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Alois Gisler, Winterthur

Optimum Trimming of Data in the Credibility Model

Abstract

The practical application of credibility models and credibility estimators in the
field of actuarial activities (see [1], [2]) shows that big claims have distorting
effects. On the one hand, such large claims exert a strong influence upon the

variance, given the risk parameter, and cause a reduction of the credibility
factor. Thus the experience rating factor for a contract which has had no big
claims during the observation period is too small. On the other hand the oc-
currence of a heavy claim can be the cause of a precipitous rise of the estimated
risk premium regardless of the small credibility factor.
In this investigation we show how the credibility estimation can be improved by
trimming the data. The usual credibility model and a model in which a volume
measure /y is assigned to each risky and to each year ; are dealt with. The claim
amounts are trimmed at the point M, i.e. subject to the transformation
<?,vfM min (M,x). Then the best estimator /t(M) of the pure risk premium is

determined, which is linear in the transformed data. If we choose a trimming
point M which is too small, we lose too much information and the differences
between the contract's risk behaviour and that of other risks are possibly lost.

If M=co we get the usual credibility estimator with the above mentioned

distorting effects caused by the occurrence of heavy claims. The trimming point
Mq is said to be optimal, if /z(Mq) is the best estimator within the class

{/i(M)|MelR}.
This article is a summary of [4], The stress in this article is laid on the basic
ideas and the main result. The reader who is interested in the proofs and in the
details is referred to [4], A copy of [4] can be obtained from the author.

Chapter 1 : Introduction

1.1 Moöfe/s

Model I (usual credibility model)

- Ay may be interpreted as the total claim amount caused by risk y 0"= 1,2,

.,1V) in the year z (/= 1,2, ...,«).
- The distribution of Ay depends on a risk parameter 0,-.

Mitteilungen der Vereinigung Schweiz. Versicherungsmathematiker, Heft 3,1980
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We make the following assumptions:
(i) Given 0,- (_/ 1,2, .,A) the RV (random variables) Zy are independent.
(ii) Given 0, 0 theRV Zy (i l,2, ...,«) have the same distribution Fg(x)=

Prob(Z"y<Jc|fl).
(iii) 01,02^ • • -,0,y are i.i.d. (independent and identically distributed) with

distribution C/(0) which is called the structure function.

Model II (a model with volume measure)

- A volume measure Py is given to each risky (y= 1,2, A) and to each year ;

0=1>2, ...,«).
- Ay is the number of claims of the risky in the year ; and (v= 1,2, ..Ay)

are the different claim amounts.

- The distribution of Ay depends on the volume measure Py and on a risk

parameter 0y.

- The distribution of the claim amounts also depends on the risk parameter 0,-

but not on the volume measure.
We make the following assumptions:
(0) Given Py and given 0 — 0 the RV Ay is Poisson with parameter /. (0, Py)

a(0) - Py.
(1) Given 0, 0=1,2, A) all PR Ay-, I#* (v l,2, ...; /=1,2,

y=l,2, ,,A) are independent.
(ii) Given 0,= 0 the RV pV' (/ 1,2, v l,2, have the same

distribution Pg(y)=Prob (pV'<y|0).
(iii) 0i, 02, • -, 0jv are i. i. d. with distribution G(0) which is called the structure

function.
Note: It is not required that claim amount and claim number be independent.

They have only to be conditionally independent.

1.2 Denhed gwa«td/e.s and /jotat/ons

Let g be any real function of one real variable.

Mode/ /

Let be Gy=g(Zy).



315

Notation

(0,.) £[«] /ic(0,) £[Gy|0J

/<* =£[^ij] /"g =£[Gy]

"x =£[Var [lt.|0.]] ^ P[Var [G„|0,]]

% =Var [/^(0j)] fc =Var [/%(0j)]

Wg =Cov [j%(0,),

Morfe/ //
Let be GN=g(}tjv)).

Ny
£.. y total claim amount of risk / in the year ;

V 1

*s
3L=—^ claim rate

P* y

JVij

r„=E g, (V)

V
v — 1

pZ,=^" p.
IJ

Notation

M0;) P«,|0j, P„] Mz(0;) £[Z#;, P„]

to £[*"</] 0z =£[Zol

«X P[Var [3Q,|0,-, Py=l]] wz P[Var [Z^, f^.= l]]
% =Var[^(0j)] t>z =Var[^z(0j)]

Wz =C0V [/ix(0j)> Pz(0j)]-

Note: P [Var [Z„|0„ P,-]]=^
Ü

P[Var [Z^, P,]]=^
*0'
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1.3 Semi/inear cm/W/hy estimator

Problem: To find the estimator A,- of /%(#;) which is linear in the RV Gy

(model I) respectively linear in the RV Zy (model II) and which has

minimum quadratic loss among all these linear estimates.

(Quadratic loss =£[(/),- —/^(ö-))^]).

A/We/ /
Theorem

Aj=fix+«G ' (Gy-fig) (1)

where

«'»G ^ Irr<*c ; G.,=- 2, Gy
n • rg + Mß n ;

£'[(A/—^(^] fx-aG ' WQ- (2)

This theorem is well known (see [3]).

