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REeNE Pierre HELD, Herrliberg

Zur rekursiven Berechnung von
Stop Loss-Priamien fiir Pensionskassen

Prolog

Um diese Arbeit ins richtige Licht zu riicken, scheint es mir unerlésslich, mit ein
paar grundlegenden Feststellungen zu beginnen.

Ob eine Pensionskasse sich ganz oder teilweise riickversichern soll, hingt primér
von der Grosse ihres Bestandes und der Struktur ihres Leistungsplanes ab.
Kleinere Pensionskassen tun im allgemeinen gut daran, sich einer grosseren
Risikogemeinschaft anzuschliessen. Die Beweggriinde, sich riickzuversichern,
konnen aber auch nichtversicherungstechnischer Art sein. Dies trifft sicher dann
zu, wenn weder die Arbeitgeber noch die Arbeitnehmer sich mit der komplexen
Verwaltung der Pensionskasse befassen konnen oder wollen und es somit
vorziehen, die administrativen und versicherungstechnischen Belange ihrer
Pensionskasse im Rahmen eines Gruppenversicherungsvertrages ganz an eine
Versicherungsgesellschaft zu iibertragen.

Neben den konventionellen Riickversicherungsformen kann grundsétzlich auch
eine Stop Loss-(Uberschaden-)Deckung in Betracht gezogen werden. Kosten-
analysen zeigen aber im allgemeinen, dass eine Pensionskasse, die sich riickversi-
chern will, mit einer Stop Loss-Deckung nicht ohne weiteres gut beraten ist.
Es liegt in der Natur einer Stop Loss-Deckung, dass fiir kleinere Pensionskassen
— mit einem niedrigen Selbstbehalt — die Schwankung des den Selbstbehalt
Ubersteigenden Schadens sehr gross ist und somit die Brutto-Stop Loss-Primie
ein Vielfaches der Nettopramie ausmacht. Ein nicht unerheblicher administrati-
ver Aufwand, der mit einer Stop Loss-Deckung verkniipft ist, diirfte ein weiterer
Grund sein, einer konventionellen Riickversicherung den Vorzug zu geben. Eine
Pensionskasse, welche das ganze Dienstleistungsbouquet ihres Riickversicherers
beanspruchen will, kann dies — aus Kostengriinden — nicht im Rahmen eines
Stop Loss-Vertrages anstreben. Ferner ist zu beachten, dass Stop Loss-Vertrage
nur auf kurze Dauer abgeschlossen werden konnen. Die Stop Loss-Pramie kann
also schon nach kurzer Zeit stark ansteigen, was die Finanzplanung einer
Pensionskasse erschweren kann. Ferner ist noch zu erwihnen, dass auf Stop
Loss-Vertrigen in der Regel keine Uberschussanteile ausbezahlt werden.

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 1, 1982
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Zusammenfassend stellen wir fest, dass eine Pensionskasse nicht nur die
Versicherungsleistung, sondern auch die dargebotenen Dienstleistungen ihres
kiinftigen Versicherungstragers in die Waagschale werfen muss, bevor sie sich
flr die eine oder andere Riickversicherungsvariante entscheidet; dabei dirfte
sich das Ziinglein an der Waage nur selten auf die Seite einer Stop Loss-Deckung
neigen.

Im Rahmen dieser Arbeit werden einige der gemachten Vorbehalte numerisch
beleuchtet.

0. Einleitung

Die Zahlungsfihigkeit einer Pensionskasse kann unter Umstdnden durch ein
paar grosse, kurz hintereinander auftretende Schdden oder durch die zeitliche
Héaufung etlicher kleinerer Schiden bedroht werden.

Natiirlich kann der Gesamtschaden, den eine Vorsorgeeinrichtung in einer
bestimmten Periode, i.a. innerhalb eines Jahres, erleiden kann, nicht mit
Bestimmtheit vorausgesagt werden. Im Rahmen der Risikotheorie stehen jedoch
mathematische Modelle bereit, die es einem erlauben, wahrscheinlichkeitsbehaf-
tete Voraussagen iiber die zu erwartende Schadenbelastung zu errechnen. Die
Grosse, die es in diesem Zusammenhang zu betrachten und zu bestimmen gilt, ist
die Verteilungsfunktion F(x) des Gesamtschadens, d.h. die Funktion, deren
Wert an der Stelle x die Wahrscheinlichkeit ist, dass der Gesamtschaden in der
zugrunde gelegten Periode hochstens den Betrag x erreicht.

Ausgehend von der Verteilungsfunktion F(x), kann die Nettopramie fiir eine
Versicherungsdeckung der Pensionskasse ermittelt werden, deren Zweck es ist,
die Pensionskasse vor einer zu hohen Gesamtschadenbelastung zu schiitzen.
Eine solche Riickversicherung nennt man Uberschaden- oder Stop Loss-
Deckung. Unter einem Stop Loss-Vertrag wird derjenige Teil des Gesamtscha-
dens abgedeckt, der eine bestimmte, vertraglich vereinbarte Schadenhéhe — den
sogenannten Stop Loss-Punkt — {iberschreitet, wobei als Versicherungsdauer
meistens ein Jahr gewéhlt wird. Bekanntlich bietet die Stop Loss-Deckung bei
gegebener Nettoprimie den optimalsten Versicherungsschutz. Geht man zur
Bruttoprdmie iiber, so diirfte dies jedoch kaum mehr zutreffen. Vor allem fiir
kleinere Bestdnde wird der Sicherheitszuschlag, der die Schwankungen des
Uberschadens auffangen soll, bedeutend.

