Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: - (1982)

Heft: 1

Artikel: Zur rekursiven Berechnung von Stop Loss-Prämien für Pensionskassen

Autor: Held, René Pierre

DOI: https://doi.org/10.5169/seals-966978

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

RENÉ PIERRE HELD, Herrliberg

Zur rekursiven Berechnung von Stop Loss-Prämien für Pensionskassen

Prolog

Um diese Arbeit ins richtige Licht zu rücken, scheint es mir unerlässlich, mit ein paar grundlegenden Feststellungen zu beginnen.

Ob eine Pensionskasse sich ganz oder teilweise rückversichern soll, hängt primär von der Grösse ihres Bestandes und der Struktur ihres Leistungsplanes ab. Kleinere Pensionskassen tun im allgemeinen gut daran, sich einer grösseren Risikogemeinschaft anzuschliessen. Die Beweggründe, sich rückzuversichern, können aber auch nichtversicherungstechnischer Art sein. Dies trifft sicher dann zu, wenn weder die Arbeitgeber noch die Arbeitnehmer sich mit der komplexen Verwaltung der Pensionskasse befassen können oder wollen und es somit vorziehen, die administrativen und versicherungstechnischen Belange ihrer Pensionskasse im Rahmen eines Gruppenversicherungsvertrages ganz an eine Versicherungsgesellschaft zu übertragen.

Neben den konventionellen Rückversicherungsformen kann grundsätzlich auch eine Stop Loss-(Überschaden-)Deckung in Betracht gezogen werden. Kostenanalysen zeigen aber im allgemeinen, dass eine Pensionskasse, die sich rückversichern will, mit einer Stop Loss-Deckung nicht ohne weiteres gut beraten ist. Es liegt in der Natur einer Stop Loss-Deckung, dass für kleinere Pensionskassen - mit einem niedrigen Selbstbehalt - die Schwankung des den Selbstbehalt übersteigenden Schadens sehr gross ist und somit die Brutto-Stop Loss-Prämie ein Vielfaches der Nettoprämie ausmacht. Ein nicht unerheblicher administrativer Aufwand, der mit einer Stop Loss-Deckung verknüpft ist, dürfte ein weiterer Grund sein, einer konventionellen Rückversicherung den Vorzug zu geben. Eine Pensionskasse, welche das ganze Dienstleistungsbouquet ihres Rückversicherers beanspruchen will, kann dies - aus Kostengründen - nicht im Rahmen eines Stop Loss-Vertrages anstreben. Ferner ist zu beachten, dass Stop Loss-Verträge nur auf kurze Dauer abgeschlossen werden können. Die Stop Loss-Prämie kann also schon nach kurzer Zeit stark ansteigen, was die Finanzplanung einer Pensionskasse erschweren kann. Ferner ist noch zu erwähnen, dass auf Stop Loss-Verträgen in der Regel keine Überschussanteile ausbezahlt werden.

Zusammenfassend stellen wir fest, dass eine Pensionskasse nicht nur die Versicherungsleistung, sondern auch die dargebotenen Dienstleistungen ihres künftigen Versicherungsträgers in die Waagschale werfen muss, bevor sie sich für die eine oder andere Rückversicherungsvariante entscheidet; dabei dürfte sich das Zünglein an der Waage nur selten auf die Seite einer Stop Loss-Deckung neigen.

Im Rahmen dieser Arbeit werden einige der gemachten Vorbehalte numerisch beleuchtet.

0. Einleitung

Die Zahlungsfähigkeit einer Pensionskasse kann unter Umständen durch ein paar grosse, kurz hintereinander auftretende Schäden oder durch die zeitliche Häufung etlicher kleinerer Schäden bedroht werden.

Natürlich kann der Gesamtschaden, den eine Vorsorgeeinrichtung in einer bestimmten Periode, i.a. innerhalb eines Jahres, erleiden kann, nicht mit Bestimmtheit vorausgesagt werden. Im Rahmen der Risikotheorie stehen jedoch mathematische Modelle bereit, die es einem erlauben, wahrscheinlichkeitsbehaftete Voraussagen über die zu erwartende Schadenbelastung zu errechnen. Die Grösse, die es in diesem Zusammenhang zu betrachten und zu bestimmen gilt, ist die Verteilungsfunktion F(x) des Gesamtschadens, d.h. die Funktion, deren Wert an der Stelle x die Wahrscheinlichkeit ist, dass der Gesamtschaden in der zugrunde gelegten Periode höchstens den Betrag x erreicht.

Ausgehend von der Verteilungsfunktion F(x), kann die Nettoprämie für eine Versicherungsdeckung der Pensionskasse ermittelt werden, deren Zweck es ist, die Pensionskasse vor einer zu hohen Gesamtschadenbelastung zu schützen. Eine solche Rückversicherung nennt man Überschaden- oder Stop Loss-Deckung. Unter einem Stop Loss-Vertrag wird derjenige Teil des Gesamtschadens abgedeckt, der eine bestimmte, vertraglich vereinbarte Schadenhöhe – den sogenannten Stop Loss-Punkt – überschreitet, wobei als Versicherungsdauer meistens ein Jahr gewählt wird. Bekanntlich bietet die Stop Loss-Deckung bei gegebener Nettoprämie den optimalsten Versicherungsschutz. Geht man zur Bruttoprämie über, so dürfte dies jedoch kaum mehr zutreffen. Vor allem für kleinere Bestände wird der Sicherheitszuschlag, der die Schwankungen des Überschadens auffangen soll, bedeutend.

In dieser Arbeit soll dem Praktiker gezeigt werden, wie Stop Loss-(Netto-) Prämien auf einer Rechenanlage mit geringem Programmieraufwand berechnet werden können. Anhand einer (echten) Pensionskasse von 230 aktiven Versicherten soll dies illustriert werden. Auf die bisher meistens angewandten raffinierten Näherungsverfahren – die z.B. in [2], [9], [13] dargestellt sind – wollen wir nicht eingehen.

