
Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of
Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: - (1982)

Heft: 1

Artikel: Asymétrie de la distribution collective des sinistres et probabilités de
ruine

Autor: Maeder, Philippe

DOI: https://doi.org/10.5169/seals-966979

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-966979
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


91

Philippe Maeder, Lausanne

Asymetrie de la distribution collective
des sinistres et probabilites de ruine1

1. Introduction

1.1 But

Au sein d'un portefeuille d'assurances, il se produit, durant chaque periode, un
nombre aleatoire de sinistres, dont les montants eux-memes dependent du
hasard. Partant de certaines hypotheses, Ton peut estimer la distribution
collective du montant global des sinistres pour une periode, et quantifier le

risque en calculant des probabilites de ruine.
La presente etude vise ä etablir le lien qui peut exister entre, d'une part,
l'asymetrie de cette distribution collective, mesuree par le coefficient

/L (1)

(oü o2 et fi3 sont les moments centres d'ordre deux et trois), et, d'autre part, le

risque de ruine afferent ä ce portefeuille. Elle a ete motivee par deux
considerations:

- Premierement, les principes de calcul des primes les plus «classiques» qui font
intervenir des moments de la distribution globale des sinistres (cf. par exemple

[4]) ne prennent en consideration que les deux premiers de ceux-ci. On peut
des lors se demander quelle influence les moments d'ordre superieur ont sur le

risque couru par l'assureur.

- Deuxiemement, nous savons que l'importance de ce risque a une incidence
certaine sur l'epoque ou la probability de (premiere) ruine est maximale (cf.

[7]). II est interessant, ä cet egard, d'examiner Pinfluence isolee du coefficient
d'asymetrie sur ce moment le plus dangereux pour l'assureur.

Nous chercherons done, dans cet article, ä apporter une reponse au moins

partielle ä cette double interrogation.

1 L'essentiel de la matiere de cet article a ete expose lors d'une conference presentee par l'auteur au
groupe ASTIN de l'AAS le 18 septembre 1981, ä Berne.
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1.2 Moyens

Notre but etant d'eclaircir les deux points souleves au paragraphe precedent,
quelle voie faut-il choisir pour y parvenir de faqon satisfaisante?
II est hautement souhaitable de pouvoir utiliser un modele non parametrique oü
il soit possible de faire varier le troisieme moment de la distribution independam-
ment des deux premiers. Dans cette optique, une approximation du risque
collectif par un developpement «normal power» ([6], [8]) ou par une loi Gamma
([10], [11], etc.) est peu satisfaisante, parce qu'elle fait intervenir une forme bien
definie de loi de distribution, de sorte qu'on pourrait mettre en doute la
generalite de resultats obtenus grace ä eile. En outre, de tels developpements
seraient numeriquement peu commodes dans le cadre de notre etude.
Le modele que nous avons retenu en definitive est base sur la notion d'entropie
maximale d'une distribution. Nous en verrons les caracteristiques essentielles

apres avoir situe le cadre mathematique general dans lequel s'inscrit le present
travail.
Puis, ayant mis notre methode de calcul sur un «banc d'essai» constitue par des

exemples dont les resultats exacts sont connus par ailleurs, nous passerons ä

l'examen de diverses applications numeriques, dont nous tirerons, dans la
derniere partie de cet article, un certain nombre de conclusions.

2. Appareil mathematique

2.1 Modele general du risque

Nous allons etudier revolution du risque de ruine pendant une duree finie et,

pour simplifier les calculs, avec un temps d'observation discret.
Soit Xla variable aleatoire representant le montant global des sinistres pendant
une periode. Elle est definie de la maniere suivante:

oü h>0.
En d'autres termes, X est une variable aleatoire discrete comprise entre zero
(inclus) et M, oü

M (« — 1 )h (2)
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Au debut de l'observation, soit au temps zero, l'assureur dispose d'une provision
de fluctuation donnee

U0=U (3)

oü £/>0.
A chaque periode, il indemnise des sinistres pour un montant X (aleatoire) et

encaisse une prime

Il E(X) + ri (4)

oü tj est une marge de securite (en general positive, voire nulle). Supposant que
les excedents (positifs ou negatifs) viennent s'ajouter ä la provision de

fluctuation, cette derniere varie selon l'equation

Ut=Ut^, + n-X (5)

et il y a ruine au temps / si Ut< 0.