In dieser Arbeit soll dem Praktiker gezeigt werden, wie Stop Loss-(Netto-)
Priamien auf einer Rechenanlage mit geringem Programmieraufwand berechnet
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werden konnen. Anhand einer (echten) Pensionskasse von 230 aktiven Versi-
cherten soll dies illustriert werden. Auf die bisher meistens angewandten
raffinierten Nidherungsverfahren — die z.B. in [2], [9], [13] dargestellt sind —
wollen wir nicht eingehen.

Mit der zunehmenden Leistungsfihigkeit, vor allem von Kleincomputern, treten
die rekursiven Berechnungsmethoden fiir Stop Loss-Primien klar in den
Vordergrund. Eine solche Methode hat Panjer [11], ausgehend von einer Arbeit
von Adelson [1], fiir zusammengesetzt Poisson verteilte Gesamtschiden herge-
leitet. Etwas spidter wurden dhnliche Rekursionsformeln auch fiir andere
Gesamtschadenverteilungen entdeckt. Wir verweisen insbesondere auf die
Arbeiten von Panjer [12], Jewell und Sundt [8], Biihlmann [4] und Bertram [3].

L, Rekursion fiir Stop Loss-Primien

1.1

In diesem Abschnitt sei an ein paar grundlegende Definitionen und Beziehungen
erinnert, die fiir numerische Stop Loss-Pramienberechnungen von Nutzen sind.
Es sei § eine Zufallsvariable mit Verteilungsfunktion F und Wahrscheinlich-
keitsfunktion f. Wir stellen uns vor, dass S den jahrlichen Gesamtschaden eines
Pensionskassenbestandes reprisentiere.

Betrachten wir eine Stop Loss-Deckung des S zugrunde liegenden Bestandes mit
Selbstbehalt ¢ (auch Stop Loss-Punkt oder Stop Loss-Prioritdt genannt), so ist
die Stop Loss-(Netto-)Primie SL(F;?) als Erwartungswert des Uberschadens,
d.h. der Schadenbelastung des Riickversicherers, definiert. Formal ausgedriickt

SL(F;0)=E[u(S)], (1)

wobei die Uberschadenfunktion u,(x)=Max (0,x —¢) ist fiir alle reellen Zahlen
X.
Somit gilt

SL(F;)= Y, (k—1)f (k). 2

k>t

Da wir es in unseren praktischen Beispielen mit diskreten Verteilungen zu tun
haben, verzichten wir auf entsprechende Formeln fiir den kontinuierlichen Fall.
Durch Umformung von (2) erhalten wir die folgenden Ausdriicke:

SL(F:0)=Y (1~F(k)) 3)

k>t
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t1

SL(F;t)zE[S]—kZO(l —F(k)) (4)
SL(F;t):E[S}—1‘+I;V_‘1 (t—k)f(k). (%)

Es wird dabei die Existenz von E[S]= Y kf(k) vorausgesetzt.

k>0

Beachte, dass SL (F;0)=E[S] ist.

1.2

Aus den obigen Formeln ergibt sich leicht, dass die Stop Loss-Prdmien fiir
ganzzahlige, benachbarte Stop Loss-Punkte ¢ und ¢+1 wie folgt rekursiv
miteinander verkniipft sind:

SL(F;t+1)=SL(F;t)—(1—F (1)) (6)

oder mit Hilfe der Wahrscheinlichkeitstfunktion f
- SL(F;t+1)=SL(F;n)—1+ Y f(k), 7
k=0
wobel ¢ die positiven ganzen Zahlen durchlduft und SL(F;0)= E[S].

1.3

Besonders beim Aufbau der Stop Loss-Bruttoprdmie ist es unerlédsslich, die
Varianz bzw. die Standardabweichung des Uberschadens zu bestimmen.
Obwohl wir in diesem Rahmen nicht auf die Problematik der Zusammensetzung
der Bruttoprdamie eingehen werden, sei trotzdem an eine Rekursionsformel der
Varianz des Uberschadens erinnert.

Ausgehend von der Definition

Var [u,(8)]=E[ (S)] — E* [u,(S)]
lasst sich die Rekursionsbeziehung
Var(t+1)=Var(¢) =2SL(t) +1 —F()+ SL*(t) = SL*(t + 1) (8)

herleiten, wobei Var(z)=Var[u,(S)], SL(t)=SL(F;t).
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Verankert is (8) durch Var(0)=Var[S]=E[S*]—E*[S]. Ausgehend von (8)
erhélt man fiir t>1:

F==

Var[u,(S)] = E[S?] —2 kzo SL(F;k)—SLA(F:t)+ 1t — 1{;10 F(k) 9)

eine Formel, die sich ebenfalls gut eignet, die Varianz zusammen mit den Stop
Loss-Pramien sukzessive zu berechnen.

1.4

Das Problem der rekursiven Bestimmung der Stop Loss-Primien ist somit
zurtickgefiithrt auf die (rekursive) Berechnung der Wahrscheinlichkeitsfunktion
bzw. der Gesamtschaden-Verteilungsfunktion.

