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PETER ALBRECHT, Mannheim

Uber einige Figenschaften des gemischten Poissonprozesses

1.  Einfilhrung

Der gemischte (compound, weighted, mixed) Poissonprozess (MPP) wird von
verschiedenen Autoren auf unterschiedliche Weise eingefiihrt. Die in der
Risikotheorie klassische ist die Definition von Lundberg (1964, S.72), die sich
in etwas modernerer Sprache [vgl. auch Jung/Lundberg (1969, S.121f.)] fol-
gendermassen formulieren lisst: «Ein MPP {N(¢); t >0} ist ein Geburtspro-
zess mit Zustandsraum IN, fiir dessen Zihlverteilung P, (t): = P(N(t) = n)
gilt:

o — Al n
P (1) = J‘ W uo. (L.1)

n!

0

wobei U (4)eine Verteilungsfunktion mit U (0) = 0 ist.»

Ein Geburtsprozess {N(t); t >0} mit Zustandsraum IN,, ist dabei [vgl. Miiller
(1975, S.86) ] ein Markovprozess, fiir dessen Intensititsfunktionen co>q,, (1)
>0 gilt

Ggmn(t)=0 firallet>0 wennn>m-+1 (1.2)

~qun(t) = qun1(t) [=:qn)] firalle nelN,. (1.3)

Lundberg fordert also, dass ein Geburtsprozess vorliegt, dessen Zihlverteilung
eine gemischte Poissonverteilung ist.

Aus der von Biihlmann (1970, S.66) vorgenommenen Definition der Mischung
von stochastischen Prozessen [fiir eine etwas prizisere vgl. man auch Heyer
(1972, S.464)] kann man die Definition des MPP etwa folgendermassen spe-
zialisieren:

Gegeben sei eine Klasse von Zihlprozessen (d.h. stochastische Prozesse mit
Parameterraum [0, oo], Zustandsraum IN, und isotonen, rechtsseitig stetigen
Pfaden der Sprunghohe 1) [(,2, P;, {N(t); t=0}; 1>0] so, dass der Ziihl-
prozess N (¢) unter dem W-Mal} P, ein homogener Poissonprozess (HPP) mit
Intensitit A ist [ein solcher gemeinsamer Grundraum fiir alle HPP lisst sich
leicht konstruieren; vgl. etwa Bauer (1974, S.388 u. 390f.) oder Heyer (1979,
S.44)].
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Ist U(A)eine Verteilungsfunktion mit U (0) =0, so ist N (t) unter dem durch

o

P(A)= fP;.(A)dU(,{) (1.4)
0

festgelegten W-Mass auf (€2,9) ein MPP zur mischenden Verteilung U.

In der Bithimannschen Definition wird also nicht nur die Zihlverteilung des
HPP gemischt, sondern sogar iiber alle seine Pfade. Allerdings ist zunichst
nicht klar, ob der so definierte Prozess ein Geburtsprozess ist, und in der Tat
beweist Biithlmann (1970, S.68f), dass die Mischung von Schadenzahlpro-
zessen, die die Markov-Eigenschaft besitzen, i.a. den Verlust derselben zur
Folge hat.

Die masstheoretisch befriedigendste Einfiihrung des M PP stellt wohl die von
Grandell (1976, S.31f) dar, die auf dem Begriff des Zufallsmasses beruht.
Sie stimmt aber inhaltlich mit der Biihlmannschen Definition tiberein, d.h. auch
hier wird tiber alle Pfade des HPP gemischt.

Wir werden uns im folgenden im Interesse der Lesbarkeit das Vergniigen
masstheoretischer Finessen versagen und zeigen zunichst, dass der MPP (B)
ein Geburtsprozess ist und somit die MPP (B) eine Teilmenge der MPP (L)
darstellen. Dies ist von Bedeutung, da unter der Annahme der Vorlage eines
Geburtsprozesses Charakterisierungen des MPP getroffen werden kdnnen
[vgl. etwa Lundberg (1964, S.89)], die es erlauben, Anpassungstests durch-
zufithren. Auch die vor kurzem verdffentlichten Ergebnisse von Secal (1980)
iiber die Berechnung der Ruinwahrscheinlichkeiten eines MPP setzen implizit
die Markov-FEigenschaft voraus. Anschliessend zeigen wir, dass die Klasse der
MPP (B) mit der Klasse der MPP (L) sogar identisch ist.