L'equation (5) permet done d'ecrire, si l'on designe la probabilite de premiere
ruine au temps t par t~i\q (reprenant en cela la notation utilisee dans [1]):

t^\q= X Pr{Ut z\U&0 i 0,1,. ,t -1}. (6)
z <0

Or, apres une periode, en vertu des equations (3) et (5), la distribution de la

provision de fluctuation est donnee par
coll

Pr{U1=z} Pr{X=U + Il-z} (7)

oü la probabilite du membre de droite est celle de la variable aleatoire X definie

au debut de ce paragraphe.
II resulte de (5) que Ton peut calculer la repartition de Ut (sous la condition Ut ^ 0

z' 0,1,. ,t~ 1) par la convolution incomplete

,tmax coli
Pr{Ut z}= X PriUt-^k) Pr{X=n + k-z} (8)

k — k min

avec:

k min max (0; z—n)

k max min (U+(t —1)77; M + z~n)
n-M^z^ u+tn
oü M est defini par l'equation (2).
Les limites de la sommation ci-dessus resultent de celles des domaines de

definition des variables aleatoires Ut-t et X.
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Le schema de calcul consiste ä partir de (7), calculer 0\q par (6), determiner la

distribution de U2 grace ä (8), trouver x\q grace ä (6), etc. La probabilite de se

ruiner pendant un laps de temps (0, t) est donnee par

k= Z j-M (9)
j=i

2.2 Distribution du risque collectif

Dans l'alinea precedent, nous avons admis que la variable aleatoire X etait

connue. II s'agit maintenant d'examiner en detail la maniere de la determiner par
maximisation de son entropie.
La notion d'entropie ressort de domaine de la thermodynamique; eile a ete

reprise en theorie de l'information pour caracteriser le degre d'indetermination
d'une experience. Son application ä la science actuarielle a ete mise en evidence

par les articles de Dubois ([5]) et Berliner et Lev ([3]) notamment. Nous y

renvoyons le lecteur qui voudrait en savoir plus que ce que l'expose tres succinct

qui suit peut lui apprendre.
Soit une experience A pouvant prendre n valeurs distinctes x, avec une

probabilite pSon entropie est definie par

H(A)= - £ /?,log(/>,) (10)
1=1

On a evidemment

Za=I (ii)
i=i

La base du logarithme qui apparait dans cette formule peut etre choisie

arbitrairement, et nous avons adopte les logarithmes naturels (pour une raison
de simplicite analytique). Dans le probleme qui nous occupe, nous avons ajoute
trois conditions ä (11), ä savoir:

n

Y, p,xl m1 (constante donnee) (12)
i i

n

Z p,xf m2 (idem) (13)
1 1

n

Z p,xf m3 (idem) (14)
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Notre but est de trouver les probabilitespt qui maximisent l'entropie H(A), c'est-

a-dire, qui laissent ä l'experience le plus haut degre d'incertitude. En d'autres

termes, nous ne prenons de 1'information fournie - la valeur des moments - que
le strict minimum.
La maximisation de H(A), fonction des n variables pt sous les conditions (11),

(12), (13) et (14), s'effectue par la methode classique des multiplicateurs de

Lagrange (voir [3]). Formons l'equation de Lagrange:

f(Pi > • • ,k2,k3)

- X A lo8 (P.)~kof X A-1
i l V i /

AX.-^-^Z plxf-m^j

-k3[ X Pixf-mA

(15)

II s'agit de trouver le maximum de cette fonction, oü toutes les derivees premieres
sont nulles. Les derivees par rapport aux coefficients de Lagrange k0,k1, k2 et k3,
egalees ä zero, nous fournissent les equations de conditions (11) ä (14)
respectivcment. Quant aux derivees par rapport auxpx, elles valent:

ZT= - (log O,) +1) —A:0 — ÄiiJC, — Ä:2jcf — Ä:3jcf. (16)
dp,

Rappeions que le logarithme ci-dessus est naturel, et que l'indice i peut varier de
1 ä n. Egalons maintenant l'expression (16) ä zero. On en tire:

log (/>,) -1 -ko-^Xt-^tf -k3x?. (17)

Posant ensuite

k0 + l =Ä0

k\ =Ai

k2 =X2 (1§)

k3 X3

on obtient l'equation pour les probabilites cherchees:

Pi =exp (-10-?,1xl-A2xf-X3x^)(-1,(,9)
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Substituant cette expression dans les equations de conditions (11) ä (14), on
parvient au Systeme de quatre equations ä quatre inconnues A, suivant:

Ce Systeme d'equations non lineaires peut etre resolu par diverses methodes, du
nombre desquelles nous avons adopte l'algorithme de Newton-Raphson
generalise ä quatre dimensions. II se caracterise par un calcul iteratif qui
necessite la connaissance des derivees des fonctions et d'une solution initiale
(pour plus de details, voir par exemple [2]).
Dans l'application pratique de cette methode au calcul d'une distribution
concrete, il faut encore fixer le nombre n de points xt de la variable aleatoire X
amsi que le pas h qui les separe. Ce choix n'est pas tout-a-fait arbitraire, car il
doit tenir compte des valeurs des trois premiers moments m1, m2 et m3 de ladite
variable.