2. Modelle fiir die Gesamtschadenverteilung

2.1 Bezeichnungen, Voraussetzungen

Im Hinblick auf unsere Anwendungen betrachten wir eine Pensionskasse, deren
Anzahl Versicherte mit n bezeichnet werde; Altersrentner und Beziiger von
Invalidenrenten werden nicht mitgerechnet, da diese Bestandeskomponenten
nicht in die Stop Loss-Berechnungen eingehen werden.
Die fiir uns wichtigen Daten des k-ten Versicherten seien wie folgt bezeichnet,
wobei k& durch den Aktivenbestand lauft:
X, Y. erreichtes Alter (Mann, Frau)
qk: einjahrige Sterbenswahrscheinlichkeit
Iy : einjahrige Invalidierungswahrscheinlichkeit

(Reaktivierung eines Invaliden wird ausgeschlossen)
RT,: Todesfallrisikosumme
RI.: Invaliditiatsrisikosumme
Bemerkung. Diese Daten miissen fiir jede Pensionskasse genau festgelegt
werden. Sie sind durch die technischen Grundlagen und den Aufbau der
Pensionskasse — hinsichtlich Leistung und Finanzierung — bestimmt, sowie
durch spezielle Vorschriften beziiglich der Festsetzung der Risikosumme fiir
Stop Loss-Pramien Berechnungen.
Annahme. Es sei Invalidierung mit nachfolgendem Tod innerhalb desselben
Versicherungsjahres ausgeschlossen.
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2.2 Die Risiken des Bestandes

Dem k-ten Versicherten des Pensionskassenbestandes werde eine Zufallsva-
riable X zugeordnet, deren Wertebereich die moglichen Jahresschdden dieses
Versicherten ist.

Die Verteilungsfunktion F, der (diskreten) Zufallsvariable X, ist eine dreistufige
Treppenfunktion, also falls z.B. RT, < RI,, so sicht der Graph von y = F,(x) wie
folgt aus:

[y y=F(x) ?{ I
: fe/ L ! !
1_‘]k_lk ‘ ______ [
\ ; |
0 RT, RI, X

2.3 Zerlegung

Es wird sich im folgenden als niitzlich erweisen, die Verteilungsfunktionen F) wie
folgt aufzuspalten:

Fi(x) =1 —qx — i) 1(x) +(gx + it) Pr(x), (10)

wobei /(x) =0 fiir x <0 und I(x)=1 fiir x>0 und P, (x) die Verteilungsfunktion
der Schadenhdhe fiir das k-te Risiko ist. Nehmen wir z.B. an, dass RT, < RI, ist,
so ist P, durch die folgende Treppenfunktion reprisentiert:

ty

y="F(x)
i i
< i/ (Gt 1)
L 1

ir i/ (@ + ix) i

: : v N

0 RT, RI; ’
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2.4 Das individuelle Modell

Essei S die jahrliche Gesamtschadensumme der Pensionskasse. Das individuelle
Modell ist gekennzeichnet durch Summation der Einzelschadenvariabeln iiber
den ganzen Bestand, d.h. durch

Es stellt sich nun die Aufgabe, die Verteilungsfunktion ¥ von S zu bestimmen,
und zwar ausgehend von den als bekannt vorausgesetzten Verteilungsfunktio-
nen F, der einzelnen Risiken. Unter der Voraussetzung der gegenseitigen
Unabhdngigkeit der Zufallsvariabeln X7, ..., X|, gewinnt man die Verteilungs-
funktion F von § durch Faltung aller individuellen Verteilungsfunktionen. Es

1t somit
. F=F %Fy%...xF,. (12)

Bemerkung.

Diese Gleichung bestimmt zwar F im formalen Sinn, doch ist dieses Ergebnis
insofern unbefriedigend, da fiir grosse Bestinde der numerische Rechenauf-
wand gewaltig wird.

Es ist deshalb wiinschenswert, das individuelle M odell durch ein fiir numerische
Berechnungen besser geeignetes Modell zu ersetzen.

2.5  Das kollektive Modell

Das kollektive Modell widerspiegelt eine Betrachtungsweise des vorliegenden
Bestandes, derzufolge die Anzahl Schadenfille zufallsbedingt ist und zudem die
Schadenhoheverteilung fiir jeden auftretenden Schaden dieselbe ist. Es wird
auch hier wieder vorausgesetzt, dass die einzelnen Risiken untereinander
unabhingig sind.

Formal ausgedriickt bedeutet dies, dass

S=Y+Yo+...+ Yy, (13)

wobei S die Zufallsvariable der Gesamtschadensumme ist, und ferner die
Zufallsvariabeln Y,, Y,, ..., Yy zusammen mit der Zufallsvariabeln N ein
System unabhdingiger Zufallsvariabeln bilden. Ferner seien alle Y, gleich verteilt.
Nimmt N den Wert 0 an, so setze S=0.

Weiter setzen wir voraus, dass die Schadenanzahl N Poisson verteilt ist und
bezeichnen den Poissonparameter mit 1. Falls die Verteilungsfunktion der
Einzelschadenhohen (alle sind gleich verteilt) mit A bezeichnet wird, so ist die
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Verteilungsfunktion von § gegeben durch
o] /ﬁtk
F(x)= ), zye *H*(x). (14)
k=g T

Wir nennen in diesem Fall S zusammengesetzt Poisson verteilt.

Bemerkung: Die Charakteristiken der individuellen Risiken des Pensionskassen-
bestandes sind im kollektiven Modell in Eigenschaften der Verteilungsfunktion
H iibergegangen. Wir wollen dies beim Ubergang vom individuellen zum
kollektiven Modell zeigen.

2.6  Der Ubergang vom individuellen zum kollektiven Modell*

Ausgehend von einem Pensionskassenbestand, d.h. vom individuellen Modell,
kann in natiirlicher Weise ein Ubergang zum kollektiven Modell bewerkstelligt
werden.

Zunichst gilt es den Poisson-Parameter fiir die Poisson-verteilte Schadenanzahl
N zu definieren. Da 1= E[N] sein muss, sollte offenbar

)= Zl g+, (15)
k=

gesetzt werden. Die Bezeichnungen iibernehmen wir von (2.1). Was die
Verteilung der Einzelschadenhdhe betrifft, so erinnern wir uns an die Zerlegung
(10) der individuellen Schadenvariabeln X}, in der die individuelle Schadenhdhe-
verteilung P, eingefiihrt wurde. Es liegt nun auf der Hand, die Verteilungsfunk-
tion H als gewichtete Summe der P,’s zu definieren.

