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AvrLo1S GISLER, Winterthur

Optimum Trimming of Data in the Credibility Model

Abstract

The practical application of credibility models and credibility estimators in the
field of actuarial activities (see [1], [2]) shows that big claims have distorting
effects. On the one hand, such large claims exert a strong influence upon the
variance, given the risk parameter, and cause a reduction of the credibility
factor. Thus the experience rating factor for a contract which has had no big
claims during the observation period is too small. On the other hand the oc-
currence of a heavy claim can be the cause of a precipitous rise of the estimated
risk premium regardless of the small credibility factor.

In this investigation we show how the credibility estimation can be improved by
trimming the data. The usual credibility model and a model in which a volume
measure P;is assigned to each risk j and to each year i are dealt with. The claim
amounts are trimmed at the point M, i.e. subject to the transformation
gy (x)=min (M, x). Then the best estimator ji(M) of the pure risk premium is
determined, which is linear in the transformed data. If we choose a trimming
point M which is too small, we lose too much information and the differences
between the contract’s risk behaviour and that of other risks are possibly lost.
If M=oco we get the usual credibility estimator with the above mentioned
distorting effects caused by the occurrence of heavy claims. The trimming point
M, is said to be optimal, if ji(M,) is the best estimator within the class
{A(M)|MeR}.

This article is a summary of [4]. The stress in this article is laid on the basic
ideas and the main result. The reader who is interested in the proofs and in the
details is referred to [4]. A copy of [4] can be obtained from the author.

Chapter 1: Introduction
1.1 Models
Model I (usual credibility model)

— X;; may be interpreted as the total claim amount caused by risk j (j=1,2,
..,N)in the yeari (i=1,2, .. .,n).
— The distribution of X;; depends on a risk parameter 6, .

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 3, 1980
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We make the following assumptions:
(1) Given 6; (j=1,2, ...,N) the RV (random variables) X;; are independent.
(ii) Given 0,=0 the RV X;; (i=1,2, .. .,n) have the same distribution Fy(x)=
= Prob (X;;<x|0).
(i) 6,,0,, ...,0y are i.i.d. (independent and identically distributed) with
distribution U(0) which is called the structure function.

Model II (a model with volume measure)

— A volume measure P;is given to eachrisk j (j=1,2, ..., N)and to each year i
(i=1,2; » + ulb);
— N, is the number of claims of the risk j in the year i and ¥, (v=1,2, .. .,N;;)
are the different claim amounts.
— The distribution of N;; depends on the volume measure P; and on a risk
parameter 0;.
— The distribution of the claim amounts also depends on the risk parameter 0,
but not on the volume measure.
We make the following assumptions:
(0) Given P;;and given 0;=0 the RV N;; is Poisson with parameter A(0, P;;)=
=a(0) - P;. :
(i) Given 0; (j=1,2,...,N) all RV Ny,
j=1,2, ...,N) are independent.
(ii) Given 0,=0 the RV YV (i=1,2,...,n; v=1,2,...) have the same
distribution F,(y)=Prob (¥’ <y|0).
(u11) 04,0,, ...,0yarei.1.d. with distribution U(8) which is called the structure
function.
Note: It is not required that claim amount and claim number be independent.
They have only to be conditionally independent.

N (=12 :ssj =125 55 o

1.2 Derived quantities and notations

Let g be any real function of one real variable.

Model T

Let be G;=g(Xj).
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Notation
px (8;)=E[X;|0;]
ux  =E[X;]
uy — =E[Var [X;]|0/]]
vx  =Var [ux(6))]
Model IT

Let be Gi}")z g(Y,—J(-V’ _

claim rate

Notation

Hx (Gj)= E[Xij|9j, Pij]

Hx = E[Xij]
uy  =E[Var [X;|0;, P=1]]
Ux =Var [uy (Bj)]

Note: E[Var [X};|0,, Pfj]]zt;)—x

16 (0;)=E[G0;]

Hg =E [sz]

us =E[Var [G;l0]]

ve  =Var [ug(0)]

weg  =Cov [ug(0)), ux (0)].

total claim amount of risk j in the year i

ﬂz(gj)zE[z"Wp Pij]

y

Hz =E[Z;]

Uy =FE[Var [Z;]0;, P;=1]]
vz =Var [uz(0)]

wz  =Cov [ux (0)), uz(0))].

if

u
E[Var [Zijleja Pfj]]:f

)
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1.3 Semilinear credibility estimator

Problem: To find the estimator fi; of uy(6;) which is linear in the RV G;;
(model I) respectively linear in the RV Z;; (model II) and which has

minimum quadratic loss among all these linear estimates.

(Quadratic loss = E[(fi;— px (6,))*]).

Model T
Theorem
fy=pux+og - (G;—g)
where
n-wg = 1
o =— G:— G'..
“Tnvgtug ! nzi: !

E[(ﬁj"ﬂx (Qj))z] =Ux—0g " Wg.

This theorem is well known (see [3]).

Model I1
Theorem
ﬁj:HxWLO‘(zj) ) (Z'J"_”Z)
where
a(zj)z_P'jK%_ Z_.:Z&Zij P.J.-=Z P;
P.jvz+uz J i R_[ i

E( ﬁj — Hx (Qj))Z] = Oy~ “{zj)wz .

