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WiLLiaM S.JEwWELL, Berkeley, and BigrN SunDT, Oslo/ Zurich

Improved Approximations for the Distribution of a
Heterogeneous Risk Portfolio

Introduction

Let (X;;i=1,2,...N) be a fixed set of independent, non-identically distributed,
integer-valued random variables for which the probability that any X, =0 is
significant; we wish to find the distribution of the sum J = x;+Xs+... + Xy.
In principle, the discrete density of § is calculated as the N-fold convolution
of the discrete densities of the individual X;; however, this task is already very
time-consuming on digital computers for N larger than, say, 1,000, if the X;
take on more than a few different values.

An approximate method, used for many years by actuaries, utilizes the fact
that many terms in the sum may have value zero and computes y as if it were
the sum of a random number of independent identically distributed random
variables; in this method, the first moment of y is matched exactly, and the
second moment is matched approximately.

In this paper, we present improved approximations that provide a much closer
fit to the second moment, yet maintain a simple, recursive algorithm for -
computing the density of the random sum. Limited computational experience
indicates that these approximations to the distribution and other functions
of ¥ are much closer to their true values than in the classical method.

The Heterogeneous Portfolio

For the moment, we assume that the X, take only non-negative values in the
range [0, 1, ... R], and we separate the given discrete density of X; as follows:

(This is a traditional notation.)
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We wish to calculate the discrete density g of the sum

N
=3 %, (y=0,1,..NR) (3)
i=1

which is given exactly by the N-fold discrete convolution:

N
g() =K [p; S0 +a:fi() ], )
i=1
where o(y)=1 if y =0, and is zero otherwise. The approximation to be
described requires that “most” of the p, be “rather large”.
Denote the first two moments of the positive part of the random variables by
m; = E{X,|X,>0} = Zxf;(x); v, = V{Z,|%,>0} =Z(x—m)2 f,(x). (5)

Then it is easy to show that the first two moments of the sum y are:

2

E(?) = q;m;; (6)
i=1
Vi =2 avit ), pg;(m)>. (7

i=1 =1

The evaluation of g(y) is often required for insurance risk portfolios, where
i=1,2,... Nindexes the policies in the portfolio, assumed independent; p, is
the usually significant no-claim probability during a certain exposure period,
q, 1s the probability of at least one claim; and f,(x) is the density of aggregate
claims during the exposure period for policy i, given that at least one claim
occurs.

The situation is particularly simple in life insurance, as usually just one claim
occurs at death, and the f;(x) are often only one- or two-point densities (e.g.,
the face value of a policy i payable at the death of the assured, who has
mortality rate ¢, in this exposure period). Often, only the ¢, change from one
exposure period to the next. Approximation methods have become less
important in such simple cases, especially with N small, as modern computers
can often calculate the exact convolution (4) directly. However, for large port-
folios with arbitrary f(x), the problem of approximating g(y) still remains.
Most approaches have been based upon moment-matching, using (6) and (7).
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The Collective Risk Model as an Approximation

One useful idea, from both the theoretical and computational points of view,
is to approximate the inhomogeneous, fixed portfolio by a homogeneous risk
collective, in which we replace the individual policies by a mass of similar,
anonymous policies, and assume that y is the sum of a random number, 7, of
independent claims that are identically distributed samples, (wy,ws, ... w;) of a
positive random variable, w, with some prototypical claim density, f(w). If

n,=Pr{fi=n}, (n=0,1,...); f(w) = Pr{iw=wl,w=1,2,..; - (8)

then this leads to the well-known compound law of risk theory:

g() =18+ Y m[f0) ], o)
n=1

The rationale for this approximation is easily seen. If the p; are significant,
then the sum § =X, +Xg+...+X, will have a varying number of non-zero
terms; the sum could then be represented by y=Ww, + W, +... + Wy, where these
all-positive terms could be considered to be identically-distributed samples from
some “representative” claim density, calculated by weighting each f;(x) ac-
cording to its probability of occurence, g;.

If the prototypical claim moments are:

m = E) = Iwfw); v = V(T) = Z(w —m)2 f(w), (10)

then the moments of the random sum (9) will be:
E(y) = E[@)m, (11)
V(y) = E(@y+ V(R)m? (12)

For a good approximation, the moments (11) (12) must be matched as closely
as possible to the exact values (6) (7), so that g(y) and related functions cal-
culated via (9) will match values calculated via (4).

We are, of course, free in devising an approximation to choose m, and f(w) in
any way we choose. But the most natural way to fix the prototypical claim
density, consistent with the risk theory interpretation, is as the weighted sum:

_ Zqii(w)

fn ==

w=1,2,...R). (13)
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(This choice is also invariant under pre-aggregation of the policies in a con-
sistent way, for example, by lumping together all policies with the same single
face value and adding their ¢;’s). With this choice, the moments of w become:

m = (Zq,m,)/(Zq;); (14)
v+m? = [Zq;+ Zq: (m)? [/(Zq;). (15)

If (11) and (12) are to be matched exactly to (6) (7), then this implies that the
counting density, r,, must be chosen so that:

E(7) = Zqy, (16)
and
V(7)) = Zq;— 2q? (my/m)®. (17)

The mean of # 1s just the mean number of positive terms in (3); however,
the variance of counts is not the variance of the number of positive terms,
2q;p;, unless the policies have identical face values. This is because we are
matching moments between two different models, one where the sampling is
without replacement, and another where the sampling is independent.

Note that, in certain unusual cases where the p; are small and the m; are quite
different from another, V(7) in (17) may be negative; in other words, the
approximation cannot be used. For instance, if N =2, m; =1, my=7, and
41 = g9 = ¢, then we find that g must be smaller than 0.64 to obtain a positive
variance. This makes precise our earlier remark that most of the p; should
be rather large.

The Poisson Counting Distribution

A good theoretical case can be made for the Poisson density:

An e

,(m=0,1,..) (18)
n!

Tp

as an appropriate choice for the counting law; Gerber (1979) presents an
argument based on a limiting result from the fixed portfolio model, as well as
an argument based upon a dynamic portfolio, in which claiming policies are
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immediately replaced by equivalent, non-claiming policies. (16) then leads to
the natural choice

A =Zq, (19)

But from (17) it can immediately be seen that the Poisson assumption, which
means V(i) = A, leads to too large a value of W(#) for the second moments (7)
and (12)to match. In fact, the collective approximation will now have a variance

V(y) = Zqv;+ Zq;(m;)?, - (20)
which is greater than the correct value (7) by the amount Xgims.
Another, less critical, problem is that the probability of no claim in the risk

approximation:
g0)=mp=e'=e %, (21)

is termwise greater than the true value from (4);

g(0)= ﬁ p;- (22)
i=1

Discussion

In addition to having a good fit between the approximation and the original
model, we would also like to have the computation of g(y) via (9), and of
related functions, to be efficient; Gerber (1980) describes some of the tradi-
tional approximations to the compound Poisson law which have been used
by actuaries.

However, a simple recursive scheme for the Poisson case, apparently due to
Adelson (1966), has recently been promoted as the most efficient solution to
(9). In our notation, it can be shown that:

g0)=e*
min(y, R) i (23)
gy)=4y) Zl x)gy—x).  (=12..)
This enables exact values of g(0), g(1), g(2), ... to be calculated successively,
in a number of steps much less than direct ways of calculating (9). A simple
proof of (23), due to Biihlmann and Gerber, can be found in Gerber (1980).
Applications can be found in Panjer (1980) and in Held (1980).
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More recently, Panjer (1981), has extended the recursive computation of g(y)
to a larger class of counting distributions, namely to n, that are (1) Poisson,
(2) Binomial or (3) Negative Binomial (Pascal) (See also Sundt & Jewell (1981)
for generalizations).

The Binomial Counting Distribution

From (16) (17), we know that for our problem we want the variance of ii to be
smaller than the mean; this suggests an improved approximation might result
from using a Binomial counting density:

r, = (%’) (L =mMn (n=0,1,...M) (24)
with moments
E(#)=M; V(n) =M (1l — 7). (25)

For this counting law, Panjer (1981) shows that (23) is replaced by:

g(0) = (1 =)
(26)

min(y, R)
g(}’)=(1jn> Z): [(M+1) (x/y) = 1]fl)gly —x), (y =L 2, ... MR)

x =]

so that the recursive computation is still more efficient than using (9).

Note especially that we are not proposing to set M = N, so that both para-
meters (M, n) are available to match (16) (17). For an exact match of the first
two moments, we require that:

M = (Zq;m; )3/(2% mj 2); tM = Zq;. (27)
(The reader may easily show that M < N.)

However, the Binomial recursive algorithm only works for M integer, so the
value obtained above must be rounded up or down, and then = readjusted to
provide an exact fit to the first moment. The variance of ii and of y will be
slightly too large (too small), compared with (16) (17), if M is adjusted upwards
(downwards) from the exact value. But this error is in general quite small for
moderate values of N.
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The Binomial counting distribution also has a good theoretical justification,
for if the original portfolio is, in fact, homogeneous, with ¢g; = gy and m; = my
foralli=1,2,...N, then we have n, exactly Binomial, with M = N and = = q.
For small inhomogeneities, if we set:

my=m+ s ¢ = qo+&; (i =1,2,...N) (28)

where m is defined in (14), and

do = Zq;/N; ©(29)
we find that, to first-order terms in y; and ¢&;:

na qo[ 1 +(2/N)Z(w/m) ]; (30)
M ~ N[ =2/N)Z(w/m) |; 1)

that is, only the small inhomogeneities in m; affect the values of M and 7.

If our original portfolio becomes quite large (N —oo), but the policy character-
istics (¢;, m;) remain comparable, then (27) implies that M is of order N and
will thus increase without limit, but that z will remain relatively stable. This
means that we do not expect that, in the limit, our Binomial counting law
will become approximately Poisson (which would require M —oo, n—0, with
Mg = A). The justification of the Poisson law thus requires other limiting
conditions.

Associated Functions

As pointed out by Gerber (1980), once a recursive procedure for the density
g(y)= Pr{y =y} has been set up, itis a trivial matter to initialize and calculate
other associated functions. The functions which seem of most interest are the
complementary distribution function:

oa

i
Ge(y)=Pr{y>y}= 2 gl)=10-% g),
@ =y+l1 € =0
and the “stop-loss premium”:

y-1

() = E{G-p*} = Y G(x)= EG)- Y, Ge(x).
T=y €T =()
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Extension to Negative Discrete Values

Adelson’s and Panjer’s algorithms were developed only for positive w;, which
is why the above discussion was limited to the sum of non-negative X;. However,
Sundt & Jewell (1981) indicate how arbitrary values, say X; in the range
[—L,...,0,...R] (L, R>0), can, in principle, be handled for r, Poisson or
Binomial; we develop only the Binomial case.
First of all, (2) is replaced by:

Ji(x) =Pr{X; = x|X; #0}, (32)

and (26) is replaced by:

e = (1) £ [+ () 10ty 0, (-MLEySMR;y £0
)

x=4

where A =max (y —MR, —L),and B=min (y+ ML, R).

£(0) is no longer calculable explicitely from this form, but both g(— ML) and
g (MR) are available from first principles, and (33) can be re-arranged to start
the recursion at either end. Starting from the lower end, we obtain:

0 (y<—ML)and (y>MR)
[nf(—L) ] (y=—-ML)

g =4r1 1 i Flsty—I
| | oD

+ Z [(M+1)x—ML—y]lf(x—L)g(y —x) ] (otherwise),

\ r=1

with C =min (y+ML, L+ R).

Of course, if L is very large, then there are obvious problems with the
accumulation of round-off error, especially if f(—L) and nearby values are
small. One can also imagine multi-pass recursive procedures, or iterative
techniques using (33) to resolve these numerical-analytic difficulties.
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Further Improvements

One can readily imagine a variety of further improvements to the Binomial
compound law to provide a better approximation: for example, since (9) is
linear in the (7,), one could take a linear mixture of several counting distribu-
tions, and then mix the results of the corresponding recursively calculated
aggregate claim densities; this would enable matching higher moments or
other attributes of the true density (4).

One direction which we have examined is to provide a better fit to the true
value of g (0) = I1p;, which, as previously mentioned, is too large in the Poisson
case; the Binomial law, g(0) = mo = (1 — =)™, seems to give a better numerical
fit, but we cannot guarantee this.

In Sundt & Jewell (1981), it is shown how to modify the Panjer algorithm so
that the new counting density () can take on values:

o+ (1 —0)mo (n=0)
T = (35)
([_Q)nn (ﬂ=l,2,..‘)

where the 7, are Binomial (rr, M). Alternatively, one can continue to use (26),
and mix the resulting density in the obvious way with the degenerate density
at zero. This modified Binomial compound law gives us three degrees of freedom
(¢, m, M).

Assuming that claim amounts are positive, we can match g(0) by

g0)=rni=c+( -0 (1 =¥ = Ip; (36)
and (25) becomes
E(@) = (1 —o)nM; V(i) = (1 —¢) [aM (I — )+ onM?2]. (37)

These must be matched numerically to the true values (22) (16) (17) by iterative
numerical methods, which we shall not describe. As before, the integrality of
M means that we cannot exactly match both the second moment and ¢(0), so
that one has to decide which improvement is more important.

We shall see in the example to follow that this modified Binomial provides
only a modest improvement over the Binomial, and suggests that further
refinements will be of marginal value.
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A Numerical Example

To illustrate the effect of the approximation improvement, we use a numerical
example due to Gerber (1979), in which there are N =31 policies, and the
random values X; are either O or a “face value”, ¢;, with probability p; or g;,
respectively, as shown in Table [ (the duplication of identical policies is typical).
Thus m;=c;and v; =0(i =1, 2,...31).

Table I. Number of Policies with Indicated ¢; and ¢;

Face Values ¢;
qi 1 7 3 4 5
.03 2 3 1 2 -
.04 - [ 2 2 [
.05 = 2 4 2 2
.06 - 2 2 2 |

The exact values of the density g(y), the complementary distribution G¢(y),
and the stop-loss premium [/ (y), were obtained by convolving 31 two-point
(0, ¢;) densities, and are given in the first column of Tables IV, V, and VI. From
(6) (7), we find that the first two moments of the original portfolio are:

E(y)=449; V(y) = 15.3003
and that 2(0) = 0.23819.

The unnormalized prototypical claim density (13) used in both collective risk
approximations is shown in Table II.

Table I1. Density of Equivalent Homogeneous Claims

X L2113 4]s
L4fx) || .06 | 35| 43| 36 | 20

The first two moments of this “severity” density are:

m = 3.207143; v = 1.207092.
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Thus, from (16) (17), the “counting” density moments for an exact fit of a
collective risk approximation must be:

E(7) = 1.4; V(i) = 1.323224,

Three approximations were computed using recursions (23) and (26) and the
method of (35), giving the numerical matching shown in Table II1.

Table I11. Value Matching for Numerical Example (differing digits underlined).

Bxact Approximations
Values Poisson | Binomial | Modified
Binomial
E(y) 4.49 4.49 4.49 4.49
V(y) 15.3003 16.0900 15.3146 15.3003
Pr{y =0} =g(0)| 0.23819 0.24660 0.23714 0.23809

In the Poisson approximation, A= 14 fixed E(J)=4.49 as desired but
V(y) = 16.0900 and g(0) = 0.24660 are significantly too large. Results using
the recursion (23) (part of which were also given in Gerber (1979)) are shown
in column two of Tables IV, V, and VI.

For the Binomial counting distribution, an exact match of the first two
moments would require M = 25.528480 and = = 0.0548400. Rounding up, we
select integer M =26, and adjust 7=0.0538462 to keep IE(J)=4.49.
V(¥) = 15.3146 is still significantly close to the exact value of 15.3003, but
2(0)=0.23714 is now less than the true value. Note that the range of the
Binomial approximation extends, in principle, to 5 x 26 = 130, whereas the
largest possible total claim sum of the original portfolio is only 97. However,
reference to Table V shows that the probability of a claim larger than 40 is
already of order 109!

For the modified Binomial approximation, we must use (36) (37) to find the
parameter values to match the first two moments and g(0); These turn out
to be M = 21.737130, = = 0.0648672, and ¢ = 0.00711084. Rounding up, we set
M =22, and readjust the other values to match the mean and variance,
giving finally = = 0.064055 and ¢ = 0.00653874. As can be seen from Table I1I,
the resulting mismatch in g(0) is quite small.



232

Table I'V. Total Sum Densities in Example (differing digits underlined)

gly) = Priy=y}
EXACT APPROXIMATIONS

Y RESULT POISSON BINOMIAL MODIFIED

. BINOMIAL
0o | o0.23819 0.24660 0.23714 0.23809
1 |0.01473 0.01480 0.01504 0.01494
2 | 0.08773 0.08675 0.08818 0.08762
3 |0.11318 0.11122 0.11313 0.11246
4 | 0.11071 0.11040 0.11256 0.11206
5 | 0.09633 0.09286 0.09507 0.09492
6 | 0.06155 0.06101 0.06291 0.06315
7 | 0.06902 0.06543 0.06732 0.06759
8 | 0.05482 0.05458 0.05589 0.05613
9 | 0.04315 0.04132 0.04197 0.04217
10 | o0.03011 0.03058 0.03071 0.03086
11 | 0.02353 0.02331 0.02311 0.02321
12 | 0.01828 0.01834 0.01797 0.01802
13 | 0.01251 0.01315 0.01265 0.01266
14 | 0.00871 0.00922 0.00866 0.00865
15 | 0.00591 0.00650 0.00596 0.00593
16 | 0.00415 0.00460 0.00411 0.00408
17 | 0.00272 0.00318 0.00277 0.00273
18 | 0.00174 0.00212 0.00179 0.00176
19 | 0.00112 0.00141 0.00115 0.00112
20 | 0.00071 0.00094 0.00073 0.00071

=6 - 6 =%
30 | 3.09434x10 8.63294x10 3.98500x10 3.51483x10
[ 40 | 3.53514x10"2 | 36.4155 x10 ° | 7.37055x10 2| 5.46425x107°
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Table V. Complementary Distributions in Example (differing digits underlined)

C L
G (y) = Priy>y}
— APPROXIMATIONS
Y RESULT POISSON BINOMIAL MODIFIED
BINOMIAL

0 | 0.76181 0.75340 0.76286 0.76191

1| 0.74707 0.73861 0.74782 0.74696

2 | 0.65934 0.65185 0.65964 0.65934

3 | 0.54615 0.54063 0.54651 0.54688

4 | 0.43544 0.43023 0.43395 0.43482

s | 0.33912 0.33737 0.33888 0.33990

6 | 0.27757 0.27637 0.27597 0.27675

7| 0.20855 0.21094 0.20865 0.20916

8 | 0.15373 0.15636 0.15276 0.15303

9 | 0.11058 0.11504 0.11079 0.11086

10 | 0.08048 0.08446 0.08008 0.08000
11 | 0.05695 0.06115 0.05696 0.05679
12 | 0.03866 0.04281 0.03899 0.03877
13 | 0.02615 0.02966 0.02635 0.02611
14 | 0.01744 0.02044 0.01769 0.01746
15 | 0.01153 0.01394 0.01173 0.01153
16 | 0.00738 0.00934 0.00762 0.00745

17 | 0.00467 0.00617 0.00485 0.00472
18 | 0.00292 0.00404 0.00306 0.00296

19 | 0.00181 0.00263 0.00192 0.00184

20 | 0.00110 0.00169 0.00118 0.00112

- =% 5t -

30 | 3.49840x10”°% | 12.4621x10 4.87524x10 4,16710%10
40 | 3.10833x10°2 | 45.5298x107° |  7.42541x107° | s5.26013x10°
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Table VI. Stop-Loss Premiums in Example (differing digits underlined)

+

T ly) = EL(y=v) ]
BEXACT APPROXIMATIONS
v RESULT POISSON BINOMIAL MODIFIED
BINOMIAL
0 4.49000 4.49000 4.49000 4.49000
1 3.72819 3.73660 3.72714 3.72809
2 | 2.98112 2.99799 2.97932 2.98113
3 |2.32179 2.34614 2.31968 2.32179
4 1.77563 1.80551 1.77317 L.77491
5 1.34019 1.37527 133922 1.34009
6 |1.00106 1.03790 1.00034 1.00019
7 0.72350 0.76153 0.72437 0.72345
8 |0.51495 0.55059 0.51572 0.51428
9 |0.36122 0.39423 0.36296 0.36125
10 |0.25064 0.27919 0.25217 0.25039
11 |0.17017 0.19472 0.17209 0.17039
12 |0.11322 0.13357 0.11513 0.11360
13 0.07456 0.09076 0.07614 0.07483
14 0.04840 0.06110 0.04979 0.04872
15 0.03096 0.04065 0.03210 0.03126
16 0.01943 0.02671 0.02037 0.01973
17 0.01205 0.01737 0.01276 0.01228
18 |0.00738 0.01120 0.00791 0.00756
19 |0.00446 0.00716 0.00485 0.00460
20 0.00265 0.00453 0.00293 0.00276
-6 =6 6 -6
30 |7.25353x10°°| 29.7953x10 10.5809x10 8.88376x10
-9 -9 -9 =3
40 5.72441x10 101.020x10 14.6686x10 10.1485x10
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Comparison of the different results for the density, g(y), in Table IV shows, as
expected, that none of the approximations is a particularly good point
estimator; because of the differences in the models, the approximations are
forced to fluctuate above and below the exact density. The modified Binomial
is generally better than the Binomial, which is generally better than the
Poisson, although this is by no means uniformly true.

Figure 1. Percentage Error in Approximations to Density g(y) versus y.

(32.1%)

WA f

+15 +

O———0 Poisson

#———x  Binomial H

o———o Modified Binomial /

+10 +

+5 T
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However, when we examine the complementary distributions, G¢(y), in Table V,
the approximations become more stable, and the Binomial is always better
than the Poisson, except for y = 6. The modified Binomial is uniformly best
only from y = 12 onwards.

The approximations to the stop-loss premiums, 75 (y), in Table VI, are even
more stable, and show clearly the value of matching the second moment for
this “tail of the tail”. The Poisson is always worst, and the modified Binomial
always best, except at y = 6.

These remarks can be more easily visualized in Figures 1, 2, and 3, which
show the percentage error in each approximation for the functions of interest.

Figure 2. Percentage Error in Approximations to Complementary Distribution

G¢(y) versus y. a9
4.27%

J} % *

+15 +

O———0 Poisson

#———=x Binomial

o—= Modified Binomial
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In addition to the remarks above, it is of interest to observe the inevitable
degradation of all approximations at large values of y. It can be shown
theoretically (Biihlmann, et al. 1977) that the Poisson approximation gives too
conservative (large) a value for the stop-loss premium for all values of y. Our
example suggests all of these approximations are eventually “too dangerous”
in the tails. However, it should be remembered that the actual values of the
probabilities and of the absolute errors are quite small above y = 20.

Figure 3. Percentage Error in Approximations to Stop-Loss Premium, [7,(y)
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Conclusions

Naturally, only limited conclusions can be drawn from a single computational
example. However, we believe that the Binomial compound law is a significantly
better approximation to the distribution of the original heterogeneous portfolio
than the traditional Poisson compound law approximation; furthermore, it
can also be computed recursively with little increase in difficulty. There also
seems to be evidence that the slight additional work to set up the modified
Binomial compound law approximation will be worthwhile if more accurate
values of the complementary distribution or the stop-loss premium are desired
in the tails.

[t remains to be seen whether there are significant differences between these
approximations for real risk portfolios, where N and R are both large, and
where round-off error accumulation may become important in any recursive
method. There have been some claims that other approximation methods or
fast Fourier transforms may be competitive under these conditions.

Finally, we must keep in mind the ever-increasing capabilities of digital com-
puters, and the fact that many real portfolio distributions can best be calculat-
ed directly.

William S. Jewell Bjorn Sundt
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Summary

A traditional actuarial method for the difficult task of finding the exact distribution of a
heterogeneous portfolio approximates the distribution with a compound Poisson law with
identically distributed risk. This paper shows that a Binomial compound law provides a better
match to the second moment of the distribution, thus giving a better approximation, while retaining
a simple, recursive algorithm for calculating the distribution. A modified Binomial compound
law further refines the approximation, with slight additional work.

Zusammenfassung

Eine traditionelle Methode zur Losung des schwierigen Problems der Bestimmung der exakten
Verteilung eines Gesamtschadens besteht darin, diese Verteilung durch eine zusammengesetzte
Poissonverteilung mit gleichverteilten Risiken zu approximieren. Die vorliegende Arbeit zeigt,
dass eine zusammengesetzte Binomialverteilung eine bessere Ubereinstimmung der zweiten Mo-
mente und damit eine bessere Approximation liefert, wobei die Methode zur Berechnung dieser
Verteilung auf einem einfachen rekursiven Algorithmus beruht. Eine modifizierte zusammen-
gesetzte Binomialverteilung verfeinert die Approximation mit nur geringem Mehraufwand.

Résumé

Il est de tradition, pour résoudre le probléme difficile consistant a déterminer la distribution
exacte d'un portefeuille hétérogene, de construire un modéle sur la base de la loi de Poisson
composée avee des sinistres distribués identiquement. Le présent article montre qu'une loi bino-
miale composée fournit une meilleure correspondance au niveau du second moment de la distri-
bution, livrant ainsi une meilleure approximation, en combinaison avec un algorithme récursif
simple pour le calcul de la distribution. De plus, une loi binomiale composée modifiée permet
d’améliorer encore 'approximation et cela sans grand travail supplémentaire.
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