H(x)=kil D% b, (16)

Bemerkungen.

— Auf den ersten Blick macht es den Anschein, als ob die kollektive Betrach-
tungsweise keine einfacher zu berechnende Verteilungsfunktion fiir den
Gesamtschaden erzeugt hitte. Es wird sich jedoch zeigen, dass (14), obwohl
viel komplexer aufgebaut als (12), zu einer fiir numerische Zwecke ausgezeich-
neten Rekursionsformel fiihrt.

— Der Ubergang vom individuellen zum kollektiven Modell (aufgrund von (15),
(16)) lasst sich mathematisch auch als Grenziibergang vollziehen. Dabei wird
jede Police im Bestand durch s unabhingige, gleichlautende Policen ersetzt,

! Zur Definition von A, P, (x) und H (x) in (15), (16): Falls RT, =0 (bzw. RI, = 0), setze ¢, =0 (bzw. i,
=0). Es ist somit A der Erwartungswert fiir die Anzahl der von Null verschiedenen Schiden.
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wobei fiir alle Policen, die die k-te Police ersetzen, die Wahrscheinlichkeit fiir
das Auftreten eines Schadens durch (¢, +i,)/s gegeben ist. Die Schadenhohe-
verteilungsfunktionen P, bleiben dabei unverindert. Alsdann ldsst man s
gegen Unendlich streben.

— Eine weitere Ubefgangsméglichkeit vom individuellen zum kollektiven
Modell beruht darauf, dass beim Eintritt eines Schadens das ausscheidende
Risiko sofort durch ein gleiches, von den anderen wiederum unabhingiges
ersetzt wird.

— Es bezeichne §;,4 die Gesamtschaden — Zufallsvariable mit individuellen und
Sior. diejenige im kollektiven Modell. Mit (15) und (16) lasst sich leicht zeigen,
dass

E[Sina] = E[Skor.] und Var[Sye] > Var[Sia |-

n

Es gilt insbesondere E[Sina]= ), {qRTi+ i R}

k=1
— In der Arbeit von Bithimann/Gagliardi/Gerber/Straub [5] wird sogar gezeigt,
dass die (Netto-)Stop Loss-Pramie fiir das kollek tive Modell stets grisser oder
gleich derjenigen fiir das individuelle Modell ist.

3. Rekursive Bestimmung der Gesamtschadenverteilung

3.1 Rekursionsformel von Adelson-Panjer fiir das kollektive Modell

Wir nehmen die Bezeichnungen von (2.5) und (2.6) und werden die Verteilungs-
funktion F des zusammengesetzt Poisson-verteilten Gesamtschadens S bestim-
men. Die Schadenhdhen seien positiv, ganzzahlig und hochstens gleich m.
Die Verteilungsfunktion von S ist durch (14) gegeben, wobei A und H laut (15)
und (16) definiert sind.

Die zu H gehorige Wahrscheinlichkeitsfunktion / ist demnach gegeben durch

=3 % gt 3 il 7

keld, kel

Es sind J,=[k|RT,=x>0] und I,=[k|RI,=x>0] die Indexmengen der
Summationen.

Die der Verteilungsfunktion F entsprechende Wahrscheinlichkeitsfunktion f'ist
somit

1= T e o (19)
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Beachte, dass fiir eine Gesamtschadenhohe von x aufgrund der Ganzzahligkeit
der Schadenhohen k < x sein muss, d.h. falls k> x, folgt #**(x) =0. Somit ist die
Summe (18) endlich.

Wir zeigen nun, dass die Werte f(x) rekursiv bestimmt werden kénnen.

f(0)y=e"* (19)

M
f(x)=§ Y. jAf(x—j) fir x>0 und A;=1h(). (20)

=
Ferner ist M =Min(x,m).
Die Gleichung (19) folgt unmittelbar aus (18). Die Rekursionsformel wurde von
Panjer [11] aufgrund einer Arbeit von Adelson [1] hergeleitet. Die hier folgende
Herleitung stiitzt sich auf den Begriff der bedingten Wahrscheinlichkeit ; diese
Beweisidee, die viel transparenter ist als die urspriingliche Herleitung, stammt
von Bithlmann/Gerber und wurde erstmals im Rahmen des Seminars fiir
Versicherungsmathematik an der ETH Ziirich im Sommer 1981 vorgetragen.
Um den Beweis von (20) zu erbringen, leiten wir zuerst den folgenden Hilfssatz
her.
Es seien Sy, S,,..., S, gleich verteilte, unabhingige Zufallsvariabeln und
S=8;+...+S,. Dann gilt:

P(S=)=" 3 jP(S,=) P(S—S,=x ) e

Um dies einzusehen, beachte, dass aus Symmetriegriinden E[S,|S=x]=3%. Aus
der expliziten Form dieses bedingten Erwartungswertes und der Unabhingig-
keit der Sy, ..., S, folgt (21).

Wir kehren zur Herleitung von (20) zuriick. Da S«unendlich teilbar» ist, so ldsst
sich § als Summe von »n unabhingigen gleich zusammengesetzt Poisson
verteilten (mit Poisson Parameter A/n) Zufallsvariablen auffassen. Auf die so
zerlegte Zufallsvariable S=S; + ...+ 5, wenden wir (21) an.

Es ist somit

o) k
f(x)— Z][ Z (/1/”1) —A/nh*k(j):f P(S—S,,=x—j)

]>1

- Z j{: h(j)+ Glieder der Ordnung [1 :H P(S—-S,=x—)).