Gewissermassen als Korollare dieser Ableitungen ergeben sich weitere per se
interessante Eigenschaften des M PP.
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2.  Ergebnisse
[st N(t)ein MPP (B) zur mischenden Verteilung U, so folgt mit (1.4)

8

Po(t)= | e~ dU). 2.1)
0
I Co
Lemma [ : P{P(t): = c_;ﬁ Po(t)=(—1) JA" e tdU(4) (2.2)
. .
}irr(l) Po(t+h)=Py(t) (2.3)

A (2.4)

l. 1 1 _Pgn) (£+h) B _Pl()’”'l)(t)
DnlPm 0 |7 POy
0 0 ( )

Alle Aussagen des Lemmas 1 ergeben sich durch Vertauschung des Integra-
tionsprozesses mit der Differentiation bzw. der Limesbildung. Dass dies er-
laubt ist, folgert man direkt aus dem Lebesgueschen Satz von der majorisieren-
den Konvergenz [man vgl. etwa die entsprechenden Sitze in Richter (1966,
S.181)].

Das folgende Lemma ist eine Verallgemeinerung von Lundbergs (1964, S.71)
Bezichung (78).

Lemma 2: Ist {N(t); t >0} ein MPP (B), so gilt fiir disjunkte Intervalle (a,, by ]
..... , (an, by aus (0, co)

P(N(b1) ~ N (@) = ki, ccovey N(ba) = N () = k) = (23)
n =)k
_ [ﬂ (ﬁ‘;;—"c:)*} (=) PR (2(bs—ay).
i=1 B

Beweis: Die Verteilung der multiplen Zuwiichse eines HPP entnimmt man
etwa Albrecht (1980, S.590, (2.11)). Mit (1.4) folgt

T n Alb; — y k;
P(N (b))~ N(a) =ki;i=1,..,n)= fﬂ u’k.,a WY i qu ) =
i=1 i
0
n (b —ay) [ Tk p~A Zby—
x|:n———k - ATk = A Zli=ad 4y ().
i=1 i

0



244

Die Behauptung folgt mit (2.2).

Folgerung 1: P(N(t)—N(s)=n) = (— o)
n!

(=1 Py ()

Satz 1: Jeder MPP (B) ist ein Markov-Prozess.

Beweis: Es geniigt zu zeigen, dass fiiralle k> 2, fiiralle 0 = 1 ¢, <t, <... <t, <t
and 8, iy <. N, Elt

k+1

P(N(tes)) =nps1IN(t) =ngi=1,.., k)= P(N(tg+1) = a1 | N (t&) = ng). (2.6)

Wir definieren dazum, =n,—n,  (i=1,.., k+1;n,: =0) und mit (2.5) ist die
linke Seite von (2.6) gleich

PIN(t)—N(t;)=mgi=1,., k+1)/ P(Nt;)=N{t;i1)=my;i=1,.., k)=

k+1 ( _tL )m —l'r )lm
S (DL P (t) / n H

m; .

(~1ym PU(ey) =

o —

i = m; !

=(tg — Lern) "o PO (tg0) [ Mgy ! PO (24).

Ebenso zeigt man, dass die rechte Seite von (2.6) identisch mit diesem letzten
Ausdruck ist.

Wir berechnen nun die Ubergangsfunktionen und Intensititsfunktionen dieses
Markov-Prozesses.