Chapter 2: Optimal trimming, if the structure function U (9)
and the distribution of the claim data are known

2.1 Problem

(1)

)

3)

4)

In 1.2 and 1.3 g was any determinate function. Here we admit a certain class of

functions, the class C, of the trimming functions:

C,={gmlgy(x)=min (M,x), MeR}.
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According to (1) resp. to (3) we get for each trimming point M a semilinear
credibility estimator. In order to indicate that the data are transformed by the
trimming function g,,, we use the same notation as before and add M in brackets;
e.8. (M), agarys Voar etc. in model I, addy,, vz ete. in model I1. Here the
question arises as to which estimator within this class is optimal with respect to
quadratic loss, in other words, which is the optimal trimming point M,.
According to (2) resp. to (4) we get:

model I: M, is an optimal trimming point, if

Hiax R(M)=mﬁx oG anWae an = R(Mo);

model I1: M is an optimal trimming point for contract j, if
max R;(M)=max LWz on=R;(Mg").

Note: — it is possible, that My= oo resp. M§’ = oo ; that means one ought not
to trim.
—if P.;# P.; in model 11, then the optimal trimming points for contract
j and contract k are in general different.

2.2 The calculation of the optimal trimming point, if the claim-data X;; (model I)
resp. the claim amounts Y (model II) only assume a finite number of
values

Model 1

The RV X; are supposed to assume only the values {x;,x,,...,x,} with
X; <X, < ...<Xx,.After some derivation we obtain:

(0 for M<x,
R(x for X <M<x

R(M)=" (x2) . 2 (5)
ﬁ(M) for erMSX,.H r=2,3, ...,f—l
LR(x,) for x, <M.

Thereby

&M)_n-(a+bMy

M)= =
+M) h(M) c,+dM+eM?

with A4, (M) > 0 for MeIR and thereby are a,,b,, .. .,e, constants, which can be
calculated from the values x;,x,, ...,x, and from the probabilities p,=
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=Prob (X;;=x,) and p,,=Prob (X;;=x,,X,;=x) r,s=1,2, ...,t. From the
above we obtain:

Theorem

The optimal trimming point can be calculated as follows:

MO=M0k Whel‘e R(MOk)z 221‘;13)(‘_1 R(MOF)
i ad,—2b,c
M =G 20y f M X,
r brdr_za,-er ,e[x, X +1]
MOJ‘:< .
Xy if Mr¢[xr9xr+1] and R(xr)>R(xr+l)
L.xr+1 if Mr¢ [xr’xr+1] and R(xr)sR(xr-i-l)
E[(ﬁ; (Mo) — px (Bj))Z] =vx — R(M)).
Model 1T

The claim amounts Y” are supposed to assume only the discrete values

{¥1:¥25 ..y } with y; <y, < ...<y,. Through calculation we get:
er(yl) for M<y,

P(a,+bM)
9D +dIM + eY M?

| R;(y,) for y<M.

R;(M)= for y,<M<y,., r=12,..,i1—1 (6)

Thereby the constants a,,b,, . . .,eY are functions of the following quantities:

P, ¥, p.=Ja@)py(»)dU®), q,,=] a®>(0)pe(»,)ps(y,)dU(0) with py(y,)=
=Prob (YV=y,10,=8) r,s=1,2, . . .,t. Thus we obtain:

Theorem

The optimal trimming point M{” for contract j can be calculated as follows:

MO=MY  wheby  R(Mi)= _max | R(M)
i ad?—2b,cY .
Mrzmﬁj) if M.€[y.,yr+1]
M= .
Yr if Rj(yr)>RJ(yr+I) and Mr¢[yr3yr+1]
\yr-i-l If Rj(yr)st(yr+1) and Mré[yrayr+1]

E [(F%(M(()J)) - #X(Bj))zl B Rj(M(()j))-
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2.3 Numerical examples

For reasons of simplicity examples in this article are confined to model I (in [4]
the reader can also find examples to model II). We use the following abbre-
viations and notations:

iy O=E[X;0,=0] 0} (0)=Var [X;16,=0]
n=number of observed years M,=optimal trimming point
oG ) = factor in estimation (1) with optimal trimming
0lG (o) = factor in estimation (1) without trimming=usual credibility-factor
QM = E[(i;(M,)— pux(6;))*]=quadratic loss with optimal trimming
QO =E[(ji;(00)— px (0;))*]=quadratic loss without trimming.

Example 1
0 Prob (6;=0) pix (0) az (0)
x=0 x=2 x=4 x=6
1 0.25 0.55 0.25 0.10 0.10 1.5 3.95
2 0.25 0.30 0.30 0.25 0.15 2.5 4.35
3 0.25 0.10 0.30 0.35 0.25 3.5 3.55
4 0.25 0.05 0.15 0.30 0.50 4.5 3.15

Using the theorem in 2.2 we get:

h M, He Mo) Hx %G (Mo) 06 (o) oM QO OM/QO

1 4.89 2,722 3.0 0.300 0.250 0.9292 0.9375 0.99
3 495 2137 3.0 - 0.589 0.500 0.6147 0.6250 0.98
5 5.00 2751 3.0 0.726 0.625 0.4579 0.4687 0.98

A comparison of QM with QO shows, that the reduction of the quadratic loss
by the optimal trimming is rather slight. In this case trimming is not worth-
while.