_]>1
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Beachte, dass die Indexpaarungen j >0, £ =0 keinen Beitrag liefern (Schaden-
zahl K =0und Schadenhdhe j > 0!). Wir lassen nun n— o0, dabei P(S—.S,=x —))
—P(S=x—j)=f(x—j) streben und gewinnen so die Rekursionsformel (20).

3.2 Rekursionsformel von Panjer|Jewell/Sundt

In [12], [8], [3] und [4] werden dhnliche Rekursionsformeln fiir Félle von nicht
Poisson-verteilten Schadenanzahl-Variablen hergeleitet. Unter anderem gelingt
dies auch fiir negativ binomial verteilte Schadenanzahlen, was fiir Anwendun-
gen mit schwankenden Grundwahrscheinlichkeiten besonders wichtig ist.

3.3 Rekursionsformel fiir fortgesetzte Faltungen im individuellen Modell

Wir kehren zum individuellen Modell zuriick und stellen fiir die Wahrscheinlich-
keitstunktion f, die der Verteilung (12) entspricht, eine Rekursionsformel auf.
Wir miussen also

S=lixfase. . xf, (22)

berechnen; es bezeichnet hier f;, die Wahrscheinlichkeitsfunktion, die dem k-ten
Risiko des Bestandes zugrunde liegt.
Es ist

S0 =1—g,—ix, f(RT) =g, f(RI) =i,

fo(x)=0 fiir x+0, RT,, RI,. (23)
Wir definieren
Zrr1=8rkfre (24)
fiir k=1, ..., n—1 und g, =/;. Es ist somit g,=1.
Explizit ergibt sich
G (9= T £s=Dfora () 25)

oder unter Beriicksichtigung von (23) erhalten wir

gk+1(x):gk(x)ﬁc+1(0)+gk(x_RTk)fk-i-1(RTk)+gk(x_R]k)ﬁc+1(R]k)a (26)

wobei g, (1) =0 fiir 1 < 0. Ferner setze g, . (x) =0 falls x grosser als der maximal
mogliche Schaden ist.
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Bemerkung.

Fiir grossere Bestande diirfte die « Faltungsmethode» nicht zweckmissig sein fiir
numerische Berechnungen. Mit der Grosse des Bestandes steigt die Anzahl
Rechenoperationen sehr stark an, so dass kleinere Rechenanlagen bald nicht
mehr dafiir in Frage kommen. Fiir unser Beispiel werden wir jedoch, vor allem
fiir Vergleichszwecke, auch diese «elementare» Methode anwenden.
Andererseits scheint sich die « Fast Fourier Transformation» nach [3] fiir grossere
Bestdnde gut zu eignen.

4. Stop Loss-Primien fiir rekursiv berechenbare Gesamtschadenverteilungen

Wird die Wahrscheinlichkeitsfunktion — und somit auch die Verteilungsfunk-
tion —des Gesamtschadens rekursiv berechnet, so konnen parallel dazu auch die
Stop Loss-Pramien fiir ganzzahlige Stop Loss-Punkte (nach (6) oder (7)) und
falls gewiinscht, auch die Varianzen der entsprechenden Uberschiden (gemiss
(8) oder (9)) ermittelt werden.

Die hergeleiteten Formeln lassen sich leicht in einer der {iblichen Programmier-
sprachen ausdriicken.

Bemerkung. Die mit der Rekursionsmethode von Adelson/Panjer im Rahmen
des kollektiven Modells bestimmten Stop Loss-Primien sind stets grosser, als
diejenigen welche mit Hilfe der Faltungsmethode im Rahmen des individuellen
Modells gewonnen werden konnen. Siehe dazu [10, p. 340] oder [7].

S. Stop Loss-Pramien fiir die Pensionskasse PK-230

5.1

Zunichst sei die Struktur der PK-230 in der folgenden Tabelle wiedergegeben.
Bei der PK-230 handelt es sich um eine echte Pensionskasse mit 230 aktiven
Mitgliedern eines mittleren Industrieunternehmens. Alters- und Invalidenrent-
ner werden nicht betrachtet, da diese Bestandeskomponenten nicht in die Stop
Loss-Berechnungen eingehen.

Bezeichnungen: x/y: erreichtes Alter AR : Altersrente
m: Anzahl L: versicherter Lohn
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PK-230
46 Frauen 184 Maéanner

y m AR LY x m AR g

20 1 5664 9440 20 2 18 564 30940
21 3 19442 32403 21 1 8400 14000
22 3 22003 36671 22 3 30643 51072
23 2 11933 19 888 23 6 57974 96 624
24 1 5277 9020 24 3 26129 43 548
25 3 27358 46656 25 3 27101 45168
26 4 32287 55712 26 5 49 812 83020
20 2 19624 34431 27 2 147 843 252430
28 28 6 57686 97 596
29 1 6390 10650 29 4 33681 60 140
30 3 24271 45 644 30 3 26444 47952
31 1 5779 10138 31 3 31670 56 304
32 3 25342 48930 32 8 80536 145084
33 33 8 79 583 147 844
34 34 3 139155 260 144
35 1 7745 12908 35 4 37265 70621
36 36 4 29870 61256
37 37 6 69 830 130090
38 38 6 42 858 93 540
39 1 5554 9256 39 6 68 321 140 565
40 1 3928 9029 40 6 58167 124320
41 41 5 53504 108 902
42 42 2 8636 19260
43 1 7338 13222 43 4 46936 99 380
44 44 6 58 592 128436
45 45 4 48975 106 160
46 46 3 13426 43 500
47 47 3 16780 43944
48 48 1 18156 35600
49 4 14530 32183 49 2 13584 36700
50 1 3840 13472 50 5 35814 116262
51 51 2 11440 36316
52 1 3408 5680 52 5 57958 117464
53 1 2592 4800 53 3 13394 49 572
54 3 8940 22600 54 2 6371 18220
55 1 6852 11420 55 3 21498 55496
56 1 2 808 4 800 56 4 25029 66264
57 5 3 40983 78 900
58 58 5 82693 144 380
59 3 10980 19180 59 1 9194 22700
60 60 1 4795 8 640
61 61