A/ode/ //
Theorem

Aj fix + «z* • (2y- fiz) (3)
where

«y= z,=y^Zy p.,=y P,
R/'z + "z ' i f.j ' i '

^[(fi;-fix(0i))^ ^x-azV- (4)

Chapter 2 : Optimal trimming, if the structure function G (0)
and the distribution of the claim data are known

2.1 Profi/em

In 1.2 and 1.3 g was any determinate function. Here we admit a certain class of
functions, the class C, of the trimming functions :

C, {£m !&*(*) min (M,x), AfeIR}.
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According to (1) resp. to (3) we get for each trimming point M a semilinear

credibility estimator. In order to indicate that the data are transformed by the

trimming function we use the same notation as before and addMin brackets ;

e.g. /Î/M), «g(m)> %(M) etc. in model I, a^>, etc. in model II. Here the

question arises as to which estimator within this class is optimal with respect to
quadratic loss, in other words, which is the optimal trimming point Mq.
According to (2) resp. to (4) we get:
model I : M„ is an optimal trimming point, if

max /UM) max <Xg(m)Wg(m)

model II : is an optimal trimming point for contract /, if

max Ry(M) max WF')-
M M

Note: - it is possible, that Mq oo resp. M^'= oo ; that means one ought not
to trim.

- if A, # A ^ in model II, then the optimal trimming points for contract

y and contract /c are in general different.

2.2 77/e ca/cwto/on o//Ae opt/mo/ /n'mmmgpom/, //d/e c/mm-da/o /mode//)
resp. /Ae c/a/m amount ('mode/ //) o«(y ai/wme a /zm/e mzm/>er o/
values

Mode/ /
The RV I),- are supposed to assume only the values {x^,Xj, ,,x,} with

Xi < *2 < • •. < x,. After some derivation we obtain :

'0 for M^;.xq

for Xj <M^X2

X(M) for Xr^M^Xr + i r=2,3, .,/ —1

--R(U) for x,^M.

R(M)

Thereby

g,(M) « • +

(5)

i(M) AUM) c,. + d,.M+e,M

with /z,.(M)> 0 for MelR and thereby are o,, /q, .,e,. constants, which can be

calculated from the values x^,X2, • -At and from the probabilities p,=
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Prob (X^ x^) and p„ Prob (X,, =x,., *s) r,j=l,2, ..From the
above we obtain :

Theorem

The optimal trimming point can be calculated as follows:

MQ —A/qh

Mn,—

M,

where

a,.d, — 2/>,c,. if M,.e[x,,x, + i]
d,d,. —2a,e,

x,. if M,^[x,,x,.+,] and P(x,.)>P(x,.+i)

x,+i if M,£[x,,x,+i] and P(x,)îgP(x,+i)

£[(^(Mo)-/rxW] =%-^(Mo).
Mode/ //
The claim amounts fdT are supposed to assume only the discrete values

{Ti >T2> • • ->Tr} with Ji <^2 < • • • <Je Through calculation we get:

'tfj(Ti) for MsSji

"" r=l,2 ,-1 (6)

AOO for y,s£M.

Thereby the constants a, e^' are functions of the following quantities :

P.j, >y, p, J a(0)/?„Ov)dC/(0), ?„ J a* (0 )/>,, (y,)A, (yJdt/ (0 with />«0>,)

Prob (^"'=y,|0j 0) r,s=l,2, ..Thus we obtain:

Theorem

The optimal trimming point M<P for contract y can be calculated as follows:

whereby ^.(^ot)= ^ maxP/M^)Mo« M«

M<M

a d'^-20 c">

Jr if ^j(Tr)>^(Tr + i) and M,£[y,,y, + i]

Jr + 1 if and M,£[y,,y,+i]

P [(/x,(M£>) - /£x(0#] % - P,(M</>).
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2.3 Aummca/ ciöfflpfev

For reasons of simplicity examples in this article are confined to model I (in [4]
the reader can also find examples to model II). We use the following abbre-
viations and notations :

M0)=£[JÇ#;=0] «r|(0) Var [1^ 0]

« number of observed years optimal trimming point

«g (Mo) factor in estimation (1) with optimal trimming

Xg(„) factor in estimation (1) without trimming usual credibility-factor

gM=£[(/fj-(Mo) —/i;r(0y))^] quadratic loss with optimal trimming

20 £'[(/ij(oo) — j-(0j))^] quadratic loss without trimming.

Prob (A-y
ß Proh (ß — Gï

*|0; 0)
oi(0)

x=0 x 2 x 4 jc=6
\V/

1 0.25
2 0.25
3 0.25
4 0.25

0.55
0.30
0.10
0.05

0.25
0.30
0.30
0.15

0.10
0.25
0.35
0.30

0.10
0.15
0.25
0.50

1.5
2.5
3.5
4.5

3.95
4.35
3.55
3.15

Using the theorem in 2.2 we get:

« MQ /%(Mo) fx ®0(Mo) ^G(oo) ßM ßO ßM/ßO

1 4.89
3 4.95
5 5.00

2.722 3.0
2.737 3.0
2.751 3.0

0.300
0.589
0.726

0.250
0.500
0.625

0.9292
0.6147
0.4579

0.9375
0.6250
0.4687

0.99
0.98
0.98

A comparison of ßM with £>0 shows, that the reduction of the quadratic loss

by the optimal trimming is rather slight. In this case trimming is not worth-
while.
Example 2 derives from example 1 as follows: The RV can assume the
values 0, 2, 4, 6, 40. Given 0^=0, the value 40, representing a big claim, occurs
with the probability % whereas with probability (1 — (&,) the RV A); have the
same conditional distribution as in example 1.
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£xam/?/e 2

6 Prob (0j 0)
Prob (Yy x|0,.=0) <7,

%(0) <4(0)
x 0 x=2 x 4 oc 6 OIIX

1 0.25 0.5445 0.2475 0.0990 0.0990 0.0100 1.885 18.58
2 0.25 0.2940 0.2940 0.2450 0.1470 0.0200 3.250 31.82
3 0.25 0.0970 0.2910 0.3395 0.2425 0.0300 4.595 42.21
4 0.25 0.0480 0.1440 0.2880 0.4800 0.0400 5.920 51.42