Example 2 derives from example 1 as follows: The RV X;; can assume the
values 0, 2, 4, 6, 40. Given 0;=0, the value 40, representing a big claim, occurs
with the probability g, whereas with probability (1 —g,) the RV X;; have the
same conditional distribution as in example 1.
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Example 2
0 Prob (6,=0) Uy (0) 0% (0)
x=0 x=2 x=4 x=6 x=40

1 0.25 0.5445 0.2475 0.0990 0.0990 0.0100 1.885 18.58
2 0.25 0.2940 0.2940 0.2450 0.1470 0.0200 3.250 31.82
3 0.25 0.0970 0.2910 0.3395 0.2425 0.0300 4.595 42.21
4 0.25 0.0480 0.1440 0.2880 0.4800 0.0400 5.920 51.42
Using the theorem in 2.2 we get:

n M, Ha o) Hx %G (Mo &G (o) oM Q0 OM/QO

1 4.83 2.750 3.912 0.404 0.059 1.6848 2.1278 0.79
3 4.89 2.767 3.912 0.794 0.158 14173 1.9029 0.59
5 495 2.782 3.912 0.980 0.239 0.8367 1.7210 0.49

The quotient QM/QO shows clearly that the estimator with optimal trimming
has a much smaller quadratic loss than the usual credibility estimator without
trimming. Furthermore we see that the factor o, 1s much smaller in example 2
than in example 1. This is a direct consequence of the big claim of 40, that can
occur in example 2, although the probability of such an occurrence is small. Asa
result of this, the credibility estimator without trimming does not take observed
experience sufficiently into account, which of course increases quadratic loss.
In order to examine the effect of the trimming on the estimated values we look
at some concrete data taken from a simulation (400 contracts) of the example
2 with n=3 observed years. Thereby
estimation 1=credibility estimation without trimming
=3.912+40.158 - (X,;—3.912)
estimation 2=credibility estimation with optimal trimming
=3.912+0.794 - (G.;(4.89)—2.767)

estimation 3= E[ux(0;)|X,;,X;,X3;]=Dbest estimator with respect to quadratic

loss (it can also be calculated in this example and is added for

"comparison).

Risk 6 has a good claim experience, risk 288 a bad one. But because the claim
experience is not taken sufficiently into consideration by estimator 1, the esti-
mated values are too close to uy (expectation in the collective). On the other hand
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estimations
contract Nr. claims’ data in the observed years
1 2 3
6 0 2 2 3.504 2.T15 2.782
28 0 40 2 5.512 3.540 3.259
30 4 6 40 5.934 5.364 5.286
288 6 6 4 4.138 5.364 5.439

contract 28 had a big claim in the second year but otherwise a good claim
experience. In spite of the small credibility factor a4, the value resulting from
estimator 1 is much too high. By the optimal trimming the big claim is given less
weight and the estimated value is correspondingly smaller. Moreover note the
same values given by estimator 2 for contract 30 and contract 288.

2.4 Approximate calculation of the optimal trimming point

According to 2.1 M, (resp. M§’) is an optimal trimming point, if the function
R(M) (resp. R;(M)) takes its maximum at M, (resp. at M§’). In 2.2 we have
derived an explicit method for calculating the optimal trimming point in the
case the RV X;; (resp. ¥’) can assume only a finite number of values. If this
condition is no longer valid, then we cannot come to a general solution.

An obvious suggestion is to take the RV X; (resp. ¥{") as discrete values. Then
we can apply the method described in 2.2 to the discrete random variables.
It can be shown that in this way we can get a trimming point which is nearly
optimal. The reader who is interested in the exact results and in the details is
referred to [4]. Moreover some properties of gy, Vgar)» Woar (model T)
(resp. of Uz, Vzay> Wzar) (model II)) as functions of the trimming point M
are also proved in [4].

Chapter 3: Optimal distribution-free trimming

In practice the structure function U(0) and the distribution of the claim data are
very often unknown. The parameters occurring in the estimators have to be
estimated themselves from the data.

3.1 A distribution-free method for optimal trimming in model I

Let us assume that U(0) and the distributions F,(x) are unknown. If we replace
tx and Ug g in (1) by their unbiased linear estimators with smallest variance,
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then we get:
ﬁj(M):y--‘}"O‘G(M)(G-j(M)—G--(M)) (7)
where
% 1 - i |
..=—-— X, G.M)y=—") G;(M).
After further development we obtain:
~ 2 % 27 N-1
E[(Hj(M)_ﬂx(Hj)) |=E[(X..—ux(0 )) ]’“—'— ComyWao M) - (8)

It follows: M, is an optimal trimming point with regard to (1)

<> M, is an optimal trimming point with regard to (7).
But now the parameters occurring in oy, are unknown. We will proceed as
follows:
we estimate (for all MeIR) the parameters g ) » Vg (my» We ar) from the data. By
replacing these parameters in o, and R(M ) by their estimators we get the
estimators dg ) and R(M). We estimate the optimal trimming point by the
point M,, at which R (M) takes its maximum. Finally we use (7) as estimator for
px (6;) by replacing M with M and ag sy With Eegii
In order to simplify the notation we write in the following only G;; instead of
G;;(M) etc. The following estimators for the parameters ug, v and wg are used

1
1 -—G
uG N ; ﬂ"'—l Z( ij
{g=max (45, 0)
where
1 — 1 _
e G.—G.) —- -G,
G N_lg( j n = - _;)
vy =max (0y, 0)
where
1 - 11 1 _
y=—— (X, —X. P —= = X.—X..P
Ux N_lgl( J ) nNJn——lg( ij _])

We=sign () * |/ min (W%, Ux )
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where

Note:

— it is easy to see that Uy, v; and Wg are unbiased.

— given any realisation of the RV Xj;, the point, at which R(M) takes its
maximum, can be exactly calculated in a similar way as that in the theorem
in 2.2. In practice however one would calculate R(M) at sufficiently many
points and then one would estimate M, from the behaviour of R(M) at these
points. This is justified by the fact that usually the true function R(A) is
rather flat in the environment of M, and R(M)is only an estimation of R(M)

anyway.