62 62 4 36617 65650
63 63 3 38 541 73800
64 64 1 12093 27800
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5.2 Das Leistungs- und Beitragssystem dieser Pensionskasse sieht wie folgt aus

Das niedrigste Eintrittsalter ist 20 Jahre, das Riicktrittsalter fiir Frauen 62 Jahre
und dasjenige fiir Manner 65 Jahre.

Die PK-230 ist eine Leistungsprimatkasse mit einem Durchschnittsbeitragssatz
von 12,5% ; dieser Satz angewendet auf den versicherten individuellen Jahres-
lohn L? ergibt den Jahresbeitrag. Selbstverstiandlich ibernimmt der Arbeitgeber
mindestens die Hélfte der Beitragszahlungen. Bei Lohnerhohungen miissen
Nachzahlungen geleistet werden, um die Nachversicherung zu finanzieren.
Versichert werden in der PK-230 eine Altersrente und Invalidenrente, ferner
Hinterbliebenenrenten (Witwen-, Waisenrente) und die Primienbefreiung im
Falle von Invaliditit.

Die Hohe dieser Renten bemisst sich nach der Anzahl der vom Eintritt bis zum
Riicktritt zuriickzulegenden Dienstjahre d. Ausgedriickt mit Hilfe des Renten-

RS(d)=Min (60 9%,1,5% - d) (27)

ergibt sich eine A/tersrente von RS(d) - L', eine Invalidenrente in derselben Hohe,
eine Witwenrente von 609, der Altersrente (mit dreifacher Jahresrentenabfin-
dung im Falle der Wiederverheiratung) und eine Waisenrente von 309, der
Altersrente. Der versicherte Lohn L' bezieht sich auf das erreichte Alter.

satzes

3.3

Als versicherungstechnische Grundlagen wurden die Tabellen EVK 1980 der
Eidgendssischen Versicherungskasse zusammen mit einem technischen Zinsfuss
von 3,59 gewahlt. Im Rahmen dieser Grundlagen werden die Witwen- und
Waisenrentenbarwerte kollektiv gerechnet, d.h. mit Hilfe von Wahrscheinlich-
keiten verheiratet zu sein, sich wieder zu verheiraten, eine gewisse Anzahl Kinder
zu haben usw.

5.4

Bei der Risikosummenberechnung wird vom Leistungsbarwert das volle, indivi-
duelle Deckungskapital abgezogen ; negative Risikosummen werden aufgenullt.



5.5 Eingabedaten fiir die Stop Loss-Prdmienberechnungen

PK-230
Tabelle der Risikosummen in 1000 Fr.

Risiko Tod v Risikosumme Tod Risikosumme IV
Nr. k& g Iy RT, RI,
1 0,00309 0.01930 0 5
2 309 1930 0 5
3 251 1300 0 13
4 235 1150 0 37
5 0,00220 0,01030 0 15
6 220 1030 0 18
7 206 910 0 18
8 192 790 0 25
9 167 550 0 40
10 0,00156 0,00445 0 34
11 156 445 0 20
12 156 445 0 22
13 156 445 0 64
14 101 120 0 89
15 0,00080 0,00075 0 56
16 75 70 0 75
17 1) 50 0 116
18 46 35 0 191
19 46 35 0 59
20 0,00046 0,00035 0 168
21 43 30 0 95
22 40 25 0 105
23 40 25 0 244
24 38 25 0 107
25 0,00034 0,00025 0 119
26 34 25 0 225
27 32 25 0 151
28 32 25 0 160
29 30 25 0 149
30 0,00030 0,00025 0 95
31 30 25 0 142
32 30 s 0 152
33 30 25 0 113
34 30 25 0 129
35 0,00030 0,00025 0 118
36 36 25 0 107
37 1002 6160 62 141
38 - 942 5440 0 32
39 942 5440 0 3
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Risiko Tod v Risikosumme Tod Risikosumme IV
Nr. k G i RT, RI,
40 0,00884 0,04720 0 41
41 884 4720 0 11
42 884 4720 0 9
43 774 3280 0 19
44 722 2560 0 47
45 0,00672 0,01960 0 106
46 672 1960 0 143
47 672 1960 0 29
48 672 1960 0 108
49 672 1960 0 68
50 0,00624 0,01480 1 89
51 624 1480 0 73
52 624 1480 0 99
53 578 1120 5 96
54 578 1120 9 35
55 0,00578 0,01120 2 28
56 534 880 13 44
57 492 720 15 38
58 492 720 5 22
59 452 580 21 50
60 0,00452 0,00580 20 45
61 452 580 23 54
62 414 460 44 122
63 414 460 20 57
64 414 460 28 59
65 0,00414 0,00460 31 68
66 378 360 41 82
67 344 280 57 103
68 344 280 101 176
69 344 280 40 79
70 0,00344 0,00280 21 46
71 344 280 33 61
72 312 220 25 50
73 312 220 73 127
74 282 170 128 231
75 0,00254 0,00130 41 71
76 254 130 59 95
77 228 100 46 67
78 228 100 46 70
79 228 100 49 74
80 0,00204 0,00080 54 81
81 204 80 96 140
82 182 70 75 112
83 182 70 181 277