Using the theorem in 2.2 we get:

« Mo MG (Mo) <*G(Mo> ^G(oo) ÔAf eo ßM/ßO

1 4.83 2.750 3.912 0.404 0.059 1.6848 2.1278 0.79
3 4.89 2.767 3.912 0.794 0.158 1.1173 1.9029 0.59
5 4.95 2.782 3.912 0.980 0.239 0.8367 1.7210 0.49

The quotient ßM/ßO shows clearly that the estimator with optimal trimming
has a much smaller quadratic loss than the usual credibility estimator without
trimming. Furthermore we see that the factor a^o,) is much smaller in example 2

than in example 1. This is a direct consequence of the big claim of 40, that can

occur in example 2, although the probability of such an occurrence is small. As a

result of this, the credibility estimator without trimming does not take observed

experience sufficiently into account, which of course increases quadratic loss.

In order to examine the effect of the trimming on the estimated values we look
at some concrete data taken from a simulation (400 contracts) of the example
2 with « 3 observed years. Thereby
estimation 1 credibility estimation without trimming

3.912 + 0.158 • (X.j — 3.912)
estimation 2 credibility estimation with optimal trimming

3.912 + 0.794 (G.j(4.89) —2.767)
estimation 3 £ [/% (öj)iA) j, +2./ > -^3j] best estimator with respect to quadratic

loss (it can also be calculated in this example and is added for
comparison).

Risk 6 has a good claim experience, risk 288 a bad one. But because the claim
experience is not taken sufficiently into consideration by estimator 1, the esti-
mated values are too close to /^- (expectation in the collective). On the other hand
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contract Nr. claims' data in the observed years

estimations

1 2 3

6 0 2 2 3.504 2.775 2.782
28 0 40 2 5.512 3.540 3.259
30 4 6 40 5.934 5.364 5.286

288 6 6 4 4.138 5.364 5.439

contract 28 had a big claim in the second year but otherwise a good claim
experience. In spite of the small credibility factor ocg(oo) the value resulting from
estimator 1 is much too high. By the optimal trimming the big claim is given less

weight and the estimated value is correspondingly smaller. Moreover note the

same values given by estimator 2 for contract 30 and contract 288.

2.4 Approximate ca/czz/aZz'on o/ t/ze optima/ trimming point

According to 2.1 Mq (resp. is an optimal trimming point, if the function
ft(M) (resp. R/M)) takes its maximum at Mq (resp. at A//). In 2.2 we have
derived an explicit method for calculating the optimal trimming point in the

case the RV Zy (resp. T//>) can assume only a finite number of values. If this
condition is no longer valid, then we cannot come to a general solution.
An obvious suggestion is to take the RV Zy (resp. lyA) as discrete values. Then

we can apply the method described in 2.2 to the discrete random variables.

It can be shown that in this way we can get a trimming point which is nearly
optimal. The reader who is interested in the exact results and in the details is

referred to [4], Moreover some properties of «g(m)> %<m)> Wg<m> (model I)
(resp. of Wz(M), ^z(mi (model II)) as functions of the trimming point M
are also proved in [4].

Chapter 3 : Optimal distribution-free trimming

In practice the structure function £/(0) and the distribution of the claim data are

very often unknown. The parameters occurring in the estimators have to be

estimated themselves from the data.

3.1 A Azsfrz'/zwZzo«-/ree meZ/zoA/or opt/ma/ trz'mmz'ng z'n moAe/ /
Let us assume that /7(0) and the distributions F„(x) are unknown. Ifwe replace

Px and Pg(m) m (1) by their unbiased linear estimators with smallest variance,
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then we get :

(7)

where

After further development we obtain :

2s[(/Ij(M) — — .E[(A7. — /ix(0;))^] ^ (8)

It follows: Mq is an optimal trimming point with regard to (1)
<=> Mq is an optimal trimming point with regard to (7).

But now the parameters occurring in ccg^ are unknown. We will proceed as

follows :

we estimate (for all MeIR) the parameters Mg<m)> %(m>> %<m) from the data. By

replacing these parameters in a^M) and i?(M) by their estimators we get the

estimators %(Mi and 1R(M). We estimate the optimal trimming point by the

point Mq at which /? (M) takes its maximum. Finally we use (7) as estimator for

Aix(0j) by replacing M with Mq and «g(m) with «goû,,)-

In order to simplify the notation we write in the following only Gy instead of
Gy(M) etc. The following estimators for the parameters «g> and are used:

A n —1

i>g max (%, 0)

where

4 max (%, 0)

where

w« sign (w>g) ' j/min (w%, 44)
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where

*0=^ I (*,-*•) (G.,-G..)

-11 y __L_ y v _f (G;,—G.,).
« Af j «-It '

Note:

- it is easy to see that %, % and vv^; are unbiased.

- given any realisation of the RV Ay, the point, at which R(M) takes its

maximum, can be exactly calculated in a similar way as that in the theorem
in 2.2. In practice however one would calculate f?(M) at sufficiently many
points and then one would estimate Mq from the behaviour of R(M) at these

points. This is justified by the fact that usually the true function R(M) is

rather flat in the environment of Mq and R(M) is only an estimation ofR(M)
anyway.

3.2 T d/str/fiat/on/ree met/zod/or optima/ trzmwzng in mode/ //
Let the structure function t/(0) and the distributions F„(y) be unknown. In
order to simplify the notation we write in the following only Zy instead of
Zy(M) etc. The linear unbiased estimators of p* and ^ with smallest variance

are:

/yO") /yOl

&=£.=£— 2f., àg=2..=Z^z,.
J j «Z

where

% Z «X
J J

a/, T.j, Zy had been defined in 1.3).

