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Rene Pierre Held, Herrliberg

Zur rekursiven Berechnung von
Stop Loss-Prämien für Pensionskassen

Prolog

Um diese Arbeit ins richtige Licht zu rücken, scheint es mir unerlässlich, mit ein

paar grundlegenden Feststellungen zu beginnen.
Ob eine Pensionskasse sich ganz oder teilweise rückversichern soll, hängt primär
von der Grösse ihres Bestandes und der Struktur ihres Leistungsplanes ab.

Kleinere Pensionskassen tun im allgemeinen gut daran, sich einer grösseren
Risikogemeinschaft anzuschliessen. Die Beweggründe, sich rückzuversichern,
können aber auch nichtversicherungstechnischer Art sein. Dies trifft sicher dann

zu, wenn weder die Arbeitgeber noch die Arbeitnehmer sich mit der komplexen
Verwaltung der Pensionskasse befassen können oder wollen und es somit
vorziehen, die administrativen und versicherungstechnischen Belange ihrer
Pensionskasse im Rahmen eines Gruppenversicherungsvertrages ganz an eine

Versicherungsgesellschaft zu übertragen.
Neben den konventionellen Rückversicherungsformen kann grundsätzlich auch
eine Stop Loss-(Überschaden-)Deckung in Betracht gezogen werden.
Kostenanalysen zeigen aber im allgemeinen, dass eine Pensionskasse, die sich rückversichern

will, mit einer Stop Loss-Deckung nicht ohne weiteres gut beraten ist.
Es liegt in der Natur einer Stop Loss-Deckung, dass'für kleinere Pensionskassen

- mit einem niedrigen Selbstbehalt - die Schwankung des den Selbstbehalt

übersteigenden Schadens sehr gross ist und somit die Brutto-Stop Loss-Prämie
ein Vielfaches der Nettoprämie ausmacht. Ein nicht unerheblicher administrativer

Aufwand, der mit einer Stop Loss-Deckung verknüpft ist, dürfte ein weiterer
Grund sein, einer konventionellen Rückversicherung den Vorzug zu geben. Eine
Pensionskasse, welche das ganze Dienstleistungsbouquet ihres Rückversicherers
beanspruchen will, kann dies - aus Kostengründen - nicht im Rahmen eines

Stop Loss-Vertrages anstreben. Ferner ist zu beachten, dass Stop Loss-Verträge
nur auf kurze Dauer abgeschlossen werden können. Die Stop Loss-Prämie kann
also schon nach kurzer Zeit stark ansteigen, was die Finanzplanung einer
Pensionskasse erschweren kann. Ferner ist noch zu erwähnen, dass auf Stop
Loss-Verträgen in der Regel keine Überschussanteile ausbezahlt werden.

Mitteilungen der Vereinigung Schweiz. Versicherungsmathematiker, Heft 1, 1982
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Zusammenfassend stellen wir fest, dass eine Pensionskasse nicht nur die

Versicherungsleistung, sondern auch die dargebotenen Dienstleistungen ihres

künftigen Versicherungsträgers in die Waagschale werfen muss, bevor sie sich

für die eine oder andere Rückversicherungsvariante entscheidet; dabei dürfte
sich das Zünglein an der Waage nur selten auf die Seite einer Stop Loss-Deckung
neigen.
Im Rahmen dieser Arbeit werden einige der gemachten Vorbehalte numerisch
beleuchtet.

0. Einleitung

Die Zahlungsfähigkeit einer Pensionskasse kann unter Umständen durch ein

paar grosse, kurz hintereinander auftretende Schäden oder durch die zeitliche

Häufung etlicher kleinerer Schäden bedroht werden.

Natürlich kann der Gesamtschaden, den eine Vorsorgeeinrichtung in einer
bestimmten Periode, i.a. innerhalb eines Jahres, erleiden kann, nicht mit
Bestimmtheit vorausgesagt werden. Im Rahmen der Risikotheorie stehen jedoch
mathematische Modelle bereit, die es einem erlauben, wahrscheinlichkeitsbehaftete

Voraussagen über die zu erwartende Schadenbelastung zu errechnen. Die
Grösse, die es in diesem Zusammenhang zu betrachten und zu bestimmen gilt, ist
die Verteilungsfunktion F(x) des Gesamtschadens, d.h. die Funktion, deren

Wert an der Stelle x die Wahrscheinlichkeit ist, dass der Gesamtschaden in der
zugrunde gelegten Periode höchstens den Betrag x erreicht.

Ausgehend von der Verteilungsfunktion F(x), kann die Nettoprämie für eine

Versicherungsdeckung der Pensionskasse ermittelt werden, deren Zweck es ist,
die Pensionskasse vor einer zu hohen Gesamtschadenbelastung zu schützen.
Eine solche Rückversicherung nennt man Überschaden- oder Stop Loss-

Deckung. Unter einem Stop Loss-Vertrag wird derjenige Teil des Gesamtscha-
dens abgedeckt, der eine bestimmte, vertraglich vereinbarte Schadenhöhe - den

sogenannten Stop Loss-Punkt - überschreitet, wobei als Versicherungsdauer
meistens ein Jahr gewählt wird. Bekanntlich bietet die Stop Loss-Deckung bei

gegebener Nettoprämie den optimalsten Versicherungsschutz. Geht man zur
Bruttoprämie über, so dürfte dies jedoch kaum mehr zutreffen. Vor allem für
kleinere Bestände wird der Sicherheitszuschlag, der die Schwankungen des

Überschadens auffangen soll, bedeutend.
In dieser Arbeit soll dem Praktiker gezeigt werden, wie Stop Loss-(Netto-)
Prämien auf einer Rechenanlage mit geringem Programmieraufwand berechnet
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werden können. Anhand einer (echten) Pensionskasse von 230 aktiven
Versicherten soll dies illustriert werden. Auf die bisher meistens angewandten
raffinierten Näherungsverfahren - die z.B. in [2], [9], [13] dargestellt sind -
wollen wir nicht eingehen.

Mit der zunehmenden Leistungsfähigkeit, vor allem von Kleincomputern, treten
die rekursiven Berechnungsmethoden für Stop Loss-Prämien klar in den

Vordergrund. Eine solche Methode hat Panjer [11], ausgehend von einer Arbeit
von Adelson [1], für zusammengesetzt Poisson verteilte Gesamtschäden hergeleitet.

Etwas später wurden ähnliche Rekursionsformeln auch für andere

Gesamtschadenverteilungen entdeckt. Wir verweisen insbesondere auf die

Arbeiten von Panjer [12], Jewell und Sundt [8], Bühlmann [4] und Bertram [3].

1. Rekursion für Stop Loss-Prämien

1.1

In diesem Abschnitt sei an ein paar grundlegende Definitionen und Beziehungen
erinnert, die für numerische Stop Loss-Prämienberechnungen von Nutzen sind.
Es sei S eine Zufallsvariable mit Verteilungsfunktion F und Wahrscheinlichkeitsfunktion

f. Wir stellen uns vor, dass S den jährlichen Gesamtschaden eines

Pensionskassenbestandes repräsentiere.
Betrachten wir eine Stop Loss-Deckung des S zugrunde liegenden Bestandes mit
Selbstbehalt t (auch Stop Loss-Punkt oder Stop Loss-Priorität genannt), so ist
die Stop Loss-(Netto-)Prämie SL(F;t) als Erwartungswert des Überschadens,
d.h. der Schadenbelastung des Rückversicherers, definiert. Formal ausgedrückt

SL(F;t) E[u,(S)], (1)

wobei die Überschadenfunktion M,(x) Max(0,x — t) ist für alle reellen Zahlen
x.
Somit gilt

SL(F;t)= (2)
k > t

Da wir es in unseren praktischen Beispielen mit diskreten Verteilungen zu tun
haben, verzichten wir auf entsprechende Formeln für den kontinuierlichen Fall.
Durch Umformung von (2) erhalten wir die folgenden Ausdrücke:

SL(F;t)=X( \-F{k))
k>t

(3)
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SL(/^0 £[S]-'Z (1-F(*)) (4)
k= 0

SL{F-t) E{S]-t+Yj{t-k)f{k). (5)
k= 0

Es wird dabei die Existenz von is [5] £ kf(k) vorausgesetzt.
k>0

Beachte, dass SL(F-,0) E[S] ist.

1.2

Aus den obigen Formeln ergibt sich leicht, dass die Stop Loss-Prämien für
ganzzahlige, benachbarte Stop Loss-Punkte t und f+1 wie folgt rekursiv
miteinander verknüpft sind:

SL(F;t+l) SL(F;t)-{l-F(t)] (6)

oder mit Hilfe der Wahrschemhchkeitsfunktion /

SL(F;t+l) SL(F;t)-l+YJ /(*), (7)
k 0

wobei t die positiven ganzen Zahlen durchläuft und SL(F-,0) E[S].

1.3

Besonders beim Aufbau der Stop Loss-Bruttoprämie ist es unerlässlich, die

Varianz bzw. die Standardabweichung des Überschadens zu bestimmen.
Obwohl wir in diesem Rahmen nicht auf die Problematik der Zusammensetzung
der Bruttoprämie eingehen werden, sei trotzdem an eine Rekursionsformel der
Varianz des Überschadens erinnert.
Ausgehend von der Definition

Var [ut(S)] E[uj(S)]-E2[ut(S)]

lässt sich die Rekursionsbeziehung

Var (t +1) Var (/) — 2 SL (t) +1 — F{t) + SL2 (t) — SL2 (t +1) (8)

herleiten, wobei Var(7) Var[w,(5)], SL(t) SL(F;t).
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Verankert is (8) durch Var(0) Var[5,] £'[5'2]—£'2[5']. Ausgehend von (8)
erhält man für t > 1:

Vav[ut(S)] E[S2]-2 £ SL(F-k)-SL2(F-t) + t-~i F(k) (9)
k=0 k=0

eine Formel, die sich ebenfalls gut eignet, die Varianz zusammen mit den Stop
Loss-Prämien sukzessive zu berechnen.

1.4

Das Problem der rekursiven Bestimmung der Stop Loss-Prämien ist somit
zurückgeführt auf die (rekursive) Berechnung der Wahrscheinlichkeitsfunktion
bzw. der Gesamtschaden-Verteilungsfunktion.

2. Modelle für die GesamtschadenVerteilung

2.1 Bezeichnungen, Voraussetzungen

Im Hinblick auf unsere Anwendungen betrachten wir eine Pensionskasse, deren

Anzahl Versicherte mit n bezeichnet werde; Altersrentner und Bezüger von
Invalidenrenten werden nicht mitgerechnet, da diese Bestandeskomponenten
nicht in die Stop Loss-Berechnungen eingehen werden.
Die für uns wichtigen Daten des L-ten Versicherten seien wie folgt bezeichnet,
wobei k durch den Aktivenbestand läuft:
xk,yk: erreichtes Alter (Mann, Frau)
qk\ einjährige Sterbenswahrscheinlichkeit
ik: einjährige Invalidierungswahrscheinlichkeit

(Reaktivierung eines Invaliden wird ausgeschlossen)

RTk: Todesfallrisikosumme
RIk: Invaliditätsrisikosumme
Bemerkung. Diese Daten müssen für jede Pensionskasse genau festgelegt
werden. Sie sind durch die technischen Grundlagen und den Aufbau der
Pensionskasse - hinsichtlich Leistung und Finanzierung - bestimmt, sowie
durch spezielle Vorschriften bezüglich der Festsetzung der Risikosumme für
Stop Loss-Prämien Berechnungen.
Annahme. Es sei Invalidierung mit nachfolgendem Tod innerhalb desselben

Versicherungsjahres ausgeschlossen.
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2.2 Die Risiken des Bestandes

Dem k-ten Versicherten des Pensionskassenbestandes werde eine Zufallsva-
riable Xk zugeordnet, deren Wertebereich die möglichen Jahresschäden dieses

Versicherten ist.

Die Verteilungsfunktion Fk der (diskreten) Zufallsvariable Xk ist eine dreistufige
Treppenfunktion, also falls z.B. RTk<RIk, so sieht der Graph von y Fk(x) wie

folgt aus:

y y=Fk{x) „h

i-Qk-h
-qk l

\ I

0 RTk Rh X

2.3 Zerlegung

Es wird sich im folgenden als nützlich erweisen, die Verteilungsfunktionen Fk wie

folgt aufzuspalten:

Fk(x) 1 -qk-ik)I(x) + (qk + ik)Pk(x), (10)

wobei I(x) 0 für x < 0 und 7(x) 1 für x ^ 0 und Pk (x) die Verteilungsfunktion
der Schadenhöhe für das k-te Risiko ist. Nehmen wir z.B. an, dass RTk < RIk ist,
so ist Pk durch die folgende Treppenfunktion repräsentiert:

" y
y=Pk(x)

y h/(qk+ik)
; l

1
1

\^qk/(qk+ik)

Ö Rfk Rfk '
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2.4 Das individuelle Modell

Es sei 5 die jährliche Gesamtschadensumme der Pensionskasse. Das individuelle
Modell ist gekennzeichnet durch Summation der Einzelschadenvariabeln über
den ganzen Bestand, d.h. durch

S X1+X2+...Xn. (11)

Es stellt sich nun die Aufgabe, die Verteilungsfunktion Fvon 5 zu bestimmen,
und zwar ausgehend von den als bekannt vorausgesetzten Verteilungsfunktionen

Fk der einzelnen Risiken. Unter der Voraussetzung der gegenseitigen

Unabhängigkeit der Zufallsvariabeln Xl7 X„ gewinnt man die Verteilungsfunktion

F von S durch Faltung aller individuellen Verteilungsfunktionen. Es

gi"SOmit F_.Fi.fi.....F.. (12)

Bemerkung.
Diese Gleichung bestimmt zwar F im formalen Sinn, doch ist dieses Ergebnis
insofern unbefriedigend, da für grosse Bestände der numerische Rechenaufwand

gewaltig wird.
Es ist deshalb wünschenswert, das individuelle Modell durch ein für numerische

Berechnungen besser geeignetes Modell zu ersetzen.

2.5 Das kollektive Modell

Das kollektive ModeH widerspiegelt eine Betrachtungsweise des vorliegenden
Bestandes, derzufolge die Anzahl Schadenfälle zufallsbedingt ist und zudem die

Schadenhöheverteilung für jeden auftretenden Schaden dieselbe ist. Es wird
auch hier wieder vorausgesetzt, dass die einzelnen Risiken untereinander

unabhängig sind.

Formal ausgedrückt bedeutet dies, dass

S=Y1+Y2+... + YN, (13)

wobei S die Zufallsvariable der Gesamtschadensumme ist, und ferner die

Zufallsvariabeln Y1, Y2, YN zusammen mit der Zufallsvariabeln N ein

System unabhängiger Zufallsvariabeln bilden. Ferner seien alle Yk gleich verteilt.
Nimmt N den Wert 0 an, so setze 5 0.

Weiter setzen wir voraus, dass die Schadenanzahl N Poisson verteilt ist und
bezeichnen den Poissonparameter mit X. Falls die Verteilungsfunktion der
Einzelschadenhöhen (alle sind gleich verteilt) mit H bezeichnet wird, so ist die
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Verteilungsfunktion von S gegeben durch

CO

F{x)=Y,17]e-kH*k{x). (14)
k 0 K

Wir nennen in diesem Fall S zusammengesetzt Poisson verteilt.
Bemerkung: Die Charakteristiken der individuellen Risiken des Pensionskassenbestandes

sind im kollektiven Modell in Eigenschaften der Verteilungsfunktion
H übergegangen. Wir wollen dies beim Übergang vom individuellen zum
kollektiven Modell zeigen.

2.6 Der Übergang vom individuellen zum kollektiven Modell1

Ausgehend von einem Pensionskassenbestand, d.h. vom individuellen Modell,
kann in natürlicher Weise ein Übergang zum kollektiven Modell bewerkstelligt
werden.
Zunächst gilt es den Poisson-Parameter für die Poisson-verteilte Schadenanzahl

N zu definieren. Da X E[N] sein muss, sollte offenbar
n

A= £ 1k + ik (15)
k 1

gesetzt werden. Die Bezeichnungen übernehmen wir von (2.1). Was die

Verteilung der Einzelschadenhöhe betrifft, so erinnern wir uns an die Zerlegung
(10) der individuellen Schadenvariabein Xk, in der die individuelle Schadenhöheverteilung

Pk eingeführt wurde. Es liegt nun auf der Hand, die Verteilungsfunktion

H als gewichtete Summe der Pk s zu definieren.

H(x)=t^V!LPk(x). (16)
k 1 /l

Bemerkungen.

- Auf den ersten Blick macht es den Anschein, als ob die kollektive
Betrachtungsweise keine einfacher zu berechnende Verteilungsfunktion für den

Gesamtschaden erzeugt hätte. Es wird sich jedoch zeigen, dass (14), obwohl
viel komplexer aufgebaut als (12), zu einer für numerische Zwecke ausgezeichneten

Rekursionsformel führt.

- Der Übergang vom individuellen zum kollektiven Modell (aufgrund von (15),

(16)) lässt sich mathematisch auch als Grenzübergang vollziehen. Dabei wird
jede Police im Bestand durch s unabhängige, gleichlautende Policen ersetzt,

1 Zur Definition von X, Pk(x)und H(x)m(15), (16) Falls f?7i. 0(bzw RIk 0), setze gt 0(bzw ik

0) Es ist somit Ä der Erwartungswert fur die Anzahl der von Null verschiedenen Schäden.



75

wobei für alle Policen, die die k-te Police ersetzen, die Wahrscheinlichkeit für
das Auftreten eines Schadens durch (qk + ik)/s gegeben ist. Die
Schadenhöheverteilungsfunktionen Pk bleiben dabei unverändert. Alsdann lässt man 5

gegen Unendlich streben.

- Eine weitere Übergangsmöglichkeit vom individuellen zum kollektiven
Modell beruht darauf, dass beim Eintritt eines Schadens das ausscheidende

Risiko sofort durch ein gleiches, von den anderen wiederum unabhängiges
ersetzt wird.

- Es bezeichne Sind die Gesamtschaden - Zufallsvariable mit individuellen und
SkoL diejenige im kollektiven Modell. Mit (15) und (16) lässt sich leicht zeigen,
dass

E[Sind] =£[Skol.] und Var[Sko,.] >Var[Sind.].

n

Es gilt insbesondere £'[5ind.]= £ {qkRTk + ikRIk}.
k=l

- In der Arbeit von Bühlmann/Gagliardi/Gerber/Straub [5] wird sogar gezeigt,
dass die (Netto-)57o/> Loss-Prämie für das kollektive Modell stets grösser oder

gleich derjenigen für das individuelle Modell ist.

3. Rekursive Bestimmung der Gesamtschadenverteilung

3.1 Rekursionsformel von Adelson-Panjer für das kollektive Modell

Wir nehmen die Bezeichnungen von (2.5) und (2.6) und werden die Verteilungsfunktion

F des zusammengesetzt Poisson-verteilten Gesamtschadens S bestimmen.

Die Schadenhöhen seien positiv, ganzzahlig und höchstens gleich m.
Die Verteilungsfunktion von S ist durch (14) gegeben, wobei X und PI laut (15)
und (16) definiert sind.
Die zu H gehörige Wahrscheinlichkeitsfunktion h ist demnach gegeben durch

m*)=UZ^+I4- (17)

Es sind Jx= [k\RTk x> 0] und Ix=[k\RIk x>0] die Indexmengen der
Summationen.
Die der Verteilungsfunktion F entsprechende Wahrscheinlichkeitsfunktion /'ist
somit

/W=l4"irW' (18)
Je =0
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Beachte, dass für eine Gesamtschadenhöhe von x aufgrund der Ganzzahligkeit
der Schadenhöhen k sgx sein muss, d.h. falls k>x, folgt h*k(x) 0. Somit ist die

Summe (18) endlich.
Wir zeigen nun, dass die Werte f{x) rekursiv bestimmt werden können.

./ (0) e_ A (19)

1 M

/(*) =- Z A/(x ~j) für x > 0 und Xj Xh(/). (20)
x j 1

Ferner ist M=Min(x,m).
Die Gleichung (19) folgt unmittelbar aus (18). Die Rekursionsformel wurde von
Panjer [11] aufgrund einer Arbeit von Adelson [1] hergeleitet. Die hier folgende
Herleitung stützt sich auf den Begriff der bedingten Wahrscheinlichkeit; diese

Beweisidee, die viel transparenter ist als die ursprüngliche Herleitung, stammt
von Bühlmann/Gerber und wurde erstmals im Rahmen des Seminars für
Versicherungsmathematik an der ETH Zürich im Sommer 1981 vorgetragen.
Um den Beweis von (20) zu erbringen, leiten wir zuerst den folgenden Hilfssatz
her.
Es seien S), S2,..., Sn gleich verteilte, unabhängige Zufallsvariabeln und
S S1 + +Sn. Dann gilt:

P(S x)=\ Y.jP{Sn=j)P{S-Sn x-j). (21)
x J 1

Um dies einzusehen, beachte, dass aus Symmetriegründen £,[1S'„|S' x] =f. Aus
der expliziten Form dieses bedingten Erwartungswertes und der Unabhängigkeit

der S), S„ folgt (21).

Wir kehren zur Herleitung von (20) zurück. Da >S«unendlich teilbar» ist, so lässt

sich S" als Summe von n unabhängigen gleich zusammengesetzt Poisson
verteilten (mit Poisson Parameter X/n) Zufallsvariablen auffassen. Auf die so

zerlegte Zufallsvariable S, S'1 + +S2 wenden wir (21) an.
Es ist somit

m=- IJ
j> i Ik 0

W -A/„
k\ h*k(j) P(S-S„ x-j)

V *

=F X J
j> i

- h (j) + Glieder der Ordnung
n

P(S — S„ x—j).
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Beachte, dass die Indexpaarungen j> 0, k 0 keinen Beitrag liefern (Schadenzahl

k 0 und Schadenhöhe7 > 0!). Wir lassen nun 00, dabei P(S — Sn x—j)
-yP (S x—j) =f(x—j) streben und gewinnen so die Rekursionsformel (20).

3.2 Rekursionsformel von Panjer/JewelljSundt

In [12], [8], [3] und [4] werden ähnliche Rekursionsformeln für Fälle von nicht
Poisson-verteilten Schadenanzahl-Variablen hergeleitet. Unter anderem gelingt
dies auch für negativ binomial verteilte Schadenanzahlen, was für Anwendungen

mit schwankenden Grundwahrscheinlichkeiten besonders wichtig ist.

3.3 Rekursionsformel für fortgesetzte Faltungen im individuellen Modell

Wir kehren zum individuellen Modell zurück und stellen für die Wahrscheinlichkeitsfunktion/,

die der Verteilung (12) entspricht, eine Rekursionsformel auf.

Wir müssen also

/=/i *h * *Jn (22)

berechnen; es bezeichnet hier^ die Wahrscheinlichkeitsfunktion, die dem ifc-ten

Risiko des Bestandes zugrunde liegt.
Es ist

fk (0) 1 - qk ~ ik, RR Tk) qk, RRIk) ik

fk{x) 0 für x 4= 0, RTk, RIk. { '
Wir definieren

gk+l=gk*fk + l (24)

für k 1, ...,« — 1 und —f. Es ist somit g„=f
Explizit ergibt sich

X

gk + iW= X g{x-j)fk + i(f), (25)
/ 0

oder unter Berücksichtigung von (23) erhalten wir

gk + i(x)= gk(x)fk + j (0)+gk(x-RTk)fk+1(RTk)+gk(x-RIk)fk + 1(RIk), (26)

wobei gk(t) 0 für t < 0. Ferner setze gk + x (x) 0 falls x grösser als der maximal

mögliche Schaden ist.



78

Bemerkung.
Für grössere Bestände dürfte die «Faltungsmethode» nicht zweckmässig sein für
numerische Berechnungen. Mit der Grösse des Bestandes steigt die Anzahl
Rechenoperationen sehr stark an, so dass kleinere Rechenanlagen bald nicht
mehr dafür in Frage kommen. Für unser Beispiel werden wir jedoch, vor allem
für Vergleichszwecke, auch diese «elementare» Methode anwenden.
Andererseits scheint sich die «Fast Fourier Transformation» nach [3] für grössere
Bestände gut zu eignen.

4. Stop Loss-Prämien für rekursiv berechenbare Gesamtschadenverteilungen

Wird die Wahrscheinlichkeitsfunktion - und somit auch die Verteilungsfunktion

- des Gesamtschadens rekursiv berechnet, so können parallel dazu auch die

Stop Loss-Prämien für ganzzahlige Stop Loss-Punkte (nach (6) oder (7)) und
falls gewünscht, auch die Varianzen der entsprechenden Überschäden (gemäss

(8) oder (9)) ermittelt werden.
Die hergeleiteten Formeln lassen sich leicht in einer der üblichen Programmiersprachen

ausdrücken.

Bemerkung. Die mit der Rekursionsmethode von Adelson/Panjer im Rahmen
des kollektiven Modells bestimmten Stop Loss-Prämien sind stets grösser, als

diejenigen welche mit Hilfe der Faltungsmethode im Rahmen des individuellen
Modells gewonnen werden können. Siehe dazu [10, p. 340] oder [7],

5. Stop Loss-Prämien für die Pensionskasse PK-230

5.1

Zunächst sei die Struktur der PK-230 in der folgenden Tabelle wiedergegeben.
Bei der PK-230 handelt es sich um eine echte Pensionskasse mit 230 aktiven
Mitgliedern eines mittleren Industrieunternehmens. Alters- und Invalidenrentner

werden nicht betrachtet, da diese Bestandeskomponenten nicht in die Stop
Loss-Berechnungen eingehen.

Bezeichnungen: x/y: erreichtes Alter AR: Altersrente
m: Anzahl FF: versicherter Lohn



y

20
21

22
23
24
25

26

27
28

29
30

31

32

33

34

35

36

37

38

39

40
41

42

43

44
45

46
47
48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

79

PK-230

46 Frauen 184 Männer

m AR L" x m AR L"

1 5 664 9 440 20 2 18 564 30 940
3 19442 32403 21 1 8400 14000
3 22 003 36 671 22 3 30 643 51072
2 11933 19 888 23 6 57 974 96624
1 5 277 9020 24 3 26129 43 548

3 27 358 46656 25 3 27101 45168
4 32 287 55712 26 5 49 812 83020

2 19624 34 431 27 12 147 843 252 430
28 6 57686 97 596

1 6 390 10650 29 4 33681 60140
3 24 271 45 644 30 3 26444 47 952
1 5 779 10138 31 3 31670 56 304
3 25 342 48 930 32 8 80 536 145 084

33 8 79 583 147844
34 13 139155 260144

1 7 745 12 908 35 4 37 265 70 621

36 4 29 870 61256
37 6 69 830 130090
38 6 42 858 93 540

1 5 554 9256 39 6 68 321 140 565
1 3 928 9029 40 6 58167 124320

41 5 53 504 108902
42 2 8 636 19260

1 7 338 13 222 43 4 46 936 99 380

44 6 58 592 128 436
45 4 48 975 106160
46 3 13 426 43 500
47 3 16780 43 944
48 1 18156 35 600

4 14 530 32183 49 2 13 584 36700
1 3 840 13 472 50 5 35 814 116262

51 2 11 440 36316
1 3 408 5 680 52 5 57958 117464
1 2 592 4 800 53 3 13 394 49 572

3 8 940 22 600 54 2 6 371 18 220
1 6 852 11420 55 3 21498 55 496
1 2 808 4 800 56 4 25 029 66264

57 3 40983 78900
58 5 82 693 144 380

3 10980 19180 59 1 9194 22 700

60 1 4 795 8 640
61

62 4 36617 65 650
63 3 38 541 73 800
64 1 12 093 27 800
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5.2 Das Leistungs- und Beitragssystem dieser Pensionskasse sieht wiefolgt aus:

Das niedrigste Eintrittsalter ist 20 Jahre, das Rücktrittsalter für Frauen 62 Jahre

und dasjenige für Männer 65 Jahre.
Die PK-230 ist eine Leistungsprimatkasse mit einem Durchschnittsbeitragssatz
von 12,5%; dieser Satz angewendet auf den versicherten individuellen Jahreslohn

Lv ergibt den Jahresbeitrag. Selbstverständlich übernimmt der Arbeitgeber
mindestens die Hälfte der Beitragszahlungen. Bei Lohnerhöhungen müssen

Nachzahlungen geleistet werden, um die Nachversicherung zu finanzieren.
Versichert werden in der PK-230 eine Altersrente und Invalidenrente, ferner
Hinterbliebenenrenten (Witwen-, Waisenrente) und die Prämienbefreiung im
Falle von Invalidität.
Die Höhe dieser Renten bemisst sich nach der Anzahl der vom Eintritt bis zum
Rücktritt zurückzulegenden Dienstjahre d. Ausgedrückt mit Hilfe des Renten-

seitZCS

RS(c/) Min (60%, 1,5%-d) (27)

ergibt sich eine Altersrente von RS(<i) Leine Invalidenrente in derselben Höhe,
eine Witwenrente von 60% der Altersrente (mit dreifacher Jahresrentenabfindung

im Falle der Wiederverheiratung) und eine Waisenrente von 30% der

Altersrente. Der versicherte Lohn L" bezieht sich auf das erreichte Alter.

5.3

Als versicherungstechnische Grundlagen wurden die Tabellen EVK 1980 der

Eidgenössischen Versicherungskasse zusammen mit einem technischen Zinsfuss

von 3,5 % gewählt. Im Rahmen dieser Grundlagen werden die Witwen- und
Waisenrentenbarwerte kollektiv gerechnet, d.h. mit Hilfe von Wahrscheinlichkeiten

verheiratet zu sein, sich wieder zu verheiraten, eine gewisse Anzahl Kinder
zu haben usw.

5.4

Bei der Risikosummenberechnung wird vom Leistungsbarwert das volle, individuelle

Deckungskapital abgezogen; negative Risikosummen werden aufgenullt.
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5.5 Eingabedaten Jür die Stop Loss-Prämienberechnungen

PK-230
Tabelle der Risikosummen in 1000 Fr

Risiko Tod IV Risikosumme Tod Risikosumme IV
Nr. k <tk h RTk RIk

1 0,00309 0.01930 0 5

2 309 1930 0 5

3 251 1300 0 13

4 235 1150 0 37

5 0,00220 0,01030 0 15

6 220 1030 0 18

7 206 910 0 18

8 192 790 0 25
9 167 550 0 40

10 0,00156 0,00445 0 34

11 156 445 0 20
12 156 445 0 22
13 156 445 0 64
14 101 120 0 89

15 0,00080 0,00075 0 56

16 75 70 0 75
17 55 50 0 116

18 46 35 0 191

19 46 35 0 59

20 0,00046 0,00035 0 168
21 43 30 0 95
22 40 25 0 105

23 40 25 0 244

24 38 25 0 107

25 0,00034 0,00025 0 119

26 34 25 0 225
27 32 25 0 151

28 32 25 0 160

29 30 25 0 149

30 0,00030 0,00025 0 95

31 30 25 0 142
32 30 25 0 152

33 30 25 0 113

34 30 25 0 129

35 0,00030 0,00025 0 118

36 36 25 0 107

37 1002 6160 62 141

38 942 5440 0 32

39 942 5440 0 3



Ri:
Nr

40
41

42
43

44

45

46
47
48
49

50
51

52
53

54

55

56
57
58

59

60
61

62

63

64

65

66

67

68
69

70
71

72
73

74

75

76
77

78

79

80

81

82

83

84

Tod
Ik

IV
4

Risikosumme Tod Risikosumme IV
RTk RIk

0,00884 0,04720 0

884 4720 0

884 4720 0

774 3280 0

722 2560 0

0,00672 0,01960 0

672 1960 0

672 1960 0

672 1960 0

672 1960 0

0,00624 0,01480 1

624 1480 0

624 1480 0

578 1120 5

578 1120 9

0,00578 0,01120 2

534 880 13

492 720 15

492 720 5

452 580 21

0,00452 0,00580 20

452 580 23

414 460 44
414 460 20

414 460 28

0,00414 0,00460 31

378 360 41

344 280 57

344 280 101

344 280 40

0,00344 0,00280 21

344 280 33

312 220 25
312 220 73

282 170 128

0,00254 0,00130 41

254 130 59

228 100 46
228 100 46
228 100 49

0,00204 0,00080 54
204 80 96
182 70 75
182 70 181

162 60 104

41

11

9

19

47

106

143

29

108

68

89

73

99

96

35

28

44
38

22

50

45

54

122

57

59

68

82

103

176

79

46

61

50

127

231

71

95

67

70

74

81

140

112

277

150



Risi
Nr.

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
101

102

103

104

105

106

107

108

109

110
111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Tod IV Risikosumme Tod Risikosumme IV
Ik h RTk Rh

0,00162 0,00060 149 216
144 50 61 85

144 50 40 59

128 40 296 426
128 40 63 88

0,00128 0,00040 90 129

128 40 91 129
128 40 93 133

114 30 214 309
114 30 86 121

0,00114 0,00030 79 111

114 30 77 106

114 30 106 151

102 28 83 119
102 28 186 259

0,00102 0,00028 160 231

102 28 90 127
91 26 91 129

91 26 91 128

91 26 111 159

0,00091 0,00026 86 122

81 24 75 108

81 24 281 416
81 24 237 351

72 22 97 145

0,00064 0,00020 98 156

64 20 135 216
58 18 77 130

58 18 113 195
58 18 270 467

0,00058 0,00018 97 166
58 18 89 149
58 18 149 257
58 18 125 212
58 18 98 165

0,00058 0,00018 193 331

54 16 142 250
54 16 73 133

54 16 97 178

52 14 149 301

0,00052 0,00014 146 292
52 14 88 179

50 12 79 164

50 12 139 300
53 10 69 178
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Risi
Nr.

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150
151

152

153

154

155

156

157

158

159

160
161

162
163

164

165

166

167

168

169

170
171

172

173

174

Tod

Ik

IV
4

Risikosumme Tod Risikosumme IV
RTk RIk

0,00053 0,00010 65 170

53 10 76 203

56 10 51 163

56 10 86 268

60 10 70 259

0,00060 0,00010 135 487
60 10 56 209
60 10 72 268

60 10 51 189

60 10 51 187

0,00060 0,00010 70 259
65 10 44 193

66 10 42 183

71 10 37 198

78 10 29 189

0,00078 0,00010 30 197

86 10 30 247
86 10 24 194

86 10 24 199

86 10 23 188

0,00095 0,00010 23 237
95 10 18 187

105 10 13 181

116 10 11 201

220 1030 0 28

0,00040 0,00025 0 64
32 25 0 107
32 25 0 154
30 25 0 218
30 25 0 122

0,00030 0,00025 0 108
30 25 0 110
30 25 0 116

578 1120 13 33
534 880 12 40

0,00378 0,00260 29 57

254 130 48 74
204 80 265 422
204 80 60 86

182 70 160 244

0,00182 0,00070 61 89
182 70 56 80

182 70 75 108
162 60 79 114
162 60 180 270



Nr

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200
201

202
203
204

205
206
207
208

209

210
211

212

213
214

215

216
217
218

85

Tod IV Risikosumme Tod Risiki

It lk RTk RIk

0,00114 0,00030 164 228
102 28 260 375

102 28 84 118

91 26 90 127

91 26 96 137

0,00081 0,00024 97 139
81 24 98 132
81 24 95 147
72 22 100 150

72 22 90 135

0,00072 0,00022 98 148

64 20 96 150

64 20 127 202
58 18 113 189

58 18 95 160

0,00058 0,00018 86 144
58 18 104 176

54 16 92 169
54 16 182 341

54 16 89 161

0,00054 0,00016 103 190

54 16 90 164

52 14 82 163

52 14 79 156

52 14 88 176

0,00052 0,00014 87 176

52 14 91 184

50 12 86 182

51 10 74 171

51 10 88 208

0,00051 0,00010 73 169
53 10 69 152

56 10 62 200
56 10 61 194

56 10 60 192

0,00056 0,00010 58 187

60 10 50 180

60 10 50 180

60 10 95 343

60 10 53 200

0,00060 0,00010 96 350

65 10 56 245

65 10 44 192
65 10 54 236
71 10 35 185
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Risiko Tod IV Risikosumme Tod Risikosumme IV
Nr k 1k h RTk RIk

220 0,00071 0,00010 36 192

221 78 10 26 172

222 86 10 30 241

223 86 10 21 172

224 95 10 22 234

225 0,00116 0,00010 11 199

226 942 5440 0 19

227 884 4720 0 24
228 534 880 16 98
229 414 460 104 280
230 309 1930 0 16

5.6 Numerische Resultate

Es werden Stop Loss-Prämien für die Pensionskasse PK-230 bestimmt und zwar
einmal unter Einschluss des Invaliditätsrisikos (TOD und IV) und einmal nur in
Bezug auf das Todesfallrisiko (TOD).
Als Berechnungsmethode kommt sowohl die Rekursionsmethode von Adel-
son/Panjer (Rekursion AP) sowie auch die Faltungsmethode (Faltung) zur
Anwendung.

PK-230

TOD TOD und IV

Poissonparameter X Poissonparameter X

2 0,2621700 2=1,2314800

Erwartungswert von S Erwartungswert von S

£[S] Fr 15'696,76 £[S] Fr. 66'535,73
(totale Risikopramie) (totale Risikopramie)

Standardabweichung a Standardabweichung a
<j [5] Fr. 41'558,18 cr[S] Fr 84'745,49

Bemerkung: Die oben tabellierte Standardabweichung o für den Gesamtschaden
S wurde aufgrund der Rekursion von Adelson/Panjer ermittelt; sie ist etwas

größer als diejenige, die man vermittels der Faltungsmethode erhalten würde.

Hingegen stimmen die Erwartungswerte beider Methoden bekanntlich überein.
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Bezeichnungen für die folgende Tabelle:
t: Stop Loss-Punkt in Fr. 1000,-
SL(t) SL(F;t): Stop Loss-Nettoprämie in Fr.
F(t): Verteilungsfunktion an der Stelle t

PK-230 TOD und INVALIDITÄT

Rekursion Adelson/Panjer Faltungsmethode

t F(t) SL(t) F(t) SL(t)
in Fr. 1000- Fr. Fr.

0 0,29186030 66 535,730 0,2869043 66 535,730
10 0,34317260 59687,903 0,33887304 59 642,295
20 0,42045220 53 429,602 0,41720257 53 345,833
30 0,47636096 47887,261 0,47352389 47772,113
40 0,53206884 42 937,564 0,52965496 42 799,671
50 0,58850389 38 561,681 0,58669051 38405,256
60 0,62089861 34 582,204 0,61946937 34409,750
67* 0,64117896 32 000,217 0,63962600 31 817,783
70 0,65448653 30943,172 0,65296957 30 756,157
80 0,68288377 27 627,122 0,68152015 27 426,129
90 0,70890882 24 556,640 0,70724280 24 339,877

100 0,73959475 21 764,308 0,73786673 21 530,481
134* 0,81300038 14 308,498 0,81161521 14 020,641
201* 0,92473432 6 367,996 0,92634389 6117,949
268* 0,96396198 2 762,283 0,96572653 2 618,483
335* 0,98533744 1 185,521 0,98605976 1 118,540
402* 0,99318909 499,515 0,99353261 467,743
469* 0,99732619 198,380 0,99748918 182,889
536* 0,99890212 78,326 0,99898658 70,828
603* 0,99957533 30,095 0,99961371 26,559
670* 0,99983362 11,576 0,99985321 9,929
737* 0,99993722 4,342 0,99994597 3,626
804* 0,99997613 1,629 0,00008010 1,319
871* 0,99999109 0,596 0,99999275 0,468
938* 0,99999673 0,216 0,99999744 0,163

1005* 0,99999882 0,077 0,99999911 0,056

Bemerkung: Die mit einem (*) versehenen Stop Loss-Punkte sind Vielfache von
Fr. 67 000,-«£,[V] totale Risikoprämie. Als Stop Loss-Punkte werden in der
Praxis oft Vielfache der Risikoprämie benützt.
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PK-230 TOD

Rekursion Adelson-Panjer Faltungsmethode

t F(t) SL(t) F(t) SL{t)
in Fr. 1000,- Fr Fr

0 0,76938022 15 696,760 0,76906221 15696,760
10 0,79153470 13 515,697 0,79128546 13 513,000
16* 0,81498728 12 322,739 0,81484422 12 318,790
32* 0,85257830 9651,495 0,85248328 9 645,747
48* 0,87782612 7 460,061 0,87775973 7 453,033
64* 0,90829002 5 689,139 0,90831297 5 681,309
00 o* 0,92517235 4 319,525 0,92521135 4312,158
96* 0,94749056 3 255,975 0,94752933 3 249,182

112* 0,96471296 2 582,830 0,96477996 2 576,909
128* 0,97132172 2 054,559 0,97135105 2 049,506
144* 0,97501012 1 622,194 0,97504137 1 617,628
160* 0,98142127 1 264,472 0,98145046 1 260,353
176* 0,98369578 988,816 0,98372535 985,180
192* 0,98874404 776,145 0,98877175 772,987
200 0,98970874 691,194 0,98973543 688,255
300 0,99871599 71,559 0,99872753 69,942
400* 0,99981709 10,575 0,99982302 9,831
500 0,99996683 1,635 0,99997102 1,382
600 0,99999689 0,151 0,99999741 0,121
700 0,99999961 0,019 0,99999970 0,013
800* 0,99999995 0,002 0,99999997 0,001

* Vielfache von Fr 16 000 -«£[5]

Schlussbemerkung

Diese Beispiele zeigen, mit welch hoher Genauigkeit die Rekursion AP zum Ziel
führt und überdies im Vergleich zur Methode der sukzessiven Faltungen viel

weniger Computer-Zeit benötigt. Ähnliches stellt man fest, wenn die Rechnungen

für andere Kassen (z. B. PK-50 in [10], [11], [6]) durchgeführt werden.

Dr. Rene P. Held
Biswindstrasse 32

8704 Herrliberg
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Zusammenfassung

Es wird in dieser Arbeit gezeigt, wie sich rekursiv (Netto-)Stop Loss-Pramien fur Pensionskassen
berechnen lassen, wobei das Todes- und Invaliditatsrisiko betrachtet wird. Numerische Ergebnisse
im «kollektiven Modell» werden verglichen mit entsprechenden Resultaten im «individuellen
Modell

Resume

Cet article montre comment calculer de fapon recursive des primes (nettes) «stop-loss» pour des

caisses de pension, tenant compte des risques de deces et d'invalidite Des resultats numeriques
obtenus dans le cadre du «modele collectif» sont compares a ceux derives du «modele individuel»

Summary

This paper shows how to recursively calculate stop loss (net) premiums for pension funds, whereby
the death as well as the disability risk is taken into account Numerical results obtained in the
framework of the "collective model" are then compared to the corresponding figures derived from
the "individual model"
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