84 162 60 104 150



Risiko Tod v Risikosumme Tod Risikosumme IV

Nr. k& Gk i RT, RI,
85 0,00162 0,00060 149 216
86 144 50 61 85
87 144 50 40 59
88 128 40 296 426
89 128 40 63 88
90 0,00128 0,00040 90 129
91 128 40 91 129
92 128 40 93 133
93 114 30 214 309
94 114 30 86 121
95 0,00114 0,00030 79 111
96 114 30 77 106
97 114 30 106 151
98 102 28 83 119
99 102 28 186 259

100 0,00102 0,00028 160 231

101 102 28 90 127

102 91 26 91 129

103 91 26 91 128

104 91 26 111 159

105 0,00091 0,00026 86 122

106 81 24 75 108

107 81 24 281 416

108 81 24 237 351

109 72 22 97 145

110 0,00064 0,00020 98 156

111 64 20 135 216

112 S8 18 77 130

113 58 18 113 195

114 58 18 270 467

115 0,00058 0,00018 97 166

116 58 18 89 149

117 58 18 149 257

118 58 18 125 212

119 58 18 98 165

120 0,00058 0,00018 193 331

1241 54 16 142 250

122 54 16 73 133

123 54 16 97 178

124 52 14 149 301

125 0,00052 0,00014 146 292

126 52 14 88 179

127 50 12 79 164

128 50 12 139 300

129 53 10 69 178
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Risiko Tod v Risikosumme Tod Risikosumme IV
Nr. k& G iy RT, RI,
130 0,00053 0,00010 65 170
131 53 10 76 203
132 56 10 51 163
133 56 10 86 268
134 60 10 70 259
135 0,00060 0,00010 135 487
136 60 10 56 209
137 60 10 72 268
138 60 10 51 189
139 60 10 51 187
140 0,00060 0,00010 70 259
141 65 10 44 193
142 66 10 42 183
143 71 10 37 198
144 78 10 29 189
145 0,00078 0,00010 30 197
146 86 10 30 247
147 86 10 24 194
148 86 10 24 199
149 86 10 23 188
150 0,00095 0,00010 23 237
151 95 10 18 187
152 105 10 13 181
153 116 10 11 201
154 220 1030 0 28
155 0,00040 0,00025 0 64
156 32 25 0 107
157 32 25 0 154
158 30 25 0 218
159 30 25 0 122
160 0,00030 0,00025 0 108
161 30 25 0 110
162 30 25 0 116
163 578 1120 13 33
164 534 880 12 40
165 0,00378 0,00260 29 57
166 254 130 48 74
167 204 80 265 422
168 204 80 60 86
169 182 70 160 244
170 0,00182 0,00070 61 89
171 182 70 56 80
172 182 70 75 108
173 162 60 79 114

174 162 60 180 270



Risiko Tod 10Y% Risikosumme Tod Risikosumme IV

Nr. k g Iy RT, RI,
175 0,00114 0,00030 164 228
176 102 28 260 375
177 102 28 84 118
178 91 26 90 127
179 91 26 96 137
180 0,00081 0,00024 97 139
181 81 24 98 132
182 81 24 95 147
183 72 22 100 150
184 72 22 90 135
185 0,00072 0,00022 98 148
186 64 20 96 150
187 64 20 127 202
188 58 18 113 189
189 58 18 95 160
190 0,00058 0,00018 86 144
191 58 18 104 176
192 54 16 92 169
193 54 16 182 341
194 54 16 89 161
195 0,00054 0,00016 103 190
196 54 16 90 164
197 52 14 82 163
198 52 14 79 156
199 52 14 88 176
200 0,00052 0,00014 87 176
201 52 14 91 184
202 50 12 86 182
203 51 10 74 17
204 51 10 38 208
205 0,00051 0,00010 73 169
206 53 10 69 152
207 56 10 62 200
208 ' 56 10 61 194
209 56 10 60 192
210 0,00056 0,00010 58 187
211 60 10 50 180
212 60 10 50 180
213 60 10 95 343
214 60 10 53 200
215 0,00060 0,00010 96 350
216 65 10 56 245
217 65 10 44 192
218 65 10 54 236

219 1 10 35 185
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Risiko Tod v Risikosumme Tod Risikosumme IV
Nr. k Gk i RT, RI,
220 0,00071 0,00010 36 192
221 78 10 26 172
222 86 10 30 241
223 86 10 21 172
224 95 10 22 234
225 0,00116 0,00010 11 199
226 942 5440 0 19
227 884 4720 0 24
228 534 880 16 98
229 414 460 104 280
230 309 1930 0 16

5.6  Numerische Resultate

Es werden Stop Loss-Prdmien fiir die Pensionskasse PK-230 bestimmt und zwar
einmal unter Einschluss des Invalidititsrisikos (TOD und I'V) und einmal nur in
Bezug auf das Todesfallrisiko (TOD).

Als Berechnungsmethode kommt sowohl die Rekursionsmethode von Adel-
son/Panjer (Rekursion AP) sowie auch die Faltungsmethode (Faltung) zur
Anwendung.