3.2 A distribution-free method for optimal trimming in model II

Let the structure function U(6) and the distributions F,(y) be unknown. In
order to simplify the notation we write in the following only Z; instead of
Z;;(M) etc. The linear unbiased estimators of yy and u, with smallest variance
are:

-r;z
It

r.-y 2y, 2.-3%z,
J p %2

where
iy 52 Z ) az=> af
j
(o, o, X.;, Z.; had been defined in 1.3).
If we replace in (3) uy and p, by the above estimators then we get:

L(M)=X..+ 0 (Z.,(M)—Z..(M)). 9)

The optimal trimming point with regard to (9) is in general not identical with
max P

the optimal trimming point with regard to (3). If however <1 (i.e. no
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contract in the portfolio is dominating), then an optimal trimming point for
(3) is also approximately optimal with regard to (9). Therefore we will proceed
as follows:

we estimate (for all MelR) the parameters uz,r, Uzar)» Wz from the
data. By replacing these parameters in o)y, and R;(M) by their estimators, we
get the estimators 4}, and R,(M ). We estimate the optimal trimming point for
contract j by the point M{", at which R;(M ) takes its maximum. Finally we use
(9) as estimator for py(0,) by replacing M with M§ and o)y, with d5}g,.
We introduce the following quantities:

P. _ _ 1
VXX=Z_J(X'j_X")2 Uxxm“"‘z (K}'v))z
j P.. P-- J i v=1
By s 5 y0m 1 iS ™y
VZX—Z_J(XJAX)(ZJ_Z ) UZX__—__ZZ Gi_}y Y'ijv
7 P. P, i
P. _ p e 1 Nij -
VZZ=Z_1L(ZJ_Z') UZZ':_ZZ (Gl_] )
J i P J i ov=1
where
- Py o . Py w
X_—'ZFLX; Z..:ZP—JZJ P=ZPJ
J 7 J
(X.;, Z.;, P had been defined in 1.3)
=3 B (1-22)
T P. P.
The following estimators for the parameters u,, v,, w, are used:
ﬁz =Uyz
2 A A 1 Uyzz
v, =max (0, 0) where Uy=—(Vzz—(N—1) B
a ..
A R « 1 Uxx
Ux =max (0, 0) where Ux== (Vax—(N—1) > )
a e
A . iy . A2 A A A 1 sz
w,=sign (W,) |/m1n (w3, 0x0z) where Wy==\Vox—(N—1) >
a ..
Note:

— It is easy to see that i, ¥, W, are unbiased.
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— Given any realisation of the claim data, the point at which Rj(M ) takes its
maximum can be calculated in a similar way as that in the theorem in 2.2.
In practice however one would calculate R}(M ) at sufficiently many points
and then one would estimate the optimal trimming point from the behaviour
of R}(M ) at these points.

— It may happen that for some reason one wants to trim only above a fixed
value M,. The optimal trimming point in the set 4={M |M > M;} can be
estimated with the same method. In this case it is not necessary to know the
amount of each claim separately. It is then sufficient to know:

Nij
D) Sy=2, Y
v=1

Nij
ii) Qij: Z (YJV)Z
v=1

iii) the exact values of such claim amounts, which are greater than M,.

Dr. Alois Gisler
Winterthur-Versicherungen
General Guisan-Strasse 40
8401 Winterthur
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Zusammenfassung

In diesem Artikel wird gezeigt, wie die Credibility-Schiatzung durch optimales Stutzen von Beob-
achtungen verbessert werden kann. Dadurch werden insbesondere verzerrende Einfliisse beseitigt,
die durch seltenes Auftreten von Grossschidden verursacht werden.

Summary

It is shown in this article how the credibility-estimator can be improved by optimal trimming of
data. In particular distorting effects caused by seldom occurrence of big claims are eliminated
through this process. ?

Résumé

L’article montre comment ’estimateur de la crédibilité peut étre amélioré par une troncature
optimale des observations. Ce procédé permet en particulier d’éliminer certains effects perturbateurs
dus a la rareté de I’apparition des gros sinistres.
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HANs A. AMMETER, Bern

Potenzmittel-Credibility

64 26 33 23 30 70 36 67 20
35 69 19 66 25 32 22 B T2
24 28 71 34 68 21 6> 27 3l

8 42 73 39 79 5 76 2 45
78 1 44 7 41 75 38 81 4
37 80 6 77 3 43 9 40 74

51 55 17 61 14 48 11 54 58
10 53 60 50 57 16 63 13 47 4-dimensionales
62 15 46 12 52 59 49 56 18 magisches Quadrat

Der fblgende Artikel enthélt wesentliche Resultate meiner Dissertation, welche
ich in den Jahren 1978/80 unter der Leitung von Herrn Dr. Straub ausgearbeitet
habe.

1 Modell

Wir betrachten ein Versicherungsportefeuille, welches in Tarife und innerhalb

der Tarife in Tarifklassen unterteilt ist. Diese Strukturierung werde durch die
N

Parameter der Wahrscheinlichkeitsverteilung einer )  n;-dimensionalen Zu-
=i

fallsvariablen T induziert. Ohne Einschrankung der Allgemeinheit sehen wir

dabei die (i,))-te Variable T}, ie{l, .. .,n;} je{l, ..., N}, etwa als

Schadenfrequenz = Anzahl Schadenfille pro Bestandeseinheit
Schadenquote = =Schadensumme pro Primie
Schadensatz = Schadensumme pro Versicherungssumme

einer wohldefinierten Risikogesamtheit j in einer bestimmten Zeiteinheit i.
Eine Tarifklasse j sei einerseits durch einen Parameter 9; der Verteilungs-
funktion von T =Ty, . . " il ;) charakterisiert, welcher als Realisation einer
Strukturvariablen 6, interpretiert wird, und andererseits durch die nicht
aleatorischen, fixen Parameter dieser Verteilungsfunktion, die sogenannten
Tarifparameter erster Ordnung.

