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D. Kurzmitteilungen

Bi@rN SunDT, Oslo/Zurich!

Some comments to D. Zagorac: Ein Beitrag zur
Intervallschiatzung der Glaubwiirdigkeitsparameter

(Mitteilungen 1/1981, 67-75)

[. Referring to the Fisher Lemma Zagorac states that

nN-1)W M —my)?
(nN —1) ZZ —mg)? HN(__JE(;L
2+oy 02+00 a?+ g

is y2-distributed with nlN —1 degrees of freedom. However, in the present case
one has to be a bit careful, as for fixed j the X;;’s are dependent when a3 # 0.
By use of orthogonal transformations it can be shown that

N n
Qo= > (Xiy—X 2,
j=1 i1
N
Q=n ) (X;—M),
j=1

and M are independent, and that Qy/¢? and Q/(0%+naj) are y2-distributed
with N (n—1) resp. N — 1 degrees of freedom.
From this we see that

(HN— I)W_ Q()+Q
o2+oy o +ap

is y2-distributed with nN — 1 degrees of freedom if and only if 62 = 0.

2. Referring to the above, the confidence regions proposed in Zagorac’s (1981)
Sections 7.1, 7.2, and 7.4 seem questionable, and in the rest of this note I shall
propose other confidence regions.

I'The present note was submitted for publication as a «Letter to the Editor».
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3. Confidence interval for m,,
As X, ..., Xy are independent and identically normally distributed with

mean miy,

Momy
=" ANV )

0

is Student distributed with N — | degrees of freedom. From this follows that

0 | ‘/ 0
Ji= | M—~ty-11- |f — M +t B | —
1 [ =1, -3 l/nN(N 1y FIN-1,1-3 N (N I)
with ty ¢ being the l—g fractile of the Student distribution with N — 1

degrees of freedom, is a | — € confidence interval for my,.

4. Confidence interval for o3,
Let 12‘.‘.‘ denote the « fractile in the y2-distribution with v degrees of freedom.

We have
Pr Q /C\ l.e |™ l —E,
o2 + ne {;—
that is, 0 .2
Pi'(* —2 — +0'0)= | —e.
HX\ = n
Then

Pr(—g——>oo)> | —e,

":CN e

and from this follows that
J, = (0, _¢ ‘
RN - l,e |

is a | —e confidence interval for o,

5. Confidence interval for o2
Zagorac uses that Qy/c? is y2-distributed with N (n —1) degrees of freedom and
gets as a | —e confidence interval for o2

|:N(H—l) V- N((n-—1) V}
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where ¢, and ¢, are determined such that
Pr (qzégﬂgql) =1-e. (1)
o2

A NREE s = ,. _ .2 :
Zagorac uses ¢y = yxg—1),1 -5 and g, = xy(, - <.

Referring to Sverdrup (1967, Sections XIII 3.2 and XIII 4.2) I would recommend
¢, and ¢, determined by (1) and

logg, —loggs .
¢ —q2  N@n—-1)

this will make the confidence interval unbiased.

6. Confidence interval for k = o2/ ag.
The credibility estimator of m; is

o n K

gt
h—+ K n+ K

m() .

We see that in this formula ¢2 and 63 appear only through «. Hence, it may be
interesting to construct a confidence interval for .

For this purpose we use that (I +nr 1)1 F with

is Fisher distributed with N —1 and N (n —1) degrees of freedom. Let f, and f5
be determined such that

Pr(fi =(1 +ar 1)y 1F =fy) =1 —€. (2)

Then
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and

is a | —e confidence interval for «.

A simple choice of f; and f; would be the ;— resp. 1*% fractile of the Fisher

distribution with N —1 and N (n—1) degrees of freedom. However, to get the
confidence interval unbiased, I suggest to find f; and f, from the equations (2)

" tog( 1+, ) ~log(1+£; < —
G sz(n~1)) B le(n-l)) N1

log f, —log f, ~ Nn—1

7. Confidence regions for (mg, ) and (my, 02, a3).
From the Bonfferoni inequality we get

Pr((mgeJ) N(keJg))=1-2¢,
and thus Ay = % T

is a 1 —2e confidence region for (my, k).

By using the independence of M, Q, and Q, we may construct a confidence
region for (m, o2, o) without using inequalities like the Bonfferoni one.

Let g _g denote the | —%fractile of the normal distribution N (0, 1). Then, as M

C 1 /o?
has the distribution N (mo, N (%+ ag)),

and for given o2+ nop

q o2+ no} a2+ noi
J4(02+nap) = [M—glg | — O,M+g|~§ I/ = 2

is a | —e confidence interval for m,.




261

Using that Q/(o% + nog) is y2-distributed with N —1 degrees of freedom, we get,

analogously to Section 5, that
28
P1 P2

with p; and py satisfying

Q
Pr|po=——=p|=1-¢€
(pa_02+n03_“)

is a 1 —e confidence interval for 62+ naj.

From the independence of M, Q, and Q, we now get
Pr((m(,eJ(l(az-!-na%)) N (o2 + ”UgEJs) N(o?el;)) =
Pr(mgeJ4(0®+noy)) Pr(c®+naiels) Pr(c2ely) =
(1 =el,

and
Ay ={(x, y, 2):xeJ4(y+nz),z+ nyeJs, zely}

is a (1 —e)3 confidence region for (m, o§, 02).

Bjern Sundt
Forschungsinstitut fiir
Mathematik
ETH-Zentrum

8092 Ziirich
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