3. Resultats obtenus dans des cas connus

3.1 Demarche

On peut se demander, ä juste titre, si les distributions obtenues grace ä la

methode developpee ci-dessus sont vraisemblables et correspondent plus ou
moms ä des repartitions realistes. Une autre question que l'on se pose a priori est

de savoir dans quelle mesure l'information consistant dans la connaissance des

trois premiers moments d'une distribution determine celle-ci completement.
Ce que nous allons done etudier dans ce paragraphe, ce sont les differences de

fonctions de repartition et de probabilites de ruine entre la variable aleatoire

d'entropie maximale et un modele «exact» dont nous avons utilise les moments

pour calculer celle-ci.

(20)
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Deux cas ont retenu notre attention le modele Poisson-exponentiel, d'une part,
et la variable collective Polya-Gauss/Pareto, d'autre part

3 2 Modele Poisson-exponentiel

Nous nous baserons, dans cet almea, sur la reference consistant dans les resultats
de Seal [9] Dans son article, celui-ci a adopte les parametres suivants
a) loi de Poisson 1=1
b) loi exponentielle p.= 1

La distribution collective qui en resulte a les trois premiers moments

et un coefficient d'asymetne egal approximativement ä 2,12
La figure 1 montre que la distribution d'entropie maximale (discrete) correspond

etroitement a la distribution exacte En ce qui concerne les probabilites de

m1= 1

m2= 3

m3 13

Figure 1

Modele Poisson-exponentiel

Ft*)

o 1 2 3 4 5 6 7 8
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ruine, certaines differences sont ä prevoir, car le modele defini au paragraphe
2.1 examine l'etat - positif ou negatif - de la provision de fluctuation Ut en des

epoques distinctes et de fagon discontinue dans le temps. Ce processus ignore
done les cas de ruine legere et passagere, qui sont en revanche comptes comme
tels dans une approche du probleme de la ruine en temps continu. Voilä

pourquoi Ton peut s'attendre ä obtenir, par l'equation (6), des probabilites de

ruine legerement inferieures ä Celles de Seal. C'est effectivement ce que nous
montrent les valeurs numeriques du tableau I (voir Appendice), qui nous prouve
cependant qu'en depit des differences de niveau du risque de ruine, celui-ci a une
evolution similaire pour les deux modeles envisages. Cette constatation est

rassurante dans l'optique des buts que nous nous sommes fixes au paragraphe
1.1.

3.3 Modele Polya-Gciuss/Pareto

Notre reference ä des resultats exacts repose ici sur une etude personnelle
anterieure [7]. Le nombre des sinistres y est represents par une variable aleatoire
de Polya (binomiale negative) de parametres t 10 et k 1,25 ce qui lui confere

Figure 2

Modele Polya-GaussjPareto
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une esperance mathematique de 10 et une variance de 90. Leur montant
individuel est determine par l'association - sous forme de moyenne ponderee -
d'une variable aleatoire normale tronquee (positive) et d'une variable de Pareto,
oü le choix des parametres est tel que l'esperance mathematique et la variance de

ce montant valent respectivement 1 et 3. La distribution collective qui en resulte

a les caracteristiques suivantes:

E(X) 10

Var (X) 120

Asym (A) 2,1

La figure 2 montre que les fonctions de repartition exacte (calculee par une
methode directe faisant appel ä l'integration numerique) et d'entropie maximale
(discrete, done en escaliers) coincident parfaitement.
Quant aux probabilites de ruine se rapportant ä ces deux modeles (telles qu'elles
ressortent du tableau II), dans les trois cas

(i) U0 0

(ü) Uo 10 E{X))
(iii) t/o 20 2E(X))

elles ne different pas de beaucoup les unes des autres. Un des facteurs qui
contribuent ä cette similarite est que l'approche du probleme de la ruine
s'effectue en temps discret pour la variable «exacte» comme pour celle d'entropie
maximale; les probabilites de ruine s'obtiennent done par convolutions
(incompletes) successives (integration numerique dans le premier modele,
sommation dans le second).
Nous n'avions pas une telle identite d'optique ä l'alinea precedent.

3.4 Enseignements tires de ces applications numeriques

Nous avons brievement mentionne, au chiffre 2.2, que le choix du pas h et du
nombre de points n de la variable aleatoire X d'entropie maximale etait quelque

peu arbitraire. En fait, il soit etre guide par les considerations suivantes:

- Si l'on adopte un pas h tres grand, la variable aleatoire X comprend peu de

points et la courbe des probabilites de ruine refletera cette simplification
excessive de la representation du risque par un aspect irregulier.

- Si l'on choisit un nombre de points n trop petit, il est fort probable que
l'algorithme de calcul fournira comme solution une variable aleatoire dont
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l'histogramme des probabilites est en forme d'C/; un aggrandissement du pas
h ou du nombre de points n permet ensuite d'obtenir une solution plus
«vraisemblable», qui ne presente pas une telle configuration (irrealiste).

