0,342774
24 0,666504 | 0,650933 0,487650 | 0,487766 0,3534€9 | 0,346020
25 0,668401 | 0,652894 0,490326 | 0,490430 0,356498 | 0,349050
£ 1,000000 | 1,000000 0,769226 | 0,767850 0,591866 | 0,589594
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Tableau III
Variables aléatoires d’ entropie maximale
Pour les 6 distributions ci-dessous, E(X)=1 et 1=0,275

Premier groupe

no., Var(X) Asym(X) n ’Ao 11 ,12 g_j
I 2 1 40 0,633756742 6,865623546 |-3,546045522 0,508782908
II 2 2 80 1,1582146671 2,064259678 |-0,458413784 0,039504477
II1I 2 3 120 1,347952488 1,308548443 |-0,112854729 0,004804738
Second groupe
no. | Var(4) |Asym(X) n p\o )1 ;\2 )3
v 3 2 70 0,822572741 | 3,386487847 |-0,907040209 | 0,074942524
vV 3 3 lOb 1,112859961 1,932767915 |-0,28%106126 0,014838244
VI 3 4 160 1,241821424 1,506799444 |-0,140%24094 0,004889578
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Tableau IV
Cas type du premier groupe

Cas Variable ) R borne T 104 . mode de
no. io. sup. £ RIL! UlSO -U
1 I 24,03 0,095801 |10,0 % |81 | 3.855 15,675
2 I 25,14 0,095801 9,0 % |87 | 3,291 15,675
3 11 25,14 0,091602 |10,0 % | 80 | 3,558 16,500
4 111 25,14 0,087552 |11,1 % |72 | 3,791 17,325
5 TII 26,30 0,087552 10,0 % | 78 | 3,279 17,050
Tableau V
Cas types du second groupe
Cas Variable U R borne T 104 - mode de
no. no. sup. £ po1] 4 U150 -0
6 1v 37,11 0,062055 | 10,0 % | 118 | 2,526 16,775
7 IV 38,44 0,062055 9,2 % | 126 | 2,222 16,775
8 v 38, 44 0,059833 | 10,0 % | 117 | 2,357 17,600
9 VI 38,44 0,057825 | 10,8 % | 108 | 2,483 18,425
10 VI 39,82 0,057825 | 10,0 % | 116 | 2,202 18,425
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Tableau VI

Probabilités de ruine |q
Premier groupe de variables aléatoires

Cas no. 1 2 3 4 5
t
5 0,000000 0,000000 0,000000 0,000006 0,000003
10 0,000000 0,000000 0,000008 0,000090 0,000055
15 0,000013 0,000006 0,000077 0,000355 0,000235
20 0,000112 0,000058 0,000296 0,000866 0,000599
25 0,000395 0,000231 0,000727 0,001640 0,001173
30 0,000929 0,000583 0,001396 0,002665 0,001954
35 0,001734 0,001145 0,002299 0,003910 0,002927
40 0,002796 0,001918 0,003411 0,005339 0,004065
45 0,004084 0,002887 0,004703 0,006916 0,005342
50 0,005560 0,004027 0,006142 0,008607 0,006731
55 0,007185 0,005309 0,007695 0,010382 0,008207
60 0,008923 0,006706 0,009335 0,012215 0,009747
65 0,010743 0,008191 0,011038 0,014085 0,011334
70 0,012619 0,009742 0,012782 0,015975 0,012951
75 0,014529 0,011339 0,014550 0,017870 0,014585
80 0,016454 0,012965 0,016328 0,019758 0,016224
85 0,018380 0,014606 0,018104 0,021630 0,017859
90 0,020295 0,016251 0,019869 0,023479 0,019483
95 0,022190 0,017891 0,021616 0,025299 0,021089
100 0,024057 0,019518 0,023338 0,027086 0,022674
105 0,025892 0,021125 0,025031 0,028536 0,024233
110 0,027690 0,022709 0,026691 0,030547 0,025763
115 0,029448 0,024265 0,026316 0,0%2218 0,027263
120 0,031164 0,025790 0,029904 0,033847 0,025730
125 0,032837 0,027283 0,031454 0,035433 0,030163
130 0,034465 0,028742 0,032965 0,036977 0,031562
135 0,036048 0,030166 0,034436 0,038478 0,032927
140 0,037586 0,031554 0,035868 0,039937 0,034256
145 0,039080 0,032906 0,037260 0,041354 0,035551
150 0,040530 0,034222 0,0%8613 0,042731 0,036811
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Tableau VII
Probabilités de ruine |,q
Deuxieme groupe de variables aléatoires

Cas no. 6 7 8 9 10
i

5] 0,000000 0,000000 0,000000 ¢,000001 0,000000
10 0,000000 0,0000CC 0,000002 0,000018 0,000011
15 0,000004 0,000002 0,000020 0,000086 0,000058
20 0,000029 0,0G0017 0,000080 0,000236 0,000165
25 0,000103 0,000064 0,000207 0,000490 0,000353
30 0,000255 0,000166 0,000424 0,000858 0,000633
35 0,000507 0,0003%43 0,000742 0,001343 0,001010
40 0,000&71 0,000608 0,001166 0,001942 0,001484
45 0,001353 0,000968 {,001695 0,002646 0,002050
50 0,001950 0,001425 0,0023%23 0,003446 0,002701
55 0,002655 0,001975 0,003044 0,004331 0,003430
60 0,003459 0,002613 0,003848 0,005290 0,004228
65 0,004351 0,0033%32 0,004726 0,006314 0,005087
70 0,005322 0,004122 0,005667 0,007390 0,005998
75 0,006358 0,004977 0,006663 0,008511 0,006954
80 0,007451 0,0058:6 0,007705 0,009668 0,007947
85 0,008590 0,006843 0,008785 0,010854 0,008971
90 0,009766 0,007838 0,009895 0,012061 0,010019
95 0,010972 0,008867 0,011029 0,013284 0,011086
100 0,012201 0,009921 0,012180 0,014517 0,012168
105 0,013445 0,010996 0,013345 0,015757 0,013259
110 0,014701 0,012086 0,014518 0,016998 0,014357
115 0,015962 0,013186 0,015696 0,018238 0,015458
120 0,017225 0,014294 0,016874 0,019474 0,016559
125 0,018486 0,015404 0,018050 0,020702 0,017657
130a 0,019742 0,016515 0,019221 0,021922 0,018750
135 0,020990 0,017623 0,020385 0,023130 0,019837
140 0,022229 0,018726 0,021540 0,024326 0,020916
145 0,023455 0,019323 0,022684 0,025508 0,0219&4
150 0,024668 0,020910 0,023816 0,026675 0,023042
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Résume

Se basant sur la notion d’entropie maximale d’une distribution, 'auteur met sur pied un modéle
mathématique permettant de calculer des probabilités de ruine a partir d’'un nombre restreint de
connaissances sur la distribution collective des sinistres, a savoir la valeur des trois premiers
moments.

S'appuyant sur des illustrations numeériques établies par cette méthode, il étudie ensuite I'influence
que peut avoir une variation de 'asymétrie de la réparition du montant global des sinistres sur
I’évolution du risque couru par l'assureur.

Zusammenfassung

Auf dem Maximum-Entropie-Prinzip baut der Autor ein mathematisches Modell auf, das die
Moglichkeit bietet, Ruinwahrscheinlichkeiten rechnen zu konnen, wenn man nur die drei ersten
Momente der kollektiven Schadenverteilung kennt.

Aufgrund einiger durch diese Methode gerechneten Beispiele studiert er dann den Einfluss einer
Anderung der Schiefe dieser Totalschadenverteilung auf die Entwicklung des Versichererrisikos.

‘Summary

Relying on the maximum entropy principle, the author sets up a mathematical model that allows
calculations of ruin probabilities, starting from only a restricted basic knowledge about the collective
risk distribution, that is its first three moments.

After having computed a few numerical illustrations through this method, he studies the influence
which a variation of the skewness of the accumulated claims distribution can have upon the features
of the insurer’s risk.
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