Satz 2: Pun(s,t):=P(N({t)=n|N(s)=m)=
=(s—t)»mP™M({t) /[ (n—m)! P{™(s) fir m<n, s<t. (2.7)

Beweis wie bei Satz 1.

s\m §\7t-m g ([)
Bemerkung 1: Wegen (1.1)ist (2.7) gleich | —- el
g gen(L.1)ist (2.7) g (,,,) ([) ( t) P, (5)

Dies wurde auch von Lundberg (1964, S.85, (94)) fiir die MPP (L) gezeigt.
Mit

l
Qmnlt) = Ili_n& p Pon(t, t+h) (m+#n) (2.8)
und
1
qﬂb-’/l ( ) = llrn (l m m ([} [ + h)) (29)

[vel. Miiller (1975, S. 149)] folgt
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Satz 3: Die Intensititsfunktionen des MPP (B) ergeben sich zu
Gmm+1(t)= —PFO@E) [ PI(t) = — qmm(t), m=0 (2.10)
Gmn(t)=0,n>m+1. (2.11)

Beweis: Einsetzen von (2.7) in (2.8) bzw. (2.9) und Vornahme des Grenziiber-
gangs unter Beachtung von (2.3) und (2.4).

Wir haben somit gezeigt:

Satz 4: Jeder MPP (B) ist ein Geburtsprozess und, da fiir ihn auch (1.1) gilt,
damit ein MPP (L).

Offenbar folgen die bisherigen Ergebnisse allein auf Grund der Bezichung (2.5),
und es stellt sich die Frage, ob und wie (2.5) eine den MPP (B) charakteri-
sierende Eigenschaft sein konnte.
Wir kniipfen dazu an eine von Lundberg (1964, S.73, Theorem 6) gegebene
Charakterisierung an, setzen aber wiederum nicht voraus, dass der zugrunde
licgende Prozess ein Geburtsprozess ist, sondern nur, dass er ein Zihlprozess
ist.
Satz 5: Jeder Zihlprozess {N(t); t >0}, fiir den gilt

P(N(bi)_N((lg):k,j; [ = 1, &y n):

n (bs —ag)

(2.12)

fir alle n>1, (k, ..., k,) € INy und disjunkte Intervalle (a,, b,] € (0, co), wobei
gelte

H (t) ist eine vollstindig monotone Funktion, i.e.

(—¢)n Hm(1)=>0 fiir alle n € INy, ¢ >0 (2.13)
lim H (6) = 1 (2.14)

ist ein MPP (B).
Beweisskizze: Wie im Beweis von Lundberg (1964, S.73/74) folgt aus (2.13),
(2.14), dass es eine Verteilungsfunktion G(A) mit G(0) = 0 gibt, so dass

H(@) =] e dG(). (2.15)

0
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Die zu G gehorige Zufallsvariable sei mit Y bezeichnet. Wir legen nun N(t)
ein neues W-Mass P, (1> 0) zugrunde, das durch die Forderungen

P)-U(N(bi)*N(ai)zki;i=1 ”)" ( b) N(a)—kui—l nJY:A())
(2.16)

bestimmt sei [durch (2.16) sind die endlich-dimensionalen Verteilungen des
Prozesses N (f) bestimmt und damit P; . Wir verzichten hier darauf, die Kon-
sistenzbedingungen des Satzes von Kolmogorov (vgl. etwa Bauer (1974, S.347))
nachzurechnen]. Aus (2.15) und (2.12) folgt P(N (b;) —N(a;) =k;;i=1,...,n) =

F o (b =i
_ J ["] (b_‘?(-‘:i Qi o~ HEba) 4G (1) (2.17)
j i
und somit aus (2.16) P,, (N (b;) = N(a;) =k;;i=1,..,n)=

j I_I —aY‘ JEk e A2 bi=a)) G(A| Y = dg) =
0

n (b,—a, )"

ie1 ki!

G e "‘(D(L(hi “J))

Unter P; besitzt der Zihlprozess N(t) also unabhingige Zuwichse und ist
somit durch die Wahrscheinlichkeitsverteilung der (eindimensionalen) Zu-
wiichse eindeutig bestimmt, diese sind Poisson-verteilt und somit ist N (t)
unter P; ein homogener Poissonprozess [vgl. Doob (1953, Kapitel II, § 9,
S.96-98) oder Stormer (1970, S.67, Satz 1)]. Das W-Mass P ergibt sich wie-
derum durch Mischung der W-Masse P; mittels der Verteilung G(4) und
N (t) ist somit ein M PP (B).

Durch diese Charakterisierung sind wir nun auch in der Lage zu zeigen,
dass jeder MPP (L) ein MPP (B) ist, d.h. beide Definitionen in der Tat dqui-
valent sind.

Dazu geniigt es, zu zeigen, dass ein Geburtsprozess mit (1.1) die Form (2.12)
mit H (t): = Py(t) fiir die Verteilung der multiplen Zuwiichse besitzt. Wir zeigen
dies hier zur Verminderung der Schreibarbeit und Herausarbeitung der grund-
legenden Ideen nur fiir den Fall n =2 (der allgemeine Fall lidsst sich voll-
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kommen analog zeigen) und benutzen die Beziehung (2.7), die nach Bemer-
kung [ auch fiir die MPP (L) gilt. Es gilt (0.B.d.A. b,: =0<a,<b,<a,<b,)

P(N(by)—N(a)=ky;i=1, 2)—) ’ZAOP N (b;) — N (a;) = ki, N (a;) — N (bi_1) =
=ry; i=1,2) o
=Y P(N(a))=ri,N (b)) =ri+ki, N(as) =ri+ra+ky, N(b2) =ri+ra+ki+ky)=
=% [P(N(ar)=r1)P(N(b)) =ri+k(|N(a))=r1) x.... x
P(N(bg)=ri+ra+ki+ka|N(a)=ry, .., N(ag)=ri+ra+k) |
=Y [Pri(@1) Prory ks (@1, D) Pry ki, 4k, (B, a9) X

P"l +ra +kyritrs + ki +ko (aZa bZ)]

—al [_(bl _(ll)]kl P(rl+kl)(b1)
= P("l) 0
Z [ @) ky! pé"l)(al) Xooven X
[ —(by—ag)]* PSiHrethitk(p, )
kg! 'l?‘l I-kl)(a )

=[_(b1_“1)]k‘[—(bz_az)]kz i (=) [ ~{ag— )]rzP[g"l’”z‘kkx‘*kz)(bg)

! k! ror=0 F1! ro !

:[_(b.t“al)]k' [—(bz—az)]k [ “i (— al)" [ —(az—b1)]"

kl! kz' )lpq_.O I’g!

0
(—/I)P'I‘H‘z*f‘kl + ks e*;'be dU(j')

00

_ [_(bl —(l[)]kl [—(b2 _Clz)]kﬂ J( _l)kl-i-kz e b —a) (lU(A) =

k! ky !
0
[—(b1—a))]% [—(ba—as)]*:
- ki ! Jes | : P+ (2 (b —a‘z)‘) q.e.d.

Es gilt somit
Satz 6: Die Klassen der MPP (B) und MPP (L) sind identisch.

Damit ist das eigentliche Ziel der Arbeit erreicht. Aus den formulierten Er-
gebnissen lassen sich jedoch noch einige weitere interessante Folgerungen
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zichen. Wir werden angesichts des Satzes 6 kiinftig dabei nur noch von dem
MPP sprechen.
Aus Folgerung | folgt direkt

Satz 7: Der MPP ist ein Prozess mit stationdren Zuwichsen,

Bemerkung 2: Dies ist eine sehr interessante Feststellung, denn wir haben da-
mit ein Beispiel dafiir gefunden, dass es Markov-Prozesse gibt, diec zwar statio-
nire, Zuwichse besitzen, aber keine stationdren Markov-Prozesse sind (die
Intensitit des MPP hingt wegen (2.10) ja von ¢ ab!). Beim inhomogenen
Poissonprozess (IPP) dagegen folgt aus dem Vorhandensein stationirer Zu-
wichse das Vorliegen eines HPP, d.h. eines stationdiren Markov-Prozesses.
Satz 7 hat somit folgende wichtige Konsequenz:

Satz 8: Schneidet man die Klasse der MPP mit der Klasse der [PP, so ergibt
sich gerade die Klasse der HPP,

Bemerkung 3: Geht man nicht vom Heterogenititsmodell aus, sondern inter-
pretiert die Abhédngigkeit der Intensitédtsfunktion von n als einen Ansteckungs-
effekt, so kann man dies auch so ausdriicken: Innerhalb der Klasse der MPP
gibt es — ausser den HPP — keine Ansteckungsprozesse, die stationdre Markov-
Prozesse sind.

Bemerkung 4: Anders gesagt: Es gibt — ausser den HPP — keine MPP, deren
Intensitit ¢, (t) nicht von n abhingt. Denn gilt ¢, (t) = ¢(t) fiir einen MPP,
so liegt ein IPP vor und somit nach Satz 8 ein HPP.

Satz 7 kann leicht verallgemeinert werden zu der Feststellung:
Satz 9: Der M PP ist ein stationédrer Punktprozess.

Beweis: Zu zeigen ist P(N(t;))—N(t; ) =n;;i=1,..., k)=
P(N(t;+h)—N(t; 1 +h)=ni=1,.. kfiralle h>0, k>1 und to<t, <... <ty.

Nach (2.5) sind beide Wahrscheinlichkeiten gleich

kot — )™

—= PLIH g ).

Bemerkung 5: In Umkehrung von Bemerkung 4 kann man sich fragen, ob es
ausser dem HPP einen M PP gibt, dessen Intensitiit nicht von t abhingt. Dass
es solche nicht gibt, lisst sich folgendermassen zeigen:
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Ist U(A) die mischende Verteilung des MPP, so ist G (¢) :T ettt dU (1) ihre
0
charakteristische Funktion, und aus (2.1) folgt der Zusammenhang
G, (t) =Py(—it). (2.18)

Gilt nunfiir die Intensitéitsfunktion des MPP, dass ¢, (t) = g, fiir alle n e IN;, so

folgt aus der Beziehung
¢

log Py(t)= —[ qo(s)ds [vgl. Lundberg (1964, S.85)7,
0
dass Po(t) = exp(— qot) ist, somit G (t) = exp(igot), und dies ist genau die cha-
rakteristische Funktion einer Einpunktverteilung mit Sprung in go. Der zu-
gehorige MPP ist also gerade ein HPP mit Intensitiit .

Bemerkung 6 Aus der Ableitung unter Bem. 5 ergibt sich, dass das Vorliegen
cines HPP schon aus der Bedingung g (t) = ¢, folgt. Diese Bedingung ist damit
fiir einen MPP in der Tat dquivalent zu der Bedingung ¢, (t) = ¢, fiir alle

IN.
nelNy Dr. Peter Albrecht

Institut fiir Versicherungswissenschaft
Universitit Mannheim, Postfach 4
D-68 Mannheim, Schloss
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Zusammenfassung

Es wird gezeigt, dass die Definitionen des gemischten Poissonprozesses von Biihlmann und von
Lundberg dquivalent sind. Insbesondere ist der gemischte Poissonprozess cin Geburtsprozess.
Weitere interessante Eigenschaften des gemischten Poissonprozesses werden gezeigt.

Résumé

L’auteur montre que les définitions selon Biihlmann et selon Lundberg du processus de Poisson
pondéré sont équivalentes. En particulier, le processus de Poisson pondéré est un processus de
naissances. L'article développe encore certaines propriétés intéressantes du processus de Poisson
pondeére.

Summary

It is shown that Biihlmann's and Lundberg’s definition of the mixed Poisson process are
equivalent. Especially the mixed Poisson process is a birth process. Additional interesting pro-
pertics of the mixed Poisson process are shown.
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