- Pour obtenir une courbe des probabilites de ruine exempte d'irregularites
dues ä la representation simplificatrice du risque collectif par une variable
aleatoire discrete, on a avantage ä faire en sorte que le nombre de valeurs z < 0

de la distribution du Ut (cf. equation (6)) soit toujours le meme. Cette
condition est remplie lorsque le pas h est compris un nombre entier de fois
dans la prime /7.

A ces quelques regies, qui derivent de nos experiences avec cette methode de

calcul, nous ajouterons encore une constatation: les resultats des paragraphes
precedents prouvent que la variable aleatoire d'entropie maximale remplit une
condition essentielle ä notre recherche: elle presente en effet un risque de ruine
dont revolution est tres voisine de celle du risque afferent ä des modeles

«classiques» plus courants et reconnus proches de la realite. Ceci nous permet
d'affirmer le caractere general des developpements qui vont suivre.

4. Etude du risque de ruine

4.1 Bases

La question - ä plusieurs volets - que nous nous posons est la suivante:

Quelle est l'influence isolee de l'asymetrie de la distribution collective des

sinistres X sur le niveau et revolution du risque de ruine?
Deux groupes de trois repartitions d'entropie maximale vont nous permettre de

l'etudier.

(i) Le premier comporte trois variables aleatoires ayant toutes trois une

esperance mathematique E(X) 1 et une variance Var (X) 2 mais

presentant un coefficient d'asymetrie valant 1, 2 et 3 respectivement.
(ii) Le second se compose de trois distributions oü l'esperance mathematique

E(X) 1, la variance Var (X) 2 et le coefficient d'asymetrie i>i =2, 3 et 4

respectivement.

Le tableau III indique les valeurs numeriques et parametres afferents ä ces six

cas. Les notations qui y apparaissent ont ete definies sous chiffre 2.2, notamment
ä l'equation (19) qui indique les valeurs des probabilitespt en fonction des quatre
coefficients ).0, /l5 k2 et k3.
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Ces six variables aleatoires nous permettent de calculer et de comparer des

probabilites de ruine ä partir de diverses provisions initiales U. Nous suppose-
rons toujours que 77 1,1 (la prime renferme done un marge de security de 10 %)
et nous ferons varier U en nous basant sur le critere bien connu de la borne

superieure de la probability de ruine ä l'infini

£^exp(— RU) (21)

oil R est la solution positive de l'equation

n

X Pi exp (-/?*;) 1. (22)
1 1

La methode de Newton-Raphson se prete bien au calcul du facteur R (ä partir
des Pi donnes par (19)), que Ton determine precisement apres quelques iterations
seulement (cf. aussi [7]).
Les developpements qui suivent reposent sur les calculs numeriques effectues ä

partir des cas types decrits dans les tableaux IV et V. Le premier de ceux-ci

presente cinq situations faisant appel aux variables du premier groupe: les cas nos

1, 3 et 5 sont obtenus lorsque Ton desire que la borne superieure a de la

probability de ruine selon (21) soit egale ä 10 % pour chacune de ces trois
distributions. Les cas nos 2 et 4 sont ceux pour lesquels nous appliquons ä la

premiere et ä la troisieme variable (respectivement) la provision U pour laquelle
la borne superieure e de la deuxieme est de 10 %. Le tableau V caracterise cinq
cas similaires appliques aux trois repartitions du deuxieme groupe.
La comparaison de ces divers exemples nous permettra d'etudier l'influence de

Tasymetrie de la variable aleatoire X sur

- le niveau du risque de ruine,

- son evolution,

- le moment le plus dangereux pour l'assureur.

4.2 Niveau du risque de ruine

Reprenons, dans le tableau IV, les cas nos 2, 3 et 4. Une meme provision U
25,14 est appliquee aux trois variables du premier groupe.

Nous constatons tout d'abord qu'ä long terme, la borne superieure de ces trois
risques varie de 9 ä 11,1% selon le coefficient d'asymetrie. Cette premiere
indication du fait que le niveau du risque presente par ces trois cas est

significativement different est confirmee par le calcul des probabilites de ruine
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Figure 4

Probabilites de premiere ruine au temps t
1er groupe de variables aleatoires
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Figure 6

Probability de premiere ruine au temps t
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exactes \tq, dont quelques valeurs figurent au tableau VI, et dont le graphique fait
l'objet de la figure 3 Nous avons represente ces courbes de mamere continue

pour ameliorer la hsibilite de ces graphiques, une representation correcte

consisterait en effet en une courbe en escaliers, puisque aucun cas de ruine n'est

observe entre les epoques entieres / 0,1,2, Une remarque similaire pourrait
etre faite a propos de la figure 4, qui represente la probability de ruine penodique