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 3, 1980
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Ein Tarif werde sowohl durch die Tarifparameter erster Ordnung als auch
durch die Parameter der Strukturverteilung determiniert, wobei wir letztere
als Tarifparameter zweiter Ordnung bezeichnen wollen.

Wihrend also verschiedene Tarifklassen im allgemeinen durch differierende
9; spezifiziert sind, werden alle Klassen desselben Tarifes durch identische
Tarifparameter erster Ordnung markiert.

Beispielsweise wire etwa in der Feuerversicherung die Zufallsvariable «Scha-
densatz 1980 der Hausratversicherungen im Kanton Bern» durch die Fixkom-
ponente « Hausratversicherungen» sowie durch das Strukturmerkmal « Kanton
Bern» gepragt.

2 Die inhomogene Potenzmittel-Credibilityformel

Wir nennen das Paar (P11%, 49 ), .o .,c0, ¢inen Tarif, wobei

(PT1%) eine Familie von Wahrscheinlichkeitsverteilungen
wp Jopefl,

(A%, oy c, eine Familie von Strukturverteilungen und
Q,xQ, einen Tarifparameterraum bezeichnet.
Weiter sel

N
T|9  Zufallsvektor in ]R§ '
T;19; unabhingig Pli"%verteilt, i=1, ..., n;,j=1, .. ,N
0 Zufallsvektor in R
0; unabhingig, identisch A, -verteilt
he(8)  ELf(T)I9], speziell u(8)=E[T; 9]
N Anzahl Tarifklassen

n; Anzahl Zufallsvariablen in der j-ten Tarifklasse, j=1, ..., N.

Jewell zeigte in seiner Arbeit [4], dass die einparametrische Exponentialfamilie,
zusammen mit der natiirlich konjugierten Strukturverteilung [3] und unter
gewissen Regularititsbedingungen [5], die verteilungstheoretische Grundlage
der exakt linearen Credibilityformeln darstellt. Von diesem Tarif wollen wir aus-
gehen und zwei Tarifparameter erster Ordnung (,d)eIR? einfiihren.

Definition
Ein Tarif (P, A5,,) mit P,"1% gegeben durch
nj a(tijlé)e—aJ'g{fijla)

P, C119)=T1

=1 C(19j|a)p)
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wobei ¢(3;|w,)=[ a(t;|6) e 294 d.. 9,2 4; C R, sowie w,=(a, d)

und AY%, gegeben durch
c(§;lw,) " 7e %

)"a); (9])2 d(C!) )

wobei d(ﬂ))_)=_‘. C(lgjlwp)_ye_ﬁsjdlgj sowie (D;L:((Up, Y ﬁ) mit Vs ﬁ> Oa

in welchem a(-), g(*) die Jewellschen Regularititsbedingungen erfiillen, ins-
besondere

(07} Wi

A0 (gj)lAj::J /l(r+1)('9j)d‘9j=0 r=0,1

heisst natiirlicher Exponentialtarif.

Zwei Bemerkungen mogen diese Definition erginzen:
1) Die Abhéngigkeit der Funktionen a(-) und g(-) von den Tarifparametern ¢
beziehungsweise « kann als echte Parametrisierung, etwa

a(t;lo):=t]

ij
oder als Indexierung, zum Beispiel

a(t;l0):=as(t;):=1In ¢
verstanden werden.
ii) Die natiirlich konjugierte Strukturverteilung hat die Eigenschaft, dass die

a posteriori Verteilung p(9;|'r) von der gleichen Form ist wie die Struktur-
verteilung A(9,), jedoch mit den Parametern y=y+n;, B=+ ) g(t;|0).
i=1

Damit wird E[h(3,)[*¢] mit den Parametern y, f zu E[f(T;)] mit den

ni
Parametern y+n,, B+ Y. g(ty|o).
i=1

Die exakte Credibilityformel der natiirlichen Exponentialtarife, E [h,(%)[‘t],
als Schitzung von E[f(T;)|9] i€{1, ..., n}, interpretieren wir nun als Funk-
tion r(w,, ;).

Definition

r(-) heisst credible-suffizient, falls aus r(w,,w;, )=r(w,,w;, ), mit v,€Q,
und w;eQ,, fiir alle ¥z, folgt: (w,, w,;)=(w,, ®)).
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Eine credible-suffiziente, exakte Credibilityformel enthilt also die volle
Strukturinformation eines in unserem Sinne strukturierten Portefeuilles und
ist damit als Schétzwert fiir Tarifklassenpramien geeignet.

Aussage

In natiirlichen Exponentialtarifen ist E[k,(9,)[¢] nicht credible-suffizient.

Beweis

Der Beweisidee von Jewell [4] folgend ist

Zj%k- C(‘gklwp)
Elg (Tl = == oo~
d
— C(Sklwp)
d _ L
4 ro, (9)= . @) +B| Ao, (S)

damit
| Aoy (3)dS=vE[g(Tyl)]— =0
Ay

und aus der Bemerkung ii)
B+ Z g(tikla)
E[h,(9)[t]=—"= , unabhingig von §.
Y+n

k

Korollar

YZE[Var (g (Ticlo) 13 ]
Var [E[g(T; o), ]

| Vo, (8)d%=E[Var [g(Tl)|9]]—

Ak

—y - E[E*[g(Ty)19J1+7 - E[g(Ty[o)]=0

> (, denn es ist analog

Wir finden, dass mit g als identischer Funktion alle exakt linearen Credibility-
formeln nicht credible-suffizient sind. Die mathematisch wohl handlichste
Menge von natiirlichen Exponentialtarifen mit im allgemeinen credible-
suffizienten a posteriori Erwartungswerten stellt die Familie der Potenz-
exponentialtarife dar. In der Folge wollen wir uns auf sie beschrinken.
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Definition
Ein natiirlicher Exponentialtarif mit

a(tylo):=t), g(tyle):=13,
wobel

0+1 1 :
5>—1,a>0,y(—:—-)—|—1—&>0, sowie  1;,>0,9,>0

heisst Potenzexponentialtarif.