PK-230

TOD

TOD und IV

Poissonparameter A
A=0,2621700

Poissonparameter 4
A=1,2314800

Erwartungswert von .S
E[S]=Fr. 15'696,76
(totale Risikopridmie)

Erwartungswert von S
E[S]=Fr. 66'535,73
(totale Risikoprémie)

Standardabweichung ¢
a[S]=Fr. 41'558,18

Standardabweichung o
o[S]=Fr. 84'745,49

Bemerkung: Die oben tabellierte Standardabweichung o fiir den Gesamtschaden
S wurde aufgrund der Rekursion von Adelson/Panjer ermittelt; sie ist etwas
groBer als diejenige, die man vermittels der Faltungsmethode erhalten wirde.
Hingegen stimmen die Erwartungswerte beider Methoden bekanntlich iberein.
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Bezeichnungen fiir die folgende Tabelle :

t: Stop Loss-Punkt in Fr. 1000,
SL(t)=SL(F;t): Stop Loss-Nettopriamie in Fr.
F(2): Verteilungsfunktion an der Stelle ¢

PK-230 TOD und INVALIDITAT
Rekursion Adelson/Panjer Faltungsmethode
t F(t) SL(t) F() SL(t)
in Fr. 1000,— Fr. Fr.
0 0,29186030 66 535,730 0,2869043 66 535,730
10 0,34317260 59687,903 0,33887304 59642,295
20 0,42045220 53429,602 0,41720257 53 345,833
30 0,47636096 47887,261 0,47352389 47772,113
40 0,53206884 42 937,564 0,52965496 42 799,671
50 0,58850389 38561,681 0,58669051 38405,256
60 0,62089861 34 582,204 0,61946937 34 409,750
67* 0,64117896 32000,217 0,63962600 31817,783
70 0,65448653 30943,172 0,65296957 30756,157
80 0,68288377 27627,122 0,68152015 27426,129
90 0,70890882 24 556,640 0,70724280 24339,877
100 0,73959475 21764,308 0,73786673 21530,481
134* 0,81300038 14 308,498 0,81161521 14020,641
201%* 0,92473432 6367,996 0,92634389 6117,949
268* 0,96396198 2762,283 0,96572653 2618,483
335% 0,98533744 1185,521 0,98605976 1118,540
402* 0,99318909 499,515 0,99353261 467,743
469* 0,99732619 198,380 0,99748918 182,889
536%* 0,99890212 78,326 0,99898658 70,828
603* 0,99957533 30,095 0,99961371 26,559
670* 0,99983362 11,576 0,99985321 9,929
737* 0,99993722 4,342 0,99994597 3,626
804* 0,99997613 1,629 0,00008010 1,319
871%* 0,99999109 0,596 0,99999275 0,468
938* 0,99999673 0,216 0,99999744 0,163
1005* 0,99999882 0,077 0,99999911 0,056

Bemerkung: Die mit einem (*) versehenen Stop Loss-Punkte sind Vielfache von
Fr. 67000,—~ E[S]=totale Risikoprdmie. Als Stop Loss-Punkte werden in der
Praxis oft Vielfache der Risikopriamie beniitzt.
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PK-230 TOD
Rekursion Adelson-Panjer Faltungsmethode
t F() SL(1t) F(t) SL(t)
in Fr. 1000,— Fr. Fr.
0 0,76938022 15 696,760 0,76906221 15696,760
10 0,79153470 13 515,697 0,79128546 13 513,000
16* 0,81498728 12 322,739 0,81484422 12 318,790
32%* 0,85257830 9651,495 0,85248328 9645,747
48% 0,87782612 7460,061 0,87775973 7453,033
64* 0,90829002 5689,139 0,90831297 5681,309
80* 0,92517235 4319,525 0,92521135 4312,158
96* 0,94749056 3255975 0,94752933 3249,182
112% 0,96471296 2 582,830 0,96477996 2576,909
128%* 0,97132172 2 054,559 0,97135105 2049,506
144* 0,97501012 1622,194 0,97504137 1617,628
160%* 0,98142127 1264,472 0,98145046 1260,353
176* 0,98369578 988,816 0,98372535 985,180
192%* 0,98874404 776,145 0,98877175 772,987
200 0,98970874 691,194 0,98973543 688,255
300 0,99871599 71,559 0,99872753 69,942
400* 0,99981709 10,575 0,99982302 9,831
500 0,99996683 1,635 0,99997102 1,382
600 0,99999689 0,151 0,99999741 0,121
700 0,99999961 0,019 0,99999970 0,013
800* 0,99999995 0,002 0,99999997 0,001

* Vielfache von Fr. 16000.—~ E[S].

Schlussbemerkung

Diese Beispiele zeigen, mit welch hoher Genauigkeit die Rekursion 4 P zum Ziel
fihrt und tberdies im Vergleich zur Methode der sukzessiven Faltungen viel
weniger Computer-Zeit bendtigt. Ahnliches stellt man fest, wenn die Rechnun-
gen fiir andere Kassen (z. B. PK-50 in [10], [11], [6]) durchgefiihrt werden.

Dr. René P. Held
Biswindstrasse 32
8704 Herrliberg
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Zusammenfassung

Es wird in dieser Arbeit gezeigt, wie sich rekursiv (Netto-)Stop Loss-Priamien fiir Pensionskassen
berechnen lassen, wobei das Todes- und Invalidititsrisiko betrachtet wird. Numerische Ergebnisse

im «kollektiven Modell» werden verglichen mit entsprechenden Resultaten im «individuellen
Modell.

Résume

Cet article montre comment calculer de fagon récursive des primes (nettes) «stop-loss» pour des
caisses de pension, tenant compte des risques de décés et d’invalidité. Des résultats numériques
obtenus dans le cadre du «modéle collectif» sont comparés a ceux dérivés du «modéle individuel».

Summary

This paper shows how to recursively calculate stop loss (net) premiums for pension funds, whereby
the death as well as the disability risk is taken into account. Numerical results obtained in the
framework of the “collective model” are then compared to the corresponding figures derived from
the “individual model”.
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