If we replace in (3) p* and /g by the above estimators then we get :

/Ij.(M) + <Xz(M)(Z.j(M - Z.. (M (9)

The optimal trimming point with regard to (9) is in general not identical with
max P.j

the optimal trimming point with regard to (3). If however — 1 (i.e. no
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contract in the portfolio is dominating), then an optimal trimming point for
(3) is also approximately optimal with regard to (9). Therefore we will proceed
as follows:
we estimate (for all MelR) the parameters ^z<m)> ^z(m) from the

data. By replacing these parameters in a^, and Pj(M) by their estimators, we

get the estimators oc^j and P,(M). We estimate the optimal trimming point for
contract y by the point M^', at which P/M) takes its maximum. Finally we use

(9) as estimator for fx(dj) by replacing M with and with
We introduce the following quantities:

J

^ZZ=E^(Z.j-Z..)2

r.. j ; v=i

j j v — 1

where

Z.. Z4Z, P..=£P,

(T.j., Z.J-, P.j. had been defined in 1.3)

The following estimators for the parameters Wz,rz> Wz are used:

"z ~ ^zz

i'z max (fiz, 0) where

Fx max (Fx, 0) where

vf'z sign (vf'z) [/min (w|, Fx^z) where

Note:

- It is easy to see that Fz, ^ vfz are unbiased.
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- Given any realisation of the claim data, the point at which Ä,(M) takes its
maximum can be calculated in a similar way as that in the theorem in 2.2.

In practice however one would calculate i?,(M) at sufficiently many points
and then one would estimate the optimal trimming point from the behaviour
of at these points.

- It may happen that for some reason one wants to trim only above a fixed
value My. The optimal trimming point in the set T {M|M:»My} can be

estimated with the same method. In this case it is not necessary to know the

amount of each claim separately. It is then sufficient to know:

JVy

i) ^=z
V — 1

ü) ß„= Z W
V — 1

iii) the exact values of such claim amounts, which are greater than My.

Dr. Alois Gisler
Winterthur-Versicherungen
General Guisan-Strasse 40
8401 Winterthur
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Zusammenfassung

In diesem Artikel wird gezeigt, wie die Credibility-Schätzung durch optimales Stutzen von Beob-

achtungen verbessert werden kann. Dadurch werden insbesondere verzerrende Einflüsse beseitigt,
die durch seltenes Auftreten von Grossschäden verursacht werden.

Summary

It is shown in this article how the credibility-estimator can be improved by optimal trimming of
data. In particular distorting effects caused by seldom occurrence of big claims are eliminated

through this process.

Résumé

L'article montre comment l'estimateur de la crédibilité peut être amélioré par une troncature
optimale des observations. Ce procédé permet en particulier d'éliminer certains effects perturbateurs
dus à la rareté de l'apparition des gros sinistres.
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Hans A. Ammeter, Bern

Potenzmittel-Credibility

64 26 33 23 30 70 36 67 20

35 69 19 66 25 32 22 29 72

24 28 71 34 68 21 65 27 31

8 42 73 39 79 5 76 2 45

78 1 44 7 41 75 38 81 4

37 80 6 77 3 43 9 40 74

51 55 17 61 14 48 11 54 58

10 53 60 50 57 16 63 13 47

62 15 46 12 52 59 49 56 18

^-z/z'mensz'onafes

magz'sc/zas gzzadraZ

Der folgende Artikel enthält wesentliche Resultate meiner Dissertation, welche
ich in den Jahren 1978/80 unter der Leitung von Herrn Dr. Straub ausgearbeitet
habe.

1 Modell

Wir betrachten ein Versicherungsportefeuille, welches in Tarife und innerhalb
der Tarife in Tarifklassen unterteilt ist. Diese Strukturierung werde durch die

AT

Parameter der Wahrscheinlichkeitsverteilung einer £ zz-dimensionalen Zu-
j i

fallsvariablen J induziert. Ohne Einschränkung der Allgemeinheit sehen wir
dabei die (z'J)-te Variable 7^, z'e{l, ...,«,} ye{l, V}, etwa als

Schadenfrequenz Anzahl Schadenfälle pro Bestandeseinheit

Schadenquote Schadensumme pro Prämie
Schadensatz Schadensumme pro Versicherungssumme

einer wohldefinierten Risikogesamtheit y in einer bestimmten Zeiteinheit z.

Eine Tarifklasse y sei einerseits durch einen Parameter 9, der Verteilungs-
funktion von -T=(7^, 7^) charakterisiert, welcher als Realisation einer
Strukturvariablen 0^ interpretiert wird, und andererseits durch die nicht
aleatorischen, fixen Parameter dieser Verteilungsfunktion, die sogenannten
Tarifparameter erster Ordnung.

Mitteilungen der Vereinigung Schweiz. Versicherungsmathematiker, Heft 3,1980
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Ein Tarif werde sowohl durch die Tarifparameter erster Ordnung als auch
durch die Parameter der Strukturverteilung determiniert, wobei wir letztere
als Tarifparameter zweiter Ordnung bezeichnen wollen.
Während also verschiedene Tarifklassen im allgemeinen durch differierende
S- spezifiziert sind, werden alle Klassen desselben Tarifes durch identische

Tarifparameter erster Ordnung markiert.
Beispielsweise wäre etwa in der Feuerversicherung die Zufallsvariable «Scha-

densatz 1980 der Hausratversicherungen im Kanton Bern» durch die Fixkom-

ponente « Hausratversicherungen » sowie durch das Strukturmerkmal « Kanton
Bern» geprägt.

2 Die inhomogene Potenzmittel-Credibilityformel

Wir nennen das Paar (Pjf,einen Tarif, wobei

(P<Tj!^)ü)peßp eine Familie von Wahrscheinlichkeitsverteilungen
(ZOeueßji eine Familie von Strukturverteilungen und

ßp x einen Tarifparameterraum bezeichnet.

Weiter sei
N

P|S Zufallsvektor in 1R'

7^|,9y unabhängig PjV'^-verteilt, 2=1, .,«j,/= 1, ,,W
0 Zufallsvektor in
Oy unabhängig, identisch zljb -verteilt

P[/(^)|9J, speziell
A Anzahl Tarifklassen

Anzahl Zufallsvariablen in dery'-ten Tarifklasse, y'= 1, A.

Jewell zeigte in seiner Arbeit [4], dass die einparametrische Exponentialfamilie,
zusammen mit der natürlich konjugierten Strukturverteilung [3] und unter
gewissen Regularitätsbedingungen [5], die verteilungstheoretische Grundlage
der exakt linearen Credibilityformeln darstellt. Von diesem Tarifwollen wir aus-

gehen und zwei Tarifparameter erster Ordnung (a, <5)e IR^ einführen.

De/znü/on

Ein Tarif (PjJ®, d'j.) mit P^'V gegeben durch

Pa>„(V|9,.) n' f=i c(.9,K)
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wobei c(9j-|a)p) j" u(fij|<5) e $.g^. C IR. sowie cüp=(a, 5)

und yl®/. gegeben durch

wobei öf(ct>j.)=j" c(Sj-|a)p) *e sowie cu^ (cüp, y, ß) mit 7, ß> 0,

in welchem a(-), g(') die Jewellschen Regularitätsbedingungen erfüllen, ins-
besondere

W)IV=l ^r»(5,)^, 0 r 0,l
•T

heisst natürlicher Exponentialtarif.

Zwei Bemerkungen mögen diese Definition ergänzen :

i) Die Abhängigkeit der Funktionen a( und g(-) von den Tarifparametern
beziehungsweise a kann als echte Parametrisierung. etwa

</(fy|<5): f£

oder als Indexierung, zum Beispiel

u(^|fi): ^(fij): ln fy
verstanden werden.

ii) Die natürlich konjugierte Strukturverteilung hat die Eigenschaft, dass die

a posteriori Verteilung von der gleichen Form ist wie die Struktur-
"j

1

Verteilung 2($j), jedoch mit den Parametern 7 7+«;, /? /? + X g(ty|a).
i 1

Damit wird mit den Parametern 7, ß zu £[/(7jfc)] mit den

Parametern y + «t, ß+ X sCitl«)-
i 1

Die exakte Credibilityformel der natürlichen Exponentialtarife, 2s[Ay(^)|*/],
als Schätzung von £[/(^)|^] ie{l, .,«&}, interpretieren wir nun als Funk-
tion

Zte/mztio«

r(-) heisst credible-suffizient, falls aus r(a)p,co^,''/) r((Up,œji,''tX <üp£ßp

und atieß^, für alle */, folgt: (cUp, cuJ (ajp, co^).
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Eine credible-suffiziente, exakte Credibilityformel enthält also die volle
Strukturinformation eines in unserem Sinne strukturierten Portefeuilles und
ist damit als Schätzwert für Tarifklassenprämien geeignet.

Aussage

In natürlichen Exponentialtarifen ist nicht credible-suffizient.

itevvew

Der Beweisidee von Jewell [4] folgend ist

c<AK)
£[g(7»|9j=

c(flklûJp)

in — "</.9,

' — c(Ä>.)
^

A *
7^7777-^+ ^

damit
'k \ c(^|o)p) y

tôt)

J (3J^ y£[g(^|a)]-i? 0
^k

und aus der Bemerkung ii)

0+ £

Az>ro//ar

£[A ($*) f] !— -, unabhängig von <5.
" '

7 + n,

£[Var [g(7|j|a)|9n]
-> 0, denn es ist analog

Var [£[g(7;ja)|^

j A"«* (5,)A £[Var[g(^|a)|a,]]-
-<4k

-y -£[£^(7;ja)l^]]+y -£%(^|a)] 0

Wir finden, dass mit g als identischer Funktion alle exakt linearen Credibility-
formein nicht credible-suffizient sind. Die mathematisch wohl handlichste

Menge von natürlichen Exponentialtarifen mit im allgemeinen credible-
suffizienten a posteriori Erwartungswerten stellt die Familie der Potenz-

exponentialtarife dar. In der Folge wollen wir uns auf sie beschränken.
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Z)e/znüz'on

Ein natürlicher Exponentialtarif mit

a 0J<5) : ?(t,Ja): 4,
wobei

— l,a>0, y( ——) -El — — >0, sowie O,>0, &>0
V a / a

heisst Potenzexponentialtarif.

In Potenzexponentialtarifen gilt :

/ -, \7
£[/r(S,)M=k^[^]+^ Z '"*)

mit

1

ai-a • _o • —

(y+flfc) (j_+l)
I ^ _i\ j-/y(^'+i) |

A
a a/ V a /

Va /Va a/
und

<:=-

+ «*) 0 + 1), < l^^ + 2\
i r" '+1

a

(y+«fc) (^+i)
I j

a

Für a l wird ZT|yi(fyJ|*f] zur klassischen, inhomogen-linearen jedoch nicht
credible-suffizienten Credibilityformel, was wir durch einsetzen direkt bestäti-

gen können.
Innerhalb der Tarifparameter gleicher Ordnung, wie auch zwischen Tarif-
Parametern verschiedener Ordnung, können funktionale Abhängigkeiten
bestehen. Wir führen zwei Beispiele derartiger Beziehungen in Potenzexponen-
tialtarifen auf :

1

i) <5 <x—l,y=- also mit der Landau-Symbolik, nach dem vorangegangenen
a

Korollar, is[Var [7j?|^]] o[Var [.E[7]£|#J]] (oc-»oo). Damit folgt unmit-
telbar

"k

\"fc/

n (V *

;=1 Va
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sowie

lim£[/i(St)|^] i
max f,i Ac

max 1

i

sonst

Denn wegen /? ist etwa für max ^ > 1 nach der Regel von
de l'Hospital

lim l/i+ X 'fJ =exp lim
/l(^) InU

=i W
A+ J (%Y

»1l

und

ii) d a.

jim E[/r(fy)|**] oo.

Sind die zwei Tarifparameter erster Ordnung in einem Potenzexponential-
tarif identisch, wollen wir von «einfachen Potenzexponentialtarifen»
sprechen.
In unserem Beispiel würden damit die Parameter (/J,y) das Merkmal
«Feuerversicherung», das Charakteristikum «Hausratversicherungen»
also (a„ ,/?,y) den «Hausratfeuerversicherungstarif» determinieren, wäh-
rend i9„ die Eigenheit «Kanton Bern» und mithin (dg,a„) die Tarifklasse
«Hausratversicherungen im Kanton Bern» beschreiben würde.

Es ist darauf hinzuweisen, dass durch die spezifische Form der natürlich
konjugierten Strukturverteilung alle Tarifparameter erster Ordnung in natür-
liehen Exponentialtarifen eine Teilmenge der Tarifparameter zweiter Ordnung
darstellen.

3 Die homogene Potenzmittel-Credibilityformei

Werden in der Credibility-Aufgabe: «Approximiere /z^(>9,.) £[/(7^) |.'4] durch
,S'(C derart, dass £"[(/iy(S^) — s(0)^] minimal wird», für s(t) nicht Linearität und
nicht Semilinearität als Nebenbedingung vorausgesetzt, verliert sich im all-
gemeinen der praxisorientierte Hauptvorteil der Credibility-Theorie, die ein-
fache statistische Schätzbarkeit der Credibility-Prämie. Diese Schwierigkeit
kann in einem Spezialfall über das Erwartungswertprinzip als Prämienberech-
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nungsregel von Gerber [2] umgangen werden. Er definiert für eine stetige,

streng wachsende Funktion g auf 0 < t < oo die Prämie P für ein Risiko Pdurch
P: =g~*P[g(P)] und damit implizite ihre Schätzung P etwa durch

P: =g~*P[g(P)] mit 7?[g(P)] als Schätzung für P[g(P)].

Wir setzen :

/)e/z«zzzo/z

Ist unter einer stetigen, streng wachsenden Abbildung g, s(/) die Credibility-
Schätzung für g(A/(9J), heisst g~'(,s(t)) g-inverse Credibility-Schätzung für

Inverse Credibility-Schätzungen verallgemeinern die Credibility-Aufgabe wie

folgt: «Approximiere g(/z^-(3^)) durch x(t) derart, dass P[(g(P/(A)) —s(0)^]
minimal wird und setze als Schätzung für /zj($ÜPy(3k)=<?~*Ü(Ü)- Wird ins-

besondere für s(t) homogene Linearität: oder homogene Semi-

linearität: ^ mit fester Funktion y vorausgesetzt, bleibt /zy(.'4)

einfach statistisch schätzbar.

Ausgehend von der Eigenschaft der Potenzexponentialtarife, dass die exakte

Credibility-Prämie die Form eines Potenzmittels aufweist, stellen wir uns nach
den obigen Überlegungen die Aufgabe: «Approximiere /P(9Ü P"[7]J^]
durch £ derart, dass P unter der Nebenbedingung

P =Pb«(0J] minimal wird und setze û(,%) ^
Es bedeute ohne Einschränkung der Allgemeinheit 7^- die Zufallsvariable
«Schadensatz der Tarifklasse y aus einem Tarif a im Jahre z. Weiter wollen wir
eine Volumenabhängigkeit von 7t* durch

Ty-V I W.,„ a>()

definieren, wobei IP die massgebende Versicherungssumme des Risikos 7^

bezeichnet. Daraus ergibt sich

1 üf m fSd

ij '=1 Zj
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und 1 rYfßt
Var [OT=-j; I Var [C?,J9,]:=-^.

y >-=i ü

Für oe 1 sind die obigen Formeln, sowie die nachfolgenden Resultate mit den

Ergebnissen von Bühlmann und Straub [1] identisch. Wir verzichten daher an
dieser Stelle auf eine vollständige Darstellung des zu der erwähnten Arbeit im
wesentlichen analogen Lösungsweges unserer Aufgabe und beschränken uns
auf das Aufführen der homogenen Potenzmittel-Credibilityformel mit den

Schätzern für die darin auftretenden, in der Praxis unbekannten Parameter.
Der Schätzung von a sei erst das nächste Kapitel gewidmet, vorerst setzen wir
a als bekannt voraus.
Es wird also

wobei
h(.%)=((ro-A)^' + y,^r

vy - - F">=Y ^
wH

Kjc

A/=£fo«(0*)], m=£K(0J], K. Z K„
» * j

u £[<^(0J], w Var [«„(0*)], c=Cov [At"(0t),ffi«(0J]

mit den Schätzern

r K. Vt Kr V fr K.