In Potenzexponentialtarifen gilt:

E[u(S)t]= (aOE“ [T ]+a, "‘2 t?k)a

i=1

mit F(@ﬁ-ni(ﬁﬂ)ﬂ-i)F(@ﬂ)
ag:—r((ﬁnki(aﬂ)“) F(L(‘S;‘*_QH—":Z)
" e, e
k F(('y+"ki(5+1)+l) F(é;rl)

Fir a=1 wird E[u(93,)t] zur klassischen, inhomogen-linearen jedoch nicht
credible-suffizienten Credibilityformel, was wir durch einsetzen direkt bestéti-
gen konnen.

Innerhalb der Tarifparameter gleicher Ordnung, wie auch zwischen Tarif-
parametern verschiedener Ordnung, konnen funktionale Abhingigkeiten
bestehen. Wir fithren zwei Beispiele derartiger Beziehungen in Potenzexponen-
tialtarifen auf:

1) d=a—1, );:1 also mit der Landau-Symbolik, nach dem vorangegangenen
o

Korollar, E[Var [T|}]]=o[Var [E[T;}|%]]] (¢—c0). Damit folgt unmit-
telbar

E[u(&)lkrlz% (E“U:k]f"i r)
TTCTARNE

o

i=1
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sowie
1 max 1, <1
1

a}i_)rgE[u(&)l"tF{

max f;  sonst
i

Denn wegen E*[T,|=p ist etwa fiir max ¢, =m, >1 nach der Regel von
de I'Hospital ‘

1
o

. Y ( ”‘) In 1,
lim (B—f— ¥ t,?,“) =exp | lim [ = rnn: —||=m,
oL—00 i o.—00 £+ (tl_k)
ny =1 \ny,
und
lim E[u(%)F1]=co.
il) d=a.

Sind die zwei Tarifparameter erster Ordnung in einem Potenzexponential-
tarif identisch, wollen wir von «einfachen Potenzexponentialtarifen»
sprechen.
In unserem Beispiel wiirden damit die Parameter (f,y) das Merkmal
«Feuerversicherung», oy das Charakteristikum « Hausratversicherungen»
also (o, B,7) den «Hausratfeuerversicherungstarif» determinieren, wih-
rend 9 die Eigenheit « Kanton Bern» und mithin (95,0,) die Tarifklasse
«Hausratversicherungen im Kanton Bern» beschreiben wiirde.
Es ist darauf hinzuweisen, dass durch die spezifische Form der natiirlich
konjugierten Strukturverteilung alle Tarifparameter erster Ordnung in natiir-
lichen Exponentialtarifen eine Teilmenge der Tarifparameter zweiter Ordnung
darstellen.

3 Die homogene Potenzmittel-Credibilityformel

Werden in der Credibility-Aufgabe: « Approximiere A, (8,)= E[f(T;)|9] durch
s(t) derart, dass E[(h,(5,) — 5(1))*] minimal wird », fiir s(¢) nicht Linearitdt und
nicht Semilinearitdt als Nebenbedingung vorausgesetzt, verliert sich im all-
gemeinen der praxisorientierte Hauptvorteil der Credibility-Theorie, die ein-
fache statistische Schitzbarkeit der Credibility-Pramie. Diese Schwierigkeit
kann in einem Spezialfall iiber das Erwartungswertprinzip als Primienberech-
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nungsregel von Gerber [2] umgangen werden. Er definiert fiir eine stetige,
streng wachsende Funktion g auf 0 < ¢ < co die Pramie P fiir ein Risiko 7 durch
P:=g 'E[g(T)] und damit implizite ihre Schitzung P etwa durch

P:=g 'E[g(T)] mit E[g(T)] als Schitzung fiir E[g(T)].

Wir setzen:

Definition

Ist unter einer stetigen, streng wachsenden Abbildung g, s(z) die Credibility-
Schitzung fiir g (h, (%)), heisst g 7' (s(¢)) g-inverse Credibility-Schitzung fiir
h ().

Inverse Credibility-Schiatzungen verallgemeinern die Credibility-Aufgabe wie
folgt: «Approximiere g(h,(8)) durch s(z) derart, dass E [(g(hf(.Qk))—s(t))z]
minimal wird und setze als Schitzung fiir 4 (Sk)'ﬁ (8)=g '(s(2)). Wird ins-
besondere fiir s(f) homogene Linearitit: s(f)=) a;

ij

linearitit: s(¢)=) b;y(z;) mit fester Funktion y vorausgesetzt, bleibt s, (3)
ij

;jt; oder homogene Semi-

einfach statistisch schatzbar.