Nous y observons que les trois courbes des cas nos 2, 3 et 4, qui sont tres

separees au debut (pour de petites valeurs de t), se coupent dans la region t 140,

puis forment un fuseau assez serre Le temps qui s'ecoule semble gommer les

differences de risque et elimmer l'effet de l'asymetrie Sans doute s'agit-il lä d'une

application du theoreme central limite la distribution conditionnelle de Ut

(selon (8)) tend vers un histogramme assez symetnque De fait, ä la fin des 150

periodes, nous constatons que le mode de la repartition des valeurs de Ul50 est

assez constant d'un cas a l'autre, si Ton deduit les ecarts düs aux differences de

provisions initiales U (voir tableau IV)
Nous avons pu verifier que les variables aleatoires du deuxieme groupe nous
conduisent a des conclusions semblables, dans les cas nos 7, 8 et 9 (voir les

tableaux V et VII, amsi que les figures 5 et 6)

4 3 Evolution du risque

Nous nous situons ici dans un contexte oii les trois variables du premier groupe
se voient appliquer la meme prime T1 1,1 et une provision de fluctuation propre
a leur conferer une borne supeneure de 10 % II s'agit done d'exammer ici les cas

nos 1, 3 et 5 du tableau IV
On remarque tout d'abord que les provisions U amsi determmees vanent de 24 a

26, ce qui n'est pas beaucoup par rapport ä ces valeurs d'U, mais ce qui n'est pas
negligeable compare ä la valeur de la prime 77 En fait, ll serait impensable, pour
une compagnie d'assurance, de constituer une provision de fluctuation de plus
de 24 primes annuelles1 Ce qu'il faut bien observer ici, e'est que l'umte de temps
n'est pas precisee, eile est certainement beaucoup plus courte que l'annee, de

l'ordre de grandeur de la semaine peut-etre Dans ces conditions, 1'invraisem-
blance apparente de la valeur d' U par rapport ä 77 disparait, car 77 n'est la prime
que d'une tres courte penode Une reflexion analogue nous permet de verifier

que le choix de la valeur de Var (X) par rapport ä E{X) est d'un ordre de grandeur
acceptable dans la realite

Reprenons a nouveau la figure 3, pour y constater que, pour t 150, le risque le

plus eleve est celui du cas n° 1 Apres reflexion, ce n'est pas tres etonnant si l'on se
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rappelle que plus une distribution de probabilites est «dangereuse», et plus la

limite effective du risque de ruine ä 1'infini est basse par rapport ä la borne

superieure e (cf. [12]). Comme les trois cas que nous observons ont la meme
borne e, et comme ils presentent un coefficient d'asymetrie (done un «danger»)
croissant, la courbe du cas n° 1 tend vers une probability de ruine ä 1'infini qui est

plus elevee que celle des cas nos 3 et 5. Cette caracteristique se marque dejä apres
150 periodes.
Au debut du temps d'observation, en revanche, les trois risques presentent un
classement inverse jusqu'ä un point d'intersection commun aux trois courbes.

La comparaison des figures 4 et 6 revele une similarity certaine dans revolution
des risques presentes par les variables du premier et du second groupe. Dans ce

dernier, les trois graphes ont egalement une intersection commune, puis tendent,

pour de grandes valeurs de t, ä devenir paralleles ä des niveaux de risque
differents.

4.4 Moment le plus dangereux pour Passureur

Cette periode particuliere se caracterise par le fait que la probability de

(premiere) ruine t _ x\q y est maximale. En termes mathematiques, on definit done

ce moment T par la relation

T tel que ,_! 1^^r-_xpour tout t. (23)

II est notoire que le niveau du risque a une influence sur cette epoque T(voir par
exemple [7]); ce qu'il nous parait interessant de voir ici, e'est l'importance du
coefficient d'asymetrie y1 ä cet egard.
Revenons par consequent ä l'etude des cas nos 2, 3 et 4, qui ne se differencient que

par la valeur de yx (E(X), Var(JL), /7 et U etant par ailleurs identiques dans ces

trois exemples). La figure 4 et le tableau IV nous montrent que plus le coefficient
d'asymetrie est grand, et plus l'instant Test proche de l'origine du temps (ce qui
est conforme ä l'intuition). II convient de relever que l'ampleur des differences
dues ä l'accroissement de 1'asymetrie n'est pas negligeable; de plus, le deuxieme

groupe de variables aleatoires (cas nos 7, 8 et 9) nous indique qu'ä un niveau de

risque (variance) plus eleve, la modification de T est superieure en valeur

absolue, mais moindre comparativement ä l'ordre de grandeur de T (cf. tableau
V et figure 6).

On releve enfin, et ce dans les deux groupes de cas-types, que si la variation de

fasymetrie est compensee par une modification d'(7 en sorte que la borne

superieure e de la probability de ruine reste la meme (cas nos 1, 3 et 5,
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respectivement 6, 8 et 10), la valeur de T demeure assez constante. II s'agit lä
d'une propriete interessante, dont il reste toutefois ä demontrer strictement la

generality!

5. Conclusion

Nous avons voulu mettre en evidence l'influence isolee de l'asymetrie de la
distribution collective des sinistres sur le risque de ruine auquel est soumis le

portefeuille d'assurances. Pour ce faire, nous avons mis sur pied un modele non
parametrique base sur la notion d'entropie d'une experience, qui nous permet de

calculer des fonctions de repartition, etant donne un certain nombre de moments

- en l'occurrence trois. II s'avere que ce modele est efficace, parce qu'il permet
une representation realiste du risque collectif moyennant un nombre restreint
d'hypotheses de depart et des calculs dont l'ordinateur vient ä bout en quelques
secondes seulement.

Nous avons, par cette methode, determine deux groupes de distributions dont
les deux premiers moments sont identiques respectivement, seul le troisieme (et
les suivants) etant differents d'une repartition ä l'autre. La comparaison des

probability de ruine afferentes ä ces diverses variables nous a permis de mettre
en evidence certains resultats dignes d'interet.
En premier lieu, l'augmentation de l'asymetrie de la distribution du montant
total des sinistres contribue ä accroitre le risque significativement, mais dans une

mesure bien moindre que celle de la variance on de l'esperance mathematique.
Deuxiemement, selon que l'asymetrie est forte ou non, le danger pour l'assureur
n'evolue pas de mamere identique; et si ce dernier fait usage, pour fixer le niveau
de la provision de fluctuation necessaire ä sa stability, du entere de la borne

superieure e de Lundberg, le risque qu'il encourt reellement par la suite est

d'autant plus faible que l'asymetrie de la distribution du risque collectif est forte.
Ce resultat paradoxal provient de ce que la marge de secunte Offerte par ledit
critere est inversement proportionnelle au risque inherent au portefeuille assure.

Enfin, nous avons pu observer que la variation des moments superieurs au
deuxieme a une incidence certaine sur le «moment critique» pour l'assureur (ä

savoir l'epoque ou la probability de se rumer est la plus forte); plus l'asymetrie
est elevee, et plus vite ce cap delicat est atteint.
Notre conclusion rejoint celle de Particle de Berliner et Lev [3], ä savoir que le

concept d'entropie maximale ouvre des possibilites nouvelles d'investigation des

problemes actuariels. Les quelques applications que nous avons effectuees dans
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cette publication ont montre que le modele expose a des avantages certains, par
rapport ä d'autres approches plus traditionnelles; ll peut fournir des solutions

numeriques ä des problemes concrets de maniere relativement aisee, et c'est lä un

aspect auquel nul praticien ne restera insensible.

Philippe Maeder
Avenue du Temple 19

1012 Lausanne
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Appendice

Tableau I
Probabilites de ruine du modele Poisson-exponentiel

E{X) 1 Var(A) 2 Asym(A) 4= 2,12
1/2

a) fl 1 (marge: 0) R 0

\ Gas u 1 U 10

-fc ltq entropie ltq entropie
exacte maxiaale exacte maximale

1 0,24594 0,14373 0,00033 0,00000
2 0,37196 ' 0,24482 0,00149 0,00057
3 0,45083 0,31367 0,00370 0,00200
4 0,50611 0,37507 0,00696 0,00434
5 0,54748 0,41973 0,01119 0,00754
6 0,57995 0,45612 0,01624 0,01151
7 0,60632 0,48643 0,02200 0,01613
8 0,62828 0,51228 0,02831 0,02131
9 0,64693 0,53457 0,03507 0,02693

10 0,66303 0,55406 0,04218 0,03293

20 0,75499 0,66956 0,11863 0,10058

30 0,79802 0,72571 0,18809 0,lb523
40 0,82423 0,76044 0,24605 0,22075

50 0,84232 0,78463 0,29422 0,26774



b) n =1,1 (marge: 10%) R 0,0909091 (exact)
7? 0,0910315 (entropie maximale)

Cas U 1 U 10

t X. It9 entropie ltq entropie
exacte maximale exacte maximale

1 0,23806 0,17561 0,00031 0,00001
2 0,35457 0,28081 0,00135 0,00054
3 0,42598 0,35148 0,00323 0,00178
4 0,47528 0,40265 0,00590 0,00371
5 0,51189 0,44166 0,00923 0,00625
6 0,54043 0,47257 0,01312 0,00931
7 0,56347 0,49778 0,01742 0,01278
8 0,58255 0,518c3 0,02204 0,01657
9 0,59o70 0,53674 0,02689 0,02061

10 0,61258 0,55221 0,03190 0,02483

20 0,69061 0,64036 0,06215 0,06906

30 0,72607 0,68097 0,12416 0,10774

40 0,74711 0,70520 0,15731 0,13903

50 0,76128 0,72157 0,18369 0,16430
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Tableau II
Probabilites de ruine du modele Polya-GaussjPareto

£(*) 10 Var(T)= 120 Asym(T) 2,l /7 12 (marge: 20%)

Modele original: R 0,026231 Entropie maximale: R 0,026416

\ Gas U 0 U 10 U 20

t \.
exacte

entropie
maximale

ltq
exacte

entropie
maximale exacte

entropie
maximale

1 0,297022 0,281312 0,123118 0,123380 0,051490 0,048059

2 0,408658 0,390256 0,201800 0,202233 0,097356 0,092350

3 0,469972 0,450980 0,255631 0,256123 0,134882 0,129000

4 0,509569 0,490631 0,294954 0,295449 0,165494 0,159084

5 0,537622 0,518934 0,325081 0,325559 0,190773 0,184028

6 0,558716 0,540328 0,348991 0,349444 0,211952 0,204987

7 0,575246 0,557158 0,368481 0,368909 0,229940 0,222828

8 0,588599 0,570793 0,384706 0,385108 0,245405 0,238191

9 0,599640 0,582092 0,398443 0,398821 0,258841 0,251556

10 0,608939 0,591625 0,410236 0,410591 0,270624 0,263289

11 0,616887 0,599786 0,420477 0,420810 0,281041 0,273671

12 0,623766 0,606857 0,429458 0,429769 0,290315 0,282919

13 0,629781 0,613046 0,437400 0,437691 0,298624 0,291210

14 0,635087 0,618510 0,444475 0,444747 0,306109 0,298682

15 0,639803 0,623370 0,450817 0,451070 0,312886 0,305450

16 0,644024 0,627721 0,456534 0,456770 0,319048 0,311607

17 0,647822 0,631640 0,461714 0,461932 0,324676 0,317230

18 0,651259 0,635186 0,466428 0,466630 0,329832 0,322384

19 0,654382 0,638411 0,470734 0,470921 0,334574 0,327124

20 0,657233 0,641354 0,474684 0,474355 0,338946 0,331496

21 0,659845 0,644051 0,478317 0,478474 0,342990 0,335540

22 0,662245 0,646531 0,481670 0,481812 0,346739 0,339289

23 0,664458 0,648818 0,484772 0,484901 0,350223 0,342774

24 0,666504 0,650933 0,487650 0,487766 0,353469 0,346020

25 0,668401 0,652894 0,490326 0,490430 0,356498 0,349050

E 1,000000 I.OOOOjO 0,769226 0,767850 0,591866 0,589594
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Tableau III
Variables aleatoires cTentropie maximale
Pour les 6 distributions ci-dessous, E(X)=\ et h 0,275

Premier groupe

no. Var(X) Asym(x) n 'X
0

^2 T
I 2 1 40 0,633756742 6,865623546 -3,546045522 0,508782908

IX 2 2 80 1,158215671 2,064259678 -0,458413784 0,039504477

III 2 3 120 1,347952488 1,308548443 -0,112854729 0,004804738

Second groupe

no. Var(x) Asym(X) n X
0 ro ^3

IV 3 2 70 0,822572741 3,386487847 -0,907040209 0,074942524

V 3 3 100 1,112899961 1,932767915 -0,283106126 0,014838244

VI 3 4 160 1,241821424 1,506799444 -0,140324094 0,004889578
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Tableau IV
Cas type du premier groupe

Cas Variable U R borne T 104 • mode de

no i*0. sup. £ T-ll q ü150 " U

1 I 24,03 0,095801 10,0 °/'° 81 3,855 15,675

2 I 25,14 0,095801 9,0 f 87 3,291 15,675

3 11 25,14 0,091602 10,0 °/v 80 3,558 16,500

4 III 25,14 0,087552 11,1 °/° 72 3,791 17,325

5 III 26,30 0,087552 10,0 °/o 78 3,279 17,050

Tableau V
Cas types du second groupe

Cas Variable U R borne T 104 mode de

no. no. sup. £ T-ll q U150 " U

6 IV 37,11 0,062055 10,0 $ 118 2,526 16,775

7 IV 38,44 0,062055 9,2 % 126 2,222 16,775

8 V 38,44 0,059893 10,0 f 117 2,357 17,600

9 VI 38,44 0,057825 10,8 f 108 2,483 18,425

10 VI 39,82 0,057825 10,0 °/° 116 2,202 18,425
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Tableau VI
Probabilites de mine \tq

Premier groupe de variables aleatoires

^sCas no.
t

1 2 3 4 5

5 0,000000 0,000000 0,000000 0,000006 0,000003

10 0,000000 0,000000 0,000008 0,000090 0,000055

15 0,000013 0,000006 0,000077 0,000355 0,000235

20 0,000112 0,000058 0,000296 0,000866 0,000599

25 0,000395 0,000231 0,000727 0,001640 0,001173

30 0,000929 0,000583 0,001396 0,002665 0,001954

35 0,001734 0,001145 0,002299 0,003910 0,002927

40 0,002796 0,001918 0,003411 0,005339 0,004065

45 0,004084 0,002887 0,004703 0,006916 0,005342

50 0,005560 0,004027 0,006142 0,008607 0,006731

55 0,007185 0,005309 0,007695 0,010382 0,008207

60 0,008923 0,006706 0,009335 0,012215 0,009747

65 0,010743 0,008191 0,011038 0,014085 0,011334

70 0,012619 0,009742 0,012782 0,015975 0,012951

75 0,014529 0,011339 0,014550 0,017870 0,014585

80 0,016454 0,012965 0,016328 0,019758 0,016224

85 0,018380 0,014606 0,018104 0,021630 0,017859

90 0,020295 0,016251 0,019869 0,023479 0,019483

95 0,022190 0,017891 0,021616 0,025299 0,021089

100 0,024057 0,019518 0,023338 0,027086 0,022674

105 0,025892 0,021125 0,025031 0,028836 0,024233

110 0,027690 0,022709 0,026691 0,030547 0,025763

115 0,029448 0,024265 0,028316 0,032218 0,027263

120 0,031164 0,025790 0,029904 0,033847 0,028730

125 0,032837 0,027283 0,031454 0,035433 0,030163

130 0,034465 0,028742 0,032965 0,036977 0,031562

135 0,036048 0,030166 0,034436 0,038478 0,032927

140 0,037586 0,031554 0,035868 0,039937 0,034256

145 0,039080 0,032906 0,037260 0,041354 0,035551

150 0,040530 0,034222 0,038613 0,042731 0,036811
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Tableau VII
Probability de mine \tq

Deuxieme groupe de variables aleatoires

V^Cas no.
t

6 7 8 9 10

5 0,000000 0,000020 0,000000 0,000001 0,000000

10 0,000000 0,000000 0,000u02 0,000018 0,000011

15 0,000004 0,000002 0,000020 0,000086 0,000058

20 0,000029 0,000017 0,000080 0,000236 0,000165

25 0,000103 0,000064 0,000207 0,000490 0,000353

30 0,000255 0,000166 0,000424 0,000858 0,000633

35 0,000507 0,000343 0,000742 0,001343 0,001010

40 0,000871 0,000608 0,001166 0,001942 0,001484

45 0,001353 0,000968 0,001695 0,002646 0,002050

50 0,001950 0,001425 0,002323 0,003446 0,002701

55 0,002655 0,001975 0,003044 0,004331 0,003430

60 0,003459 0,002613 0,003848 0,005290 0,004228

65 0,004351 0,003332 0,004726 0,006314 0,005087

70 0,005322 0,004122 0,005667 0,007390 0,005998

75 0,006358 0,004977 0,006663 0,008511 0,006954

80 0,007451 0,005886 0,007705 0,009668 0,007947

85 0,008590 0,006843 0,008785 0,010854 0,008971

90 0,009766 0,007838 0,009895 0,012061 0,010019

95 0,010972 0,008867 0,011029 0,013284 0,011086

100 0,012201 0,009921 0,012180 0,014517 0,012168

105 0,013445 0,010996 0,013345 0,015757 0,013259

110 0,014701 0,012086 0,014518 0,016998 0,014357

115 0,015962 0,013186 0,015696 0,018238 0,015458

120 0,017225 0,014294 0,016874 0,019474 0,016559

125 0,018486 0,015404 0,018050 0,020702 0,017657

130* 0,019742 0,016515 0,019221 0,021922 0,018750

135 0,020990 0,017623 0,020385 0,023130 0,019837

140 0,022229 0,018726 0,021540 0,024326 0,020916

145 0,023455 0,019823 0,022684 0,025508 0,021984

150 0,024668 0,020910 0,023816 0,026675 0,023042
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Resume

Se basant sur la notion d'entropie maximale d'une distribution, l'auteur met sur pied un modele

mathematique permettant de calculer des probabihtes de ruine ä partir d'un nombre restreint de

connaissances sur la distribution collective des simstres, ä savoir la valeur des trois premiers
moments
S'appuyant sur des illustrations numenques etablies par cette methode, il etudie ensuite 1'influence

que peut avoir une variation de l'asymetrie de la reparition du montant global des simstres sur
revolution du risque couru par l'assureur

Zusammenfassung

Auf dem Maximum-Entropie-Prinzip baut der Autor ein mathematisches Modell auf, das die

Möglichkeit bietet, Ruinwahrschemlichkeiten rechnen zu können, wenn man nur die drei ersten
Momente der kollektiven Schadenverteilung kennt
Aufgrund einiger durch diese Methode gerechneten Beispiele studiert er dann den Emfluss einer
Änderung der Schiefe dieser TotalschadenVerteilung auf die Entwicklung des Versichererrisikos

Summary

Relying on the maximum entropy principle, the author sets up a mathematical model that allows
calculations of ruin probabilities, starting from only a restricted basic knowledge about the collective
risk distribution, that is its first three moments.
After having computed a few numerical illustrations through this method, he studies the influence
which a variation of the skewness of the accumulated claims distribution can have upon the features
of the insurer's risk
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