Mit der zunehmenden Leistungsfähigkeit, vor allem von Kleincomputern, treten die rekursiven Berechnungsmethoden für Stop Loss-Prämien klar in den Vordergrund. Eine solche Methode hat *Panjer* [11], ausgehend von einer Arbeit von *Adelson* [1], für zusammengesetzt Poisson verteilte Gesamtschäden hergeleitet. Etwas später wurden ähnliche Rekursionsformeln auch für andere Gesamtschadenverteilungen entdeckt. Wir verweisen insbesondere auf die Arbeiten von *Panjer* [12], *Jewell* und *Sundt* [8], *Bühlmann* [4] und *Bertram* [3].

1. Rekursion für Stop Loss-Prämien

1.1

In diesem Abschnitt sei an ein paar grundlegende Definitionen und Beziehungen erinnert, die für numerische Stop Loss-Prämienberechnungen von Nutzen sind. Es sei S eine Zufallsvariable mit Verteilungsfunktion F und Wahrscheinlichkeitsfunktion f. Wir stellen uns vor, dass S den jährlichen Gesamtschaden eines Pensionskassenbestandes repräsentiere.

Betrachten wir eine Stop Loss-Deckung des S zugrunde liegenden Bestandes mit Selbstbehalt t (auch Stop Loss-Punkt oder Stop Loss-Priorität genannt), so ist die Stop Loss-(Netto-)Prämie SL(F;t) als Erwartungswert des Überschadens, d.h. der Schadenbelastung des Rückversicherers, definiert. Formal ausgedrückt

$$SL(F;t) = E[u_t(S)], \tag{1}$$

wobei die Überschadenfunktion $u_t(x) = \text{Max}(0, x - t)$ ist für alle reellen Zahlen x.

Somit gilt

$$SL(F;t) = \sum_{k>t} (k-t)f(k). \tag{2}$$

Da wir es in unseren praktischen Beispielen mit diskreten Verteilungen zu tun haben, verzichten wir auf entsprechende Formeln für den kontinuierlichen Fall. Durch Umformung von (2) erhalten wir die folgenden Ausdrücke:

$$SL(F;t) = \sum_{k>t} \left(1 - F(k)\right) \tag{3}$$

$$SL(F;t) = E[S] - \sum_{k=0}^{t-1} (1 - F(k))$$
 (4)

$$SL(F;t) = E[S] - t + \sum_{k=0}^{t-1} (t-k)f(k).$$
 (5)

Es wird dabei die Existenz von $E[S] = \sum_{k>0} kf(k)$ vorausgesetzt. Beachte, dass SL(F;0) = E[S] ist.

1.2

Aus den obigen Formeln ergibt sich leicht, dass die Stop Loss-Prämien für ganzzahlige, benachbarte Stop Loss-Punkte t und t+1 wie folgt rekursiv miteinander verknüpft sind:

$$SL(F;t+1) = SL(F;t) - (1 - F(t))$$
 (6)

oder mit Hilfe der Wahrscheinlichkeitsfunktion f

$$SL(F;t+1) = SL(F;t) - 1 + \sum_{k=0}^{t} f(k),$$
 (7)

wobei t die positiven ganzen Zahlen durchläuft und SL(F;0) = E[S].

1.3

Besonders beim Aufbau der Stop Loss-Bruttoprämie ist es unerlässlich, die Varianz bzw. die Standardabweichung des Überschadens zu bestimmen. Obwohl wir in diesem Rahmen nicht auf die Problematik der Zusammensetzung der Bruttoprämie eingehen werden, sei trotzdem an eine Rekursionsformel der Varianz des Überschadens erinnert.

Ausgehend von der Definition

$$Var[u_t(S)] = E[u_t^2(S)] - E^2[u_t(S)]$$

lässt sich die Rekursionsbeziehung

$$Var(t+1) = Var(t) - 2SL(t) + 1 - F(t) + SL^{2}(t) - SL^{2}(t+1)$$
(8)

herleiten, wobei $Var(t) = Var[u_t(S)], SL(t) = SL(F;t).$

Verankert is (8) durch $Var(0) = Var[S] = E[S^2] - E^2[S]$. Ausgehend von (8) erhält man für $t \ge 1$:

$$\operatorname{Var}[u_t(S)] = E[S^2] - 2\sum_{k=0}^{t-1} SL(F;k) - SL^2(F;t) + t - \sum_{k=0}^{t-1} F(k)$$
 (9)

eine Formel, die sich ebenfalls gut eignet, die Varianz zusammen mit den Stop Loss-Prämien sukzessive zu berechnen.

1.4

Das Problem der rekursiven Bestimmung der Stop Loss-Prämien ist somit zurückgeführt auf die (rekursive) Berechnung der Wahrscheinlichkeitsfunktion bzw. der Gesamtschaden-Verteilungsfunktion.

2. Modelle für die Gesamtschadenverteilung

2.1 Bezeichnungen, Voraussetzungen

Im Hinblick auf unsere Anwendungen betrachten wir eine Pensionskasse, deren Anzahl Versicherte mit *n* bezeichnet werde; Altersrentner und Bezüger von Invalidenrenten werden nicht mitgerechnet, da diese Bestandeskomponenten nicht in die Stop Loss-Berechnungen eingehen werden.

Die für uns wichtigen Daten des k-ten Versicherten seien wie folgt bezeichnet, wobei k durch den Aktivenbestand läuft:

 x_k, y_k : erreichtes Alter (Mann, Frau)

 q_k : einjährige Sterbenswahrscheinlichkeit

 i_k : einjährige Invalidierungswahrscheinlichkeit

(Reaktivierung eines Invaliden wird ausgeschlossen)

 RT_k : Todesfallrisikosumme

RI_k: Invaliditätsrisikosumme

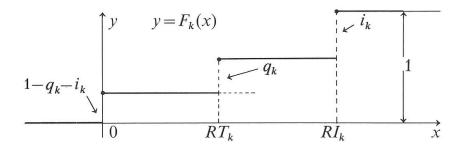
Bemerkung. Diese Daten müssen für jede Pensionskasse genau festgelegt werden. Sie sind durch die technischen Grundlagen und den Aufbau der Pensionskasse – hinsichtlich Leistung und Finanzierung – bestimmt, sowie durch spezielle Vorschriften bezüglich der Festsetzung der Risikosumme für Stop Loss-Prämien Berechnungen.

Annahme. Es sei Invalidierung mit nachfolgendem Tod innerhalb desselben Versicherungsjahres ausgeschlossen.

2.2 Die Risiken des Bestandes

Dem k-ten Versicherten des Pensionskassenbestandes werde eine Zufallsvariable X_k zugeordnet, deren Wertebereich die möglichen Jahresschäden dieses Versicherten ist.

Die Verteilungsfunktion F_k der (diskreten) Zufallsvariable X_k ist eine dreistufige Treppenfunktion, also falls z.B. $RT_k < RI_k$, so sieht der Graph von $y = F_k(x)$ wie folgt aus:

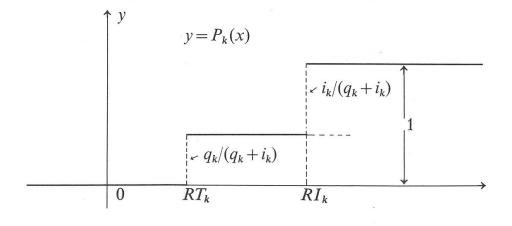


2.3 Zerlegung

Es wird sich im folgenden als nützlich erweisen, die Verteilungsfunktionen F_k wie folgt aufzuspalten:

$$F_k(x) = (1 - q_k - i_k) I(x) + (q_k + i_k) P_k(x), \tag{10}$$

wobei I(x) = 0 für x < 0 und I(x) = 1 für $x \ge 0$ und $P_k(x)$ die Verteilungsfunktion der *Schadenhöhe* für das k-te Risiko ist. Nehmen wir z.B. an, dass $RT_k < RI_k$ ist, so ist P_k durch die folgende Treppenfunktion repräsentiert:



2.4 Das individuelle Modell

Es sei S die jährliche Gesamtschadensumme der Pensionskasse. Das individuelle Modell ist gekennzeichnet durch Summation der Einzelschadenvariabeln über den ganzen Bestand, d.h. durch

$$S = X_1 + X_2 + \dots X_n. \tag{11}$$

Es stellt sich nun die Aufgabe, die Verteilungsfunktion F von S zu bestimmen, und zwar ausgehend von den als bekannt vorausgesetzten Verteilungsfunktionen F_k der einzelnen Risiken. Unter der Voraussetzung der gegenseitigen Unabhängigkeit der Zufallsvariabeln X_1, \ldots, X_n gewinnt man die Verteilungsfunktion F von S durch Faltung aller individuellen Verteilungsfunktionen. Es gilt somit

 $F = F_1 * F_2 * \dots * F_n. \tag{12}$

Bemerkung.

Diese Gleichung bestimmt zwar F im formalen Sinn, doch ist dieses Ergebnis insofern unbefriedigend, da für grosse Bestände der numerische Rechenaufwand gewaltig wird.

Es ist deshalb wünschenswert, das individuelle Modell durch ein für numerische Berechnungen besser geeignetes Modell zu ersetzen.

2.5 Das kollektive Modell

Das kollektive Modell widerspiegelt eine Betrachtungsweise des vorliegenden Bestandes, derzufolge die Anzahl Schadenfälle zufallsbedingt ist und zudem die Schadenhöheverteilung für jeden auftretenden Schaden dieselbe ist. Es wird auch hier wieder vorausgesetzt, dass die einzelnen Risiken untereinander unabhängig sind.

Formal ausgedrückt bedeutet dies, dass

$$S = Y_1 + Y_2 + \ldots + Y_N, \tag{13}$$

wobei S die Zufallsvariable der Gesamtschadensumme ist, und ferner die Zufallsvariabeln Y_1, Y_2, \ldots, Y_N zusammen mit der Zufallsvariabeln N ein System unabhängiger Zufallsvariabeln bilden. Ferner seien alle Y_k gleich verteilt. Nimmt N den Wert 0 an, so setze S=0.

Weiter setzen wir voraus, dass die Schadenanzahl N Poisson verteilt ist und bezeichnen den Poissonparameter mit λ . Falls die Verteilungsfunktion der Einzelschadenhöhen (alle sind gleich verteilt) mit H bezeichnet wird, so ist die

Verteilungsfunktion von S gegeben durch

$$F(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} H^{*k}(x). \tag{14}$$

Wir nennen in diesem Fall S zusammengesetzt Poisson verteilt.

Bemerkung: Die Charakteristiken der individuellen Risiken des Pensionskassenbestandes sind im kollektiven Modell in Eigenschaften der Verteilungsfunktion H übergegangen. Wir wollen dies beim Übergang vom individuellen zum kollektiven Modell zeigen.

2.6 Der Übergang vom individuellen zum kollektiven Modell¹

Ausgehend von einem Pensionskassenbestand, d.h. vom individuellen Modell, kann in natürlicher Weise ein Übergang zum kollektiven Modell bewerkstelligt werden.

Zunächst gilt es den Poisson-Parameter für die Poisson-verteilte Schadenanzahl N zu definieren. Da $\lambda = E[N]$ sein muss, sollte offenbar

$$\lambda = \sum_{k=1}^{n} q_k + i_k \tag{15}$$

gesetzt werden. Die Bezeichnungen übernehmen wir von (2.1). Was die Verteilung der Einzelschadenhöhe betrifft, so erinnern wir uns an die Zerlegung (10) der individuellen Schadenvariabeln X_k , in der die individuelle Schadenhöheverteilung P_k eingeführt wurde. Es liegt nun auf der Hand, die Verteilungsfunktion H als gewichtete Summe der P_k 's zu definieren.

$$H(x) = \sum_{k=1}^{n} \frac{q_k + i_k}{\lambda} P_k(x). \tag{16}$$

Bemerkungen.

- Auf den ersten Blick macht es den Anschein, als ob die kollektive Betrachtungsweise keine einfacher zu berechnende Verteilungsfunktion für den Gesamtschaden erzeugt hätte. Es wird sich jedoch zeigen, dass (14), obwohl viel komplexer aufgebaut als (12), zu einer für numerische Zwecke ausgezeichneten Rekursionsformel führt.
- Der Übergang vom individuellen zum kollektiven Modell (aufgrund von (15), (16)) lässt sich mathematisch auch als Grenzübergang vollziehen. Dabei wird jede Police im Bestand durch s unabhängige, gleichlautende Policen ersetzt,

¹ Zur Definition von λ , $P_k(x)$ und H(x) in (15), (16): Falls $RT_k = 0$ (bzw. $RI_k = 0$), setze $q_k = 0$ (bzw. $i_k = 0$). Es ist somit λ der Erwartungswert für die Anzahl der von Null verschiedenen Schäden.

wobei für alle Policen, die die k-te Police ersetzen, die Wahrscheinlichkeit für das Auftreten eines Schadens durch $(q_k + i_k)/s$ gegeben ist. Die Schadenhöheverteilungsfunktionen P_k bleiben dabei unverändert. Alsdann lässt man s gegen Unendlich streben.

- Eine weitere Übergangsmöglichkeit vom individuellen zum kollektiven Modell beruht darauf, dass beim Eintritt eines Schadens das ausscheidende Risiko sofort durch ein gleiches, von den anderen wiederum unabhängiges ersetzt wird.
- Es bezeichne $S_{\text{ind.}}$ die Gesamtschaden Zufallsvariable mit individuellen und $S_{\text{kol.}}$ diejenige im kollektiven Modell. Mit (15) und (16) lässt sich leicht zeigen, dass

$$E[S_{\text{ind.}}] = E[S_{\text{kol.}}] \text{ und } Var[S_{\text{kol.}}] > Var[S_{\text{ind.}}].$$

Es gilt insbesondere $E[S_{ind.}] = \sum_{k=1}^{n} \{q_k R T_k + i_k R I_k\}.$

 In der Arbeit von Bühlmann/Gagliardi/Gerber/Straub [5] wird sogar gezeigt, dass die (Netto-)Stop Loss-Prämie für das kollektive Modell stets grösser oder gleich derjenigen für das individuelle Modell ist.

3. Rekursive Bestimmung der Gesamtschadenverteilung

3.1 Rekursionsformel von Adelson-Panjer für das kollektive Modell

Wir nehmen die Bezeichnungen von (2.5) und (2.6) und werden die Verteilungsfunktion F des zusammengesetzt Poisson-verteilten Gesamtschadens S bestimmen. Die Schadenhöhen seien positiv, ganzzahlig und höchstens gleich m.

Die Verteilungsfunktion von S ist durch (14) gegeben, wobei λ und H laut (15) und (16) definiert sind.

Die zu H gehörige Wahrscheinlichkeitsfunktion h ist demnach gegeben durch

$$h(x) = \frac{1}{\lambda} \left\{ \sum_{k \in I_x} q_k + \sum_{k \in I_x} i_k \right\}. \tag{17}$$

Es sind $J_x = [k | RT_k = x > 0]$ und $I_x = [k | RI_k = x > 0]$ die Indexmengen der Summationen.

Die der Verteilungsfunktion F entsprechende Wahrscheinlichkeitsfunktion f ist somit

$$f(x) = \sum_{k=0}^{x} \frac{\lambda^{k}}{k!} e^{-\lambda} h^{*k}(x).$$
 (18)

Beachte, dass für eine Gesamtschadenhöhe von x aufgrund der Ganzzahligkeit der Schadenhöhen $k \le x$ sein muss, d.h. falls k > x, folgt $h^{*k}(x) = 0$. Somit ist die Summe (18) endlich.

Wir zeigen nun, dass die Werte f(x) rekursiv bestimmt werden können.

$$f(0) = e^{-\lambda} \tag{19}$$

$$f(x) = \frac{1}{x} \sum_{j=1}^{M} j \lambda_j f(x-j) \quad \text{für } x > 0 \text{ und } \lambda_j = \lambda h(j).$$
 (20)

Ferner ist M = Min(x, m).

Die Gleichung (19) folgt unmittelbar aus (18). Die Rekursionsformel wurde von *Panjer* [11] aufgrund einer Arbeit von *Adelson* [1] hergeleitet. Die hier folgende Herleitung stützt sich auf den Begriff der bedingten Wahrscheinlichkeit; diese Beweisidee, die viel transparenter ist als die ursprüngliche Herleitung, stammt von Bühlmann/Gerber und wurde erstmals im Rahmen des Seminars für Versicherungsmathematik an der ETH Zürich im Sommer 1981 vorgetragen. Um den Beweis von (20) zu erbringen, leiten wir zuerst den folgenden *Hilfssatz* her.

Es seien S_1, S_2, \ldots, S_n gleich verteilte, unabhängige Zufallsvariabeln und $S = S_1 + \ldots + S_n$. Dann gilt:

$$P(S=x) = \frac{n}{x} \sum_{j=1}^{x} j P(S_n = j) P(S - S_n = x - j).$$
 (21)

Um dies einzusehen, beachte, dass aus Symmetriegründen $E[S_n|S=x]=\frac{x}{n}$. Aus der expliziten Form dieses bedingten Erwartungswertes und der Unabhängigkeit der S_1, \ldots, S_n folgt (21).

Wir kehren zur Herleitung von (20) zurück. Da S«unendlich teilbar» ist, so lässt sich S als Summe von n unabhängigen gleich zusammengesetzt Poisson verteilten (mit Poisson Parameter λ/n) Zufallsvariablen auffassen. Auf die so zerlegte Zufallsvariable $S = S_1 + \ldots + S_2$ wenden wir (21) an.

Es ist somit

$$f(x) = \frac{n}{x} \sum_{j \ge 1} j \left[\sum_{k=0}^{\infty} \frac{(\lambda/n)^k}{k!} e^{-\lambda/n} h^{*k}(j) \right] P(S - S_n = x - j)$$

$$= \frac{n}{x} \sum_{j \ge 1} j \left[\frac{\lambda}{n} h(j) + \text{Glieder der Ordnung} \left[\frac{1}{n^2} \right] \right] P(S - S_n = x - j).$$

Beachte, dass die Indexpaarungen j > 0, k = 0 keinen Beitrag liefern (Schadenzahl k = 0 und Schadenhöhe j > 0!). Wir lassen nun $n \to \infty$, dabei $P(S - S_n = x - j) \to P(S = x - j) = f(x - j)$ streben und gewinnen so die Rekursionsformel (20).

3.2 Rekursionsformel von Panjer/Jewell/Sundt

In [12], [8], [3] und [4] werden ähnliche Rekursionsformeln für Fälle von nicht Poisson-verteilten Schadenanzahl-Variablen hergeleitet. Unter anderem gelingt dies auch für negativ binomial verteilte Schadenanzahlen, was für Anwendungen mit schwankenden Grundwahrscheinlichkeiten besonders wichtig ist.

3.3 Rekursionsformel für fortgesetzte Faltungen im individuellen Modell

Wir kehren zum individuellen Modell zurück und stellen für die Wahrscheinlichkeitsfunktion f, die der Verteilung (12) entspricht, eine Rekursionsformel auf. Wir müssen also

$$f = f_1 * f_2 * \dots * f_n \tag{22}$$

berechnen; es bezeichnet hier f_k die Wahrscheinlichkeitsfunktion, die dem k-ten Risiko des Bestandes zugrunde liegt. Es ist

$$f_k(0) = 1 - q_k - i_k, f(RT_k) = q_k, f(RI_k) = i_k$$

$$f_k(x) = 0 \text{ für } x \neq 0, RT_k, RI_k.$$
(23)

Wir definieren

$$g_{k+1} = g_k * f_{k+1} \tag{24}$$

für k = 1, ..., n-1 und $g_1 = f_1$. Es ist somit $g_n = f$. Explizit ergibt sich

$$g_{k+1}(x) = \sum_{j=0}^{x} g(x-j) f_{k+1}(j),$$
 (25)

oder unter Berücksichtigung von (23) erhalten wir

$$g_{k+1}(x) = g_k(x)f_{k+1}(0) + g_k(x - RT_k)f_{k+1}(RT_k) + g_k(x - RI_k)f_{k+1}(RI_k),$$
 (26)

wobei $g_k(t) = 0$ für t < 0. Ferner setze $g_{k+1}(x) = 0$ falls x grösser als der maximal mögliche Schaden ist.

Bemerkung.

Für grössere Bestände dürfte die «Faltungsmethode» nicht zweckmässig sein für numerische Berechnungen. Mit der Grösse des Bestandes steigt die Anzahl Rechenoperationen sehr stark an, so dass kleinere Rechenanlagen bald nicht mehr dafür in Frage kommen. Für unser Beispiel werden wir jedoch, vor allem für Vergleichszwecke, auch diese «elementare» Methode anwenden.

Andererseits scheint sich die «Fast Fourier Transformation» nach [3] für grössere Bestände gut zu eignen.

4. Stop Loss-Prämien für rekursiv berechenbare Gesamtschadenverteilungen

Wird die Wahrscheinlichkeitsfunktion – und somit auch die Verteilungsfunktion – des Gesamtschadens rekursiv berechnet, so können parallel dazu auch die Stop Loss-Prämien für ganzzahlige Stop Loss-Punkte (nach (6) oder (7)) und falls gewünscht, auch die Varianzen der entsprechenden Überschäden (gemäss (8) oder (9)) ermittelt werden.

Die hergeleiteten Formeln lassen sich leicht in einer der üblichen Programmiersprachen ausdrücken.

Bemerkung. Die mit der Rekursionsmethode von Adelson/Panjer im Rahmen des kollektiven Modells bestimmten Stop Loss-Prämien sind stets grösser, als diejenigen welche mit Hilfe der Faltungsmethode im Rahmen des individuellen Modells gewonnen werden können. Siehe dazu [10, p. 340] oder [7].

5. Stop Loss-Prämien für die Pensionskasse PK-230

5.1

Zunächst sei die Struktur der PK-230 in der folgenden Tabelle wiedergegeben. Bei der PK-230 handelt es sich um eine echte Pensionskasse mit 230 aktiven Mitgliedern eines mittleren Industrieunternehmens. Alters- und Invalidenrentner werden nicht betrachtet, da diese Bestandeskomponenten nicht in die Stop Loss-Berechnungen eingehen.

Bezeichnungen:

x/y: erreichtes Alter

AR: Altersrente

m: Anzahl

 L^v : versicherter Lohn

9			8	PK-230		0 1		
		46 Fra	uen			184 Mäi	nner	
y	m	AR	L^v	x	m	AR	L^v	
20	1	5 664	9 440	20	2	18 564	30 940	
21	3	19 442	32 403	21	1	8 400	14 000	
22	3	22 003	36 671	22	3	30 643	51 072	
23	2	11 933	19888	23	6	57 974	96 624	
24	1	5 277	9 020	24	3	26 129	43 548	
25	3	27 358	46 656	25	3	27 101	45168	
26	4	32 287	55 712	26	5	49 812	83020	
27	2	19 624	34 431	27	12	147 843	252 430	
28				28	6	57 686	97 596	
29	1	6 390	10650	29	4	33 681	60 140	
30	3	24 271	45 644	30	3	26 444	47 952	
31	1	5 779	10138	31	3	31 670	56 304	
32	3	25 342	48 930	32	8	80 536	145 084	
33				33	8	79 583	147 844	
34	,			34	13	139 155	260 144	
35	1	7 745	12 908	35	4	37 265	70 621	
36			7	36	4	29 870	61 256	
37				37	6	69 830	130 090	
38				38	6	42 858	93 540	
39	1	5 5 5 4	9 2 5 6	39	6	68 321	140 565	
40	1	3 928	9 029	40	6	58 167	124 320	
41		3720	7 027	41	5	53 504	108 902	
42				42	2	8 636	19 260	
43	1	7 338	13 222	43	4	46 936	99 380	
44	1	7 330	15 222	44	6	58 592	128 436	
45				45	4	48 975	106 160	
46				46	3	13 426	43 500	
47				47	3	16 780	43 944	
48				48	1	18 156	35 600	
49	4	14 530	32 183	49	2	13 584	36 700	
50	1	3 840	13 472	50		35 814	116 262	
51	1	3 040	13472	51	5 2	11 440	36 316	
52	1	3 408	5 680	52	5	57 958	117 464	
53	1	2 592	4800	53	3	13 394	49 572	
54	3	8 940	22 600	54	2	6371	18 220	
55	1	6 852	11 420	55	3	21 498	55 496	
56	1				4	25 029	66 264	
57	1	2 808	4 800	56 57	3	40 983	78 900	
58				58	- 5	82 693	144 380	
59	3	10.000	19 180	59		9 194	22 700	
	3	10 980	13 190		1	4 795		
60				60	1	4 /93	8 640	
61				61	4	26.647	65 (50	
62 63				62	4	36 617	65 650	
64				63	3	38 541	73 800	
U 4				64	1	12 093	27 800	

5.2 Das Leistungs- und Beitragssystem dieser Pensionskasse sieht wie folgt aus:

Das niedrigste Eintrittsalter ist 20 Jahre, das Rücktrittsalter für Frauen 62 Jahre und dasjenige für Männer 65 Jahre.

Die PK-230 ist eine Leistungsprimatkasse mit einem Durchschnittsbeitragssatz von 12,5%; dieser Satz angewendet auf den versicherten individuellen Jahreslohn L^v ergibt den Jahresbeitrag. Selbstverständlich übernimmt der Arbeitgeber mindestens die Hälfte der Beitragszahlungen. Bei Lohnerhöhungen müssen Nachzahlungen geleistet werden, um die Nachversicherung zu finanzieren.

Versichert werden in der PK-230 eine Altersrente und Invalidenrente, ferner Hinterbliebenenrenten (Witwen-, Waisenrente) und die Prämienbefreiung im Falle von Invalidität.

Die Höhe dieser Renten bemisst sich nach der Anzahl der vom Eintritt bis zum Rücktritt zurückzulegenden Dienstjahre d. Ausgedrückt mit Hilfe des Rentensatzes

$$RS(d) = Min (60\%, 1.5\% \cdot d)$$
 (27)

ergibt sich eine Altersrente von $RS(d) \cdot L^v$, eine Invalidenrente in derselben Höhe, eine Witwenrente von 60 % der Altersrente (mit dreifacher Jahresrentenabfindung im Falle der Wiederverheiratung) und eine Waisenrente von 30 % der Altersrente. Der versicherte Lohn L^v bezieht sich auf das erreichte Alter.

5.3

Als versicherungstechnische Grundlagen wurden die Tabellen EVK 1980 der Eidgenössischen Versicherungskasse zusammen mit einem technischen Zinsfuss von 3,5% gewählt. Im Rahmen dieser Grundlagen werden die Witwen- und Waisenrentenbarwerte kollektiv gerechnet, d.h. mit Hilfe von Wahrscheinlichkeiten verheiratet zu sein, sich wieder zu verheiraten, eine gewisse Anzahl Kinder zu haben usw.

5.4

Bei der *Risikosummenberechnung* wird vom Leistungsbarwert das volle, individuelle Deckungskapital abgezogen; negative Risikosummen werden aufgenullt.

5.5 Eingabedaten für die Stop Loss-Prämienberechnungen

PK-230 Tabelle der Risikosummen in 1000 Fr.

Risiko	Tod	IV	Risikosumme To-	d Risikosumme IV
Nr. k	q_k	i_k	RT_k	RI_k
1	0,00309	0.01930	0	5
2	309	1930	0	5
3	251	1300	0	13
4	235	1150	0	37
5	0,00220	0,01030	0	15
6	220	1030	0	18
7	206	910	0	18
8	192	790	0	25
9	167	550	0	40
10	0,00156	0,00445	0	34
11	156	445	0	20
12	156	445	0	22
13	156	445	0	64
14	101	120	0	89
15	0,00080	0,00075	0	56
16	75	70	0	75
17	55	50	0	116
18	46	35	0	191
19	46	35	0	59
20	0,00046	0,00035	0	168
21	43	30	0	95
22	40	25	0	105
23	40	25	0	244
24	38	25	0	107
25	0,00034	0,00025	0	119
26	34	25	0	225
27	32	25	0	151
28	32	25	0	160
29	30	25	0	149
30	0,00030	0,00025	0	95
31	30	25	0	142
32	30	25	0	152
33	30	25	0	113
34	30	25	0	129
35	0,00030	0,00025	0	118
36	36	25	0	107
37	1002	6160	62	141
38	942	5440	0	32
39	942	5440	0	3

Risiko	Tod	IV	Risikosum	
Nr. k	q_k	i_k	RT_k	RI_k
40	0,00884	0,04720	0	41
4 1	884	4720	0	11
12	884	4720	0	9
13	774	3280	0	19
14	722	2560	0	47
15	0,00672	0,01960	0	106
16	672	1960	0	143
1 7	672	1960	0	29
48	672	1960	0	108
19	672	1960	0	68
50	0,00624	0,01480	1	89
51	624	1480	0	73
52	624	1480	0	99
53	578	1120	5	96
54	578	1120	9	35
55	0,00578	0,01120	2	28
56	534	880	13	44
57	492	720	15	38
58	492	720	5	22
59	452	580	21	50
50	0,00452	0,00580	20	45
51	452	580	23	54
52	414	460	44	122
53	414	460	20	57
54	414	460	28	59
55	0,00414	0,00460	31	68
56	378	360	41	82
57	344	280	57	103
58	344	280	101	176
59	344	280	40	79
70	0,00344	0,00280	21	46
71	344	280	33	61
72	312	220	25	50
73	312	220	73	127
74	282	170	128	231
75	0,00254	0,00130	41	71
76	254	130	59	95
77	228	100	46	67
78	228	100	46	70
79	228	100	49	74
30	0,00204	0,00080	54	81
31	204	80	96	140
32	182	70	75	112
33	182	70	181	277
34	162	60	104	150

Risiko	Tod	IV	Risikosumme Tod	Risikosumme IV
Nr. k	q_k	i_k	RT_k	RI_k
85	0,00162	0,00060	149	216
86	144	50	61	85
87	144	50	40	59
88	128	40	296	426
89	128	40	63	88
90	0,00128	0,00040	90	129
91	128	40	91	129
92	128	40	93	133
93	114	30	214	309
94	114	30	86	121
95	0,00114	0,00030	79	111
96	114	30	77	106
97	114	30	106	151
98	102	28	83	119
99	102	28	186	259
100	0,00102	0,00028	160	231
101	102	28	90	127
102	91	26	91	129
103	91	26	91	128
104	91	26	111	159
105	0,00091	0,00026	86	122
106	81	24	75	108
107	81	24	281	416
108	81	24	237	351
109	72	22	97	145
110	0,00064	0,00020	98	156
111	64	20	135	216
112	58	18	77	130
113	58	18	113	195
114	58	18	270	467
115	0,00058	0,00018	97	166
116	58	18	89	149
117	58	18	149	257
118	58	18	125	212
119	58	18	98	165
120	0,00058	0,00018	193	331
121	54	16	142	250
22	54	16	73	133
23	54	16	97	178
124	52	14	149	301
125	0,00052	0,00014	146	292
126	52	14	88	179
127	50	12	79	164
28	50	12	139	300
129	53	10	69	178

Risiko	Tod	IV	Risikosumme Tod	Risikosumme IV
Nr. k	q_k	i_k	RT_k	RI_k
130	0,00053	0,00010	65	170
131	53	10	76	203
132	56	10	51	163
133	56	10	86	268
134	60	10	70	259
135	0,00060	0,00010	135	487
136	60	10	56	209
137	60	10	72	268
138	60	10	51	189
139	60	10	51	187
40	0,00060	0,00010	70	259
141	65	10	44	193
42	66	10	42	183
143	71	10	37	198
144	78	10	29	189
145	0,00078	0,00010	30	197
146	86	10	30	247
47	86	10	24	194
.48	86	10	24	199
49	86	10	23	188
50	0,00095	0,00010	23	237
51	95	10	18	187
152	105	10	13	181
153	116	10	11	201
154	220	1030	0	28
55	0,00040	0,00025	0	64
.56 .57	32 32	25 25	0	107
.58	30			154
.59	30	25 25	0	218 122
160	0,00030	0,00025	0	108
.61	30	25	0	110
162	30 578	25 1120	0	116
163	578 534	1120	13	33
164	534	880	12	40
165	0,00378	0,00260	29	57
166	254	130	48	74
167	204	80	265	422
168	204	80	60	86
169	182	70	160	244
170	0,00182	0,00070	61	89
71	182	70	56	80
172	182	70	75	108
73	162	60	79	114
174	162	60	180	270

Risiko	Tod	IV	Risikosumme Tod	Risikosumme IV
Nr. k	q_k	i_k	RT_k	RI_k
175	0,00114	0,00030	164	228
76	102	28	260	375
.77	102	28	84	118
.78	91	26	90	127
79	91	26	96	137
.80	0,00081	0,00024	97	139
81	81	24	98	132
82	81	24	95	147
.83	72	22	100	150
84	72	22	90	135
.85	0,00072	0,00022	98	148
86	64	20	96	150
.87	64	20	127	202
88	58	18	113	189
89	58	18	95	160
90	0,00058	0,00018	86	144
91	58	18	104	176
.92	54	16	92	169
93	54	16	182	341
94	54	16	89	161
.95	0,00054	0,00016	103	190
.96	54	16	90	164
190	52	14		
			82	163
98 99	52 52	14 14	79 88	156 176
200	0,00052	0,00014	87	176
201	52	14	91	184
202	50	12	86	182
203	51	10	74	171
204	51	10	88	208
205	0,00051	0,00010	73	169
206	53	10	69	152
207	56	10	62	200
208 209	56 56	10	61	194
	56	10	60	192
210	0,00056	0,00010	58	187
211	60	10	50	180
212	60	10	50	180
213	60	10	95	343
214	60	10	53	200
215	0,00060	0,00010	96	350
216	65	10	56	245
217	65	10	44	192
218	65	10	54	236
219	71	10	35	185

Risiko	Tod	IV	Risikosumme Tod	Risikosumme IV
Nr. k	q_k	i_k	RT_k	RI_k
220	0,00071	0,00010	36	192
221	78	10	26	172
222	86	10	30	241
223	86	10	21	172
224	95	10	22	234
225	0,00116	0,00010	11	199
226	942	5440	0	19
227	884	4720	0	24
228	534	880	16	98
229	414	460	104	280
230	309	1930	0	16

5.6 Numerische Resultate

Es werden *Stop Loss-Prämien* für die Pensionskasse *PK*-230 bestimmt und zwar einmal unter Einschluss des Invaliditätsrisikos (TOD und IV) und einmal nur in Bezug auf das Todesfallrisiko (TOD).

Als Berechnungsmethode kommt sowohl die Rekursionsmethode von Adelson/Panjer (*Rekursion AP*) sowie auch die Faltungsmethode (*Faltung*) zur Anwendung.

Pk	ζ-230
TOD	TOD und IV
Poissonparameter λ	Poissonparameter λ
$\lambda = 0,2621700$	$\lambda = 1,2314800$
Erwartungswert von S	Erwartungswert von S
E[S] = Fr. 15'696,76	E[S] = Fr. 66'535,73
(totale Risikoprämie)	(totale Risikoprämie)
Standardabweichung σ	Standardabweichung σ
$\sigma[S] = \text{Fr. } 41'558,18$	$\sigma[S] = \text{Fr. } 84'745,49$

Bemerkung: Die oben tabellierte Standardabweichung σ für den Gesamtschaden S wurde aufgrund der Rekursion von Adelson/Panjer ermittelt; sie ist etwas größer als diejenige, die man vermittels der Faltungsmethode erhalten würde. Hingegen stimmen die Erwartungswerte beider Methoden bekanntlich überein.

Bezeichnungen für die folgende Tabelle:

t: Stop Loss-Punkt in Fr. 1000,-

SL(t) = SL(F;t): Stop Loss-Nettoprämie in Fr.

F(t): Verteilungsfunktion an der Stelle t

PK-230		TO	OD und INVALIDIT	ΓÄΤ
	Rekursion Adel	lson/Panjer	Faltungsmethod	de
t in Fr. 1000,	F(t)	SL(t) Fr.	F(t)	SL(t) Fr.
0	0,29186030	66 535,730	0,2869043	66 535,730
10	0,34317260	59 687,903	0,33887304	59 642,295
20	0,42045220	53 429,602	0,41720257	53 345,833
30	0,47636096	47887,261	0,47352389	47772,113
40	0,53206884	42 937,564	0,52965496	42 799,671
50	0,58850389	38 561,681	0,58669051	38 405,256
60	0,62089861	34 582,204	0,61946937	34 409,750
67*	0,64117896	32 000,217	0,63962600	31 817,783
70	0,65448653	30 943,172	0,65296957	30 756,157
80	0,68288377	27 627,122	0,68152015	27 426,129
90	0,70890882	24 556,640	0,70724280	24 339,877
100	0,73959475	21 764,308	0,73786673	21 530,481
134*	0,81300038	14 308,498	0,81161521	14 020,641
201*	0,92473432	6 367,996	0,92634389	6117,949
268*	0,96396198	2 762,283	0,96572653	2618,483
335*	0,98533744	1 185,521	0,98605976	1 118,540
402*	0,99318909	499,515	0,99353261	467,743
469*	0,99732619	198,380	0,99748918	182,889
536*	0,99890212	78,326	0,99898658	70,828
603*	0,99957533	30,095	0,99961371	26,559
670*	0,99983362	11,576	0,99985321	9,929
737*	0,99993722	4,342	0,99994597	3,626
804*	0,99997613	1,629	0,00008010	1,319
871*	0,99999109	0,596	0,99999275	0,468
938*	0,99999673	0,216	0,99999744	0,163
1005*	0,99999882	0,077	0,99999911	0,056

Bemerkung: Die mit einem (*) versehenen Stop Loss-Punkte sind Vielfache von Fr. 67 000, $-\approx E[S]$ = totale Risikoprämie. Als Stop Loss-Punkte werden in der Praxis oft Vielfache der Risikoprämie benützt.

PK-230		TO	OD		
	Rekursion Adel	son-Panjer	Faltungsmethod	de	
t	F(t)	SL(t)	F(t)	SL(t)	
in Fr. 1000,-		Fr.		Fr.	
0	0,76938022	15 696,760	0,76906221	15696,760	
10	0,79153470	13 515,697	0,79128546	13 513,000	
16*	0,81498728	12 322,739	0,81484422	12 318,790	
32*	0,85257830	9 651,495	0,85248328	9 645,747	
48*	0,87782612	7 460,061	0,87775973	7 453,033	
64*	0,90829002	5 689,139	0,90831297	5 681,309	
80*	0,92517235	4 319,525	0,92521135	4312,158	
96*	0,94749056	3 255,975	0,94752933	3 249,182	
112*	0,96471296	2 582,830	0,96477996	2 576,909	
128*	0,97132172	2 054,559	0,97135105	2 049,506	
144*	0,97501012	1 622,194	0,97504137	1617,628	
160*	0,98142127	1 264,472	0,98145046	1 260,353	
176*	0,98369578	988,816	0,98372535	985,180	
192*	0,98874404	776,145	0,98877175	772,987	
200	0,98970874	691,194	0,98973543	688,255	
300	0,99871599	71,559	0,99872753	69,942	
400*	0,99981709	10,575	0,99982302	9,831	
500	0,99996683	1,635	0,99997102	1,382	
600	0,99999689	0,151	0,99999741	0,121	
700	0,99999961	0,019	0,99999970	0,013	
800*	0,99999995	0,002	0,99999997	0,001	

^{*} Vielfache von Fr. 16 000. $-\approx E[S]$.

Schlussbemerkung

Diese Beispiele zeigen, mit welch hoher Genauigkeit die Rekursion AP zum Ziel führt und überdies im Vergleich zur Methode der sukzessiven Faltungen viel weniger Computer-Zeit benötigt. Ähnliches stellt man fest, wenn die Rechnungen für andere Kassen (z. B. PK-50 in [10], [11], [6]) durchgeführt werden.

Dr. René P. Held Biswindstrasse 32 8704 Herrliberg

Literaturverzeichnis

- [1] Adelson, R. M.: Compound Poisson Distributions. Operations Research Quaterly, vol. 17, p. 73–75, 1966.
- [2] Beard, R. E., Pentikäinen, T. and Pesonen, E.: Risk Theory, 2nd edition. Chapman and Hall, London, 1976.
- [3] Bertram, J.: Numerische Berechnung von Gesamtschadenverteilungen. Blätter der DGVM, Band XV, Heft 2, 1981.
- [4] Bühlmann, H.: Numerische Methoden zur Berechnung der Gesamtschadenverteilung. Mannheimer Vorträge zur Versicherungswissenschaft, Band 20, 1981.
- [5] Bühlmann, H., Gagliardi, B., Gerber, H. U., Straub, E.: Some Inequalities for Stop Loss-Premiums. ASTIN Bulletin, vol. IX, p. 75–83, 1977.
- [6] Delden van, Th.: Stop Loss-Versicherungen bei kleinen Beständen. Blätter der DGVM, Band XII, S. 15–20, 1975/76.
- [7] Gerber, H. U.: On the Computation of Stop Loss-Premiums. MVSVM, Band 77, Heft 1, p. 47–58, 1977.
- [8] Jewell, W. S. and Sundt, B.: Further Results on Recursive Evaluation of Compound Distributions. ETH Zürich, 1981.
- [9] *Kupper*, *J*.: Methoden zur Berechnung der Verteilungsfunktion des Totalschadens. MVSVM, S. 279–315, 1971.
- [10] Mereu, J. A.: An Algorithm for Computing Expected Stop Loss Claims under a Group Life Contract. TSA, p. 311–347, 1972.
- [11] *Panjer*, *H. H.*: The Aggregate Claims Distribution and Stop Loss-Reinsurance (to appear in the TSA).
- [12] *Panjer*, *H. H.*: Recursive Evaluation of a Family of Compound Distributions (to appear in the ASTIN Bulletin).
- [13] Pesonen, E.: NP-Approximation of Risk Processes. Skand. Aktuar Tidskr., p. 158–164, 1968.

Zusammenfassung

Es wird in dieser Arbeit gezeigt, wie sich rekursiv (Netto-)Stop Loss-Prämien für Pensionskassen berechnen lassen, wobei das Todes- und Invaliditätsrisiko betrachtet wird. Numerische Ergebnisse im «kollektiven Modell» werden verglichen mit entsprechenden Resultaten im «individuellen Modell.

Résumé

Cet article montre comment calculer de façon récursive des primes (nettes) «stop-loss» pour des caisses de pension, tenant compte des risques de décès et d'invalidité. Des résultats numériques obtenus dans le cadre du «modèle collectif» sont comparés à ceux dérivés du «modèle individuel».

Summary

This paper shows how to recursively calculate stop loss (net) premiums for pension funds, whereby the death as well as the disability risk is taken into account. Numerical results obtained in the framework of the "collective model" are then compared to the corresponding figures derived from the "individual model".