Ausgehend von der Eigenschaft der Potenzexponentialtarife, dass die exakte
Credibility-Primie die Form eines Potenzmittels aufweist, stellen wir uns nach
den obigen Uberlegungen die Aufgabe: «Approximiere u*(3,)=FE*[T;|%]

durch Z a;t}; derart, dass E [(u“(()k)—z a,-j]'",-}‘)z] unter der Nebenbedingung

1
[Z a;T; ] = E[u*(0,)] minimal wird und setze [1(3,)= (Z aut"‘>“»

Es bedeute ohne Einschrinkung der Allgemeinheit 7;; die Zufallsvariable
«Schadensatz der Tarifklasse j aus einem Tarif o im J ahre i. Weiter wollen wir
eine Volumenabhingigkeit von 7§ durch

=V’ Z (im  a>0

definieren, wobei Vj; die massgebende Versicherungssumme des Risikos T
bezeichnet. Daraus ergibt sich

1 Vi m, (9,
BUT91= 3 ElL.I90: =582
r= ij

U
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und o2 (9.
Var [T5|9;]= VZ“ Z Var [(F;, 'l‘g']:z;T(al%‘
ij r= ij

Fiir «=1 sind die obigen Formeln, sowie die nachfolgenden Resultate mit den
Ergebnissen von Biithlmann und Straub [1] identisch. Wir verzichten daher an
dieser Stelle auf eine vollstindige Darstellung des zu der erwdhnten Arbeit im
wesentlichen analogen Losungsweges unserer Aufgabe und beschrianken uns
auf das Auffilhren der homogenen Potenzmittel-Credibilityformel mit den
Schitzern fir die darin auftretenden, in der Praxis unbekannten Parameter.
Der Schitzung von « sei erst das nachste Kapitel gewidmet, vorerst setzen wir
o als bekannt voraus.
Es wird also 2
1(3)=((yo— 7)1+ )’Af(a))

wobel

M c 7 . V¥
T () ik o (a) @
==y T Ere= ) om—lg, RS =y
5 m * v’ Zi“V.k! ;?V.k Y
w+—
Vi

M=E@J, m=Elm,0) Vi=¥Ve. V.=YVi 7=1
v=E[0;(0)], w=Var [m,(0)], c=Cov [1*(0,),m,(6)]

mit den Schétzern
MEZL ( Kfi[_.)a’ Z_.lt“ u-t(a)
FV.\TV; " V.
A 1 V ' o a
=g B (S V)
o

: ._—r‘“’l) K ,0}
-nj—l of an_1 i v ¥ (d)

171 V2 1 V.
A= ——L (DY ——— 1@y (D “) +K (o
= (7 T O g T ) K

i

1 1 V-.i 2a—142a
K= 2 (S 7o)

=S, =)
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4 Die Tarifparameter in Potenzexponentialtarifen
4.1 Eine strukturabsorbierende Statistik

Die Einfiihrung eines Tarifierungsmodelles, in welchem Tarifklassen durch
einen Strukturparameter und durch Tarifparameter charakterisiert sind, ist fiir
praktische Belange nur dann von Bedeutung, falls es gelingt, Statistiken inner-
halb der Tarifklassen zu finden, welche einerseits Auskunft iiber die ithnen zu-
grunde liegenden Tarifparameter geben andererseits aber jegliche Wechsel-
wirkungen mit dem Strukturparameter eliminieren.

Potenzexponentialtarife stellen sich als richtungweisend heraus.

Aussage
Es seien 7,19, , ..., T, .19 unabhingig, identisch verteilte Zufallsvariablen aus
einem Potenzexponentialtarif.
Dann gilt fiir Z, ;:= Ll rs
T |9,
( 2(0+ 1))
r
dF%er(z) B o il
S Taan 1=p(z)=a L [o+1 2(3+1) z>0
P o

unabhingig von 9,.

Beweis

Wenn wir der Ubersichtlichkeit halber auf eine Indexierung verzichten, wird

z

d 1 Ie') y t d e—9(t“+y~'1)
-4 Oy,
PO cl<9|wp>,,io,=fo(y) v

Durch die Substitution =" und unter Vertauschung der Integrale ergibt sich
Y

1 u° —%{u“%—l)
e ?

d Z
S . dyd
p(Z) dz Cz(glwp)u£0y£0y26+3 pad

also mit
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o 19u“—|—1
PEICSSY

S
r(2(5+1)) a

o z
p(z)=u 36 +1) z>0

RE

r(5+v+1) F(é—v—f—l)
E[Z']= 2 - S+v+1>0, 5—v+1>0.
r? (5 + 1)
o

Die Quotienten T,,/T;; r+s r,se{l, ...n;} je{l, .., N} innerhalb der Tarif-
klassen eines Potenzexponentialtarifes sind also iiber den ganzen Tarif iden-
tisch verteilt. Die strukturabsorbierende Eigenschaft dieser Quotientenbildung
ist insofern bemerkenswert, als damit das Gemeinsame einer inhomogenen
Menge von Tarifklassen isoliert werden kann. Fiir unsere Hausratfeuer-
versicherung wiirde dies bedeuten, dass die Zufallsvariable «Quotient der
Schadensidtze Hausratversicherungen im Kanton j der Jahre r und s
r, se{l, .. j} » identisch der Variablen « Quotient der Schadensidtze Hausrat-
versicherungen im Kanton k der Jahre p und g p,ge{1, ..., n}» verteilt wire,
wobei wir von einer allfdlligen Volumenabhéngigkeit absehen.

An dieser Stelle scheint sich die praxisaddquate Einschriankung unserer Be-
trachtungen auf Potenzexponentialtarife zu rechtfertigen, denn fordert man
allgemein in natiirlichen Exponentialtarifen E[g(7,)|9]E[g  (T;)19]=c¢o,
co=Xkonstant %1, impliziert dies, dass

¢ (ko) [ (Gl )dd,

Cz (Sklwp) >

zudem

beziehungsweise die Differentialgleichung y"y —c¢,(y’)* =0 gelten muss.