— y-^- /V kK"K,Y-F,Y"
K. r "J-1 \i

r
K. 7 "j-

/2
w max <""W°

; (F Ç <<" I£ (-ST) +*(.)
J

1 V- F,- A F,
«== Y^ 1—=

Z«r-lrK. V F
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4 Die Tarifparameter in Potenzexponentialtarifen

4.1 strwfctMraZworZubrende Sfafiyfifc

Die Einführung eines Tarifierungsmodelles, in welchem Tarifklassen durch
einen Strukturparameter und durch Tarifparameter charakterisiert sind, ist für
praktische Belange nur dann von Bedeutung, falls es gelingt, Statistiken inner-
halb der Tarifklassen zu finden, welche einerseits Auskunft über die ihnen zu-
gründe liegenden Tarifparameter geben andererseits aber jegliche Wechsel-

Wirkungen mit dem Strukturparameter eliminieren.
Potenzexponentialtarife stellen sich als richtungweisend heraus.

Aufrage

Es seien • • •> unabhängig, identisch verteilte Zufallsvariablen aus
einem Potenzexponentialtarif.

Dann gilt für Z„,*: r=/=i
s/c I fc

/2(g + l)\

r j (l+z-)

unabhängig von

itewe/s

Wenn wir der Übersichtlichkeit halber auf eine Indexierung verzichten, wird

Durch die Substitution /=- und unter Vertauschung der Integrale ergibt sich
V

// 1 z œ ,/ _A(„« + n
/?(z) z f f - g dfydw

£?Z C^(9|cüp) „ 0y 0j
also mit
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r= 9(M"+1)

p(z) a

^/^+i 2(<5 + 1)
z> 0

(1+Z«)

zudem
/<> + v+n ^/<5-v+l

£[Z*]=-
'(*r)

ü + v+l>0, (5 — v+l>0.

Die Quotienten jT^/T^ r=f j r,je{l, .72,} ye{l, ,,JV} innerhalb der Tarif-
klassen eines Potenzexponentialtarifes sind also über den ganzen Tarif iden-
tisch verteilt. Die strukturabsorbierende Eigenschaft dieser Quotientenbildung
ist insofern bemerkenswert, als damit das Gemeinsame einer inhomogenen
Menge von Tarifklassen isoliert werden kann. Für unsere Hausratfeuer-
Versicherung würde dies bedeuten, dass die Zufallsvariable «Quotient der
Schadensätze Hausratversicherungen im Kanton y der Jahre r und v

r,se{l, ...,«;}» identisch der Variablen «Quotient der Schadensätze Hausrat-
Versicherungen im Kanton k der Jahre /> und </ /?, <y e {1, «^} » verteilt wäre,
wobei wir von einer allfälligen Volumenabhängigkeit absehen.

An dieser Stelle scheint sich die praxisadäquate Einschränkung unserer Be-

trachtungen auf Potenzexponentialtarife zu rechtfertigen, denn fordert man
allgemein in natürlichen Exponentialtarifen £[g(7rt)|3jt]ii[g~*(?rik)|$k] Co,

Cq konstant 4= 1, impliziert dies, dass

e'(^K)lc(AK)'A
^0 '

beziehungsweise die Differentialgleichung /'y —Co(/)^ 0 gelten muss.
Wir finden sofort c(coQ C4(Cj+ Cj)" ' c,-= konstant, womit wir, ohne auf
die analytischen Eigenschaften von c(9^|cOp) hier näher eintreten zu wollen,
feststellen können, dass die Potenzexponentialtarife mit

c(^|cu a *T

im wesentlichen die einzigen natürlichen Exponentialtarife mit der oben verifi-
zierten Eigenschaft sind.
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4.2 ScAätzwng (fc.y 7uny/?ara/neter.s a /« ezn/acAen Ro tenzexpone/i tza/farz/en

Aussage

Mit 2^: K,7" £ C%, wobei Ç,^ aus einem einfachen Potenzexponential-
m= 1

tarif stammend, gilt für

zm-^ * MWyw- y M i' ^ «>, -i)\r ^ r k„ r
£[Z.(D]=a.

Den einfachen Beweis übergehen wir.

Diese Beziehung gibt uns eine Möglichkeit, a aus den Beobachtungen ^
z'e{l,..ye{l,.. .,At} schätzen zu können. Wir setzen voraus, dass

hj>0 Vzj.
Da

mit

wobei

sowie

z,(0=—E—-— I^-i
•' vi;,a,/ vi-;,/,,

"f >0, lim A .(oc) 0,
«a *->o+ da

lim -^-A -(a) oo
--0O aa

ist Z^/) in a streng monoton steigend. Also existiert wegen Zq(/)^0 (fy >1),

falls =£1 für mindestens ein (r,sj), für die Gleichung/(a) Z^(t) —a 0
K-tS/ SJ

genau eine Lösung â, welche sich nicht explizite angeben lässt, die jedoch mit
der Newtonschen Rekursion
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also

+ 1 ~~ "

c =V ^ ("y (^Vi.;)"'" y (^/ij) "" y J_
'

i »/(«,-1) vi- k„ r k„ t ^
$2 1

1

(5,-5,)!_/ / w \ V-'jl 7*2

i

(W^=1 'fr
K-;

In (WZ

Z2 Z^^Z^-^ ln(W
' ^0' ' 0

schnell gefunden werden kann, wie uns etwa Stiefel [6] lehrt. Zur Bestimmung
eines geeigneten Anfangswertes <Xq setzen wir nach Taylor

Z„„(0~Zo(0 + aoJ-Z.(0

>0.

womit unter den Annahmen Zq(0~0 und Z^(t)~ao

Der nach dem beschriebenen Verfahren gefundene Wert oc ist ein konsistenter
Schätzwert für a, was wir hier nicht beweisen wollen.

5 Numerisches Beispiel

Wir betrachteten drei Risikogruppen aus der Feuerversicherung: Hausrat,
Landwirtschaft und Gewerbe. Aus jeder Gruppe lagen uns von der Statistik
des Schweizerischen Sachversicherungsverbandes für die Jahre zwischen 1974

und 1978 pro Kanton je eine Feuerschadensatzbeobachtung vor. Unter der

Annahme, dass diese Daten aus einfachen Potenzexponentialtarifen stammen,
stellten wir uns die Aufgabe, reine Risikoprämiensätze pro Risikogruppe und
Kanton zu bestimmen.
Als erstes interessierte uns die Frage, ob die drei Risikogruppen möglicherweise
einen einzigen Tarif darstellen. Durch die Erkenntnis, dass eine geeignete

Quotientenbildung die Tarifklassenstruktur absorbiert, war der Weg für die
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Gra/zA: 7

Schaden- und Prämiensätze in %„ der massgebenden Versicherungssummen

Kanton Kanton Kanton Kanton Kanton
Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5

beobachteter Schadensatz

reiner Risikoprämiensatz, berechnet mit ot=

reiner Risikoprämiensatz, berechnet mit a

0.458

1.0
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Anwendung eines adäquaten Homogenitätstestes frei. Aufgrund des Ergeb-
nisses eines solchen Testes mussten wir die Hypothese, dass die Risikogruppen
Hausrat, Landwirtschaft und Gewerbe als zum gleichen Tarif gehörend be-

trachtet werden können, mit einer Fehlerwahrscheinlichkeit erster Art von 5%
ablehnen. Ohne uns um eine allfällige Homogenität von Teilmengen dieser

Risikogruppen zu kümmern, interpretierten wir also jede Gruppe als separaten
Tarif und schätzten die Tarifparameter a. Wir fanden für Hausrat % 0.910,
für Landwirtschaft cq_ 0.585 sowie für Gewerbe % 0.458.

Schliesslich berechneten wir mit den geschätzten Tarifparametern nach der

homogenen Potenzmittel-Credibilityformel die reinen Risikoprämiensätze

pro Tarif und Kanton.
Grafik 1 vergleicht innerhalb des Gewerbetarifes Potenzmittel-Credibility
(a 0.458) mit der linearen Credibility nach Bühlmann und Straub (a=l) am

Beispiel der Resultate von fünf ausgewählten Kantonen.

Hans A. Ammeter
Schweizerische Mobiliar
Versicherungsgesellschaft
Schwanengasse 14

3001 Bern
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Zusammenfassung

Die klassische Credibility-Formel lautet

wobei 7^ individuelle Schadenerfahrung der Risikoklasse A, Schadenerfahrung des Kollek-
tivs (Portefeuille oder Tarif) und yt Credibility. Diese Formel ist bekanntlich sogar exakt (das
heisst identisch mit dem a posteriori Erwartungswert £[/t(9)|7*)) für gewisse Paare von Vertei-
lungen für 7' (Schadenvariable) und 3 (Risikoparameter). Das bestbekannte solche Paar ist die
Poisson-Gamma-Kombination.
In der vorliegenden Arbeit wird das klassische Resultat wie folgt verallgemeinert:
Falls die Verteilungen von T und 9 bestimmten Exponentialfamiüen angehören, so wird obige
Formel - wobei sie exakt bleibt - zu

mit a>0 (a l entspricht also der klassischen Formel).
Verschiedene a-Werte charakterisieren verschiedene Tarife; verschiedene 9-Werte mit demselben
a charakterisieren verschiedene Risikoklassen innerhalb desselben Tarifs.

Résumé

La formule de crédibilité classique est

7^ sinistralité individuelle de la classe de risque A:, T=sinistralité collective (portefeuille ou tarif)
et yj. crédibilité. Cette formule est, on le sait, également exacte (c'est-à-dire identique à l'espé-
rance mathématique a posteriori 7i[p(9)|7]) pour certaines paires de distributions de T(variable
des sinistres) et 9 (paramètre de risque). La plus connue de ces paires est la combinaison Poisson-
Gamma.
Le présent article généralise le résultat classique de la manière suivante :

Si les distributions de 7" et 9 appartiennent à certaines familles exponentielles, la formule précé-
dente - tout en demeurant exacte - deviendra

/W=[(yo-y*)r«+y*7;T

avec a>0 (a l correspondant à la formule classique).
Des valeurs différentes de a caractérisent des tarifs différents; des valeurs différentes de 9 avec le
même a caractérisent des classes de risques différentes à l'intérieur d'un même tarif.
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Summary

The classical credibility formula is

£(9,)=(l-y*)f+?*7L,

where 7^ individual claims experience of risk class number /c, 7"=overall claims experience of
the entire portfolio (or tariff) and yj credibility. This formula is, as we know, even exact (i.e.
identical with the posterior mean £[/r(9)|7]) for certain combinations of distributions of 7 (claims
variable) and 9 (risk parameter), the best known such combination being the Poisson-Gamma.
In the present paper the classical theory is generalized as follows:
If r and 9 are distributed according to certain representative members of exponential families,
the above formula - while remaining exact - extends to

A(»»)-[(7b-a)7"+v*ir]"
for some a>0 (a 1 being the classical case).
Different values of a characterize different tariffs; different values of 9 with the same a characterize
risk categories within the same tariff.
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