Wir finden sofort ¢(9;|w,)=c,(c; 9 +¢,)* ¢;=konstant, womit wir, ohne auf
die analytischen Eigenschaften von c(9;|w,) hier nédher eintreten zu wollen,
feststellen konnen, dass die Potenzexponentialtarife mit

C(Sklwp)=a‘1r(i1;1) 91:(&:1)

im wesentlichen die einzigen natiirlichen Exponentialtarife mit der oben verifi-
zierten Eigenschaft sind.
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4.2 Schdtzung des Tarifparameters o in einfachen Potenzexponentialtarifen
Aussage

Mit T7%: = Z (7j.m>» Wobel ( ;. aus einem einfachen Potenzexponential-
tarif stammend, g11t fir

0 Z_Z e —1)(Z ey sz:f,) % 3s)-

7]

E[Z,(T)]=
Den einfachen Beweis libergehen wir.

Diese Beziehung gibt uns eine Moglichkeit, o aus den Beobachtungen ¢

ie{l,...,n;} je{l,...,N} schitzen zu konnen. Wir setzen voraus, dass
t;>0 Vi,
Da h
Za(t):lz 1 Z rs ,L(“) 1
Nj nj(nj—l) r>s ]/I‘J'I/SJ
mit

V..t V..t
ho . rjtrj rjtrj
(@)= (Vt ) Jr(Vt )

sj'sj sj'sj

wobel
d ool
E hrs,j(a) 20! al_l)%]*' E hrs,j (CC) = 09
sowie d
lim — A, ;(ot) =0

ist Z,(¢) in o streng monoton steigend. Also existiert wegen Z, () <0 (V};=1),
falls ( ) #+ 1 fiir mindestens ein (r, 5, /), fiir die Gleichung f(¢)=Z,(t)—a=0
sjtsj

genau eine Losung &, welche sich nicht explizite angeben lésst, die jedoch mit
der Newtonschen Rekursion

A
im)
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also
Sl —"N(&m"*’" 1)

Sz_N

A == A
Uy +1= Uy —

1

s=r o (2™ ‘J’“’"z( s - =T5)

J J

1

Sz=2m(5j1—sjz)
8= V0" 1 1 5 i)
J y
JZ_Z( ij U)f!mz( u U) Otml (V;'jtij)

U U

schnell gefunden werden kann, wie uns etwa Stiefel [6] lehrt. Zur Bestimmung
eines geeigneten Anfangswertes o, setzen wir nach Taylor

2
+_0& _.d._ Za(t)

d
Zao (D)~ Zo (D) + %0 - > T2

a=0

womit unter den Annahmen Z,(1)~0und Z, (¢)~o,

0N (S i (T L - (32 GE2) ) >0

1§ i
Der nach dem beschriebenen Verfahren gefundene Wert & ist ein konsistenter
Schatzwert fiir a, was wir hier nicht beweisen wollen.

5 Numerisches Beispiel

Wir betrachteten drei Risikogruppen aus der Feuerversicherung: Hausrat,
Landwirtschaft und Gewerbe. Aus jeder Gruppe lagen uns von der Statistik
des Schweizerischen Sachversicherungsverbandes fiir die Jahre zwischen 1974
und 1978 pro Kanton je eine Feuerschadensatzbeobachtung vor. Unter der
Annahme, dass diese Daten aus einfachen Potenzexponentialtarifen stammen,
stellten wir uns die Aufgabe, reine Risikoprdmiensitze pro Risikogruppe und
Kanton zu bestimmen.

Als erstes interessierte uns die Frage, ob die drei Risikogruppen méglicherweise
einen einzigen Tarif darstellen. Durch die Erkenntnis, dass eine geeignete
Quotientenbildung die Tarifklassenstruktur absorbiert, war der Weg fiir die
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Grafik 1

Schaden- und Primiensitze in 9%, der massgebenden Versicherungssummen
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Anwendung eines addquaten Homogenitétstestes frei. Aufgrund des Ergeb-
nisses eines solchen Testes mussten wir die Hypothese, dass die Risikogruppen
Hausrat, Landwirtschaft und Gewerbe als zum gleichen Tarif gehorend be-
trachtet werden konnen, mit einer Fehlerwahrscheinlichkeit erster Art von 5%,
ablehnen. Ohne uns um eine allfillige Homogenitdt von Teilmengen dieser
Risikogruppen zu kiimmern, interpretierten wir also jede Gruppe als separaten
Tarif und schéitzten die Tarifparameter a. Wir fanden fiir Hausrat o, =0.910,
fiir Landwirtschaft a; =0.585 sowie fiir Gewerbe a; =0.458.

Schliesslich berechneten wir mit den geschétzten Tarifparametern nach der
homogenen Potenzmittel-Credibilityformel die reinen Risikopridmiensitze
pro Tarif und Kanton.

Grafik 1 vergleicht innerhalb des Gewerbetarifes Potenzmittel-Credibility
(c=0.458) mit der linearen Credibility nach Biihlmann und Straub (x=1) am
Beispiel der Resultate von fiinf ausgewihlten Kantonen.

Hans A. Ammeter
Schweizerische Mobiliar
Versicherungsgesellschaft
Schwanengasse 14

3001 Bern
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Zusammenfassung

Die klassische Credibility-Formel lautet

A9 =1 "?k)j:"{—yk];u

wobei T, =individuelle Schadenerfahrung der Risikoklasse k, T=Schadenerfahrung des Kollek-
tivs (Portefeuille oder Tarif) und y,=Credibility. Diese Formel ist bekanntlich sogar exakt (das
heisst identisch mit dem a posteriori Erwartungswert E[u(9)|T]) fiir gewisse Paare von Vertei-
lungen fiir T (Schadenvariable) und 9 (Risikoparameter). Das bestbekannte solche Paar ist die
Poisson-Gamma-Kombination.

In der vorliegenden Arbeit wird das klassische Resultat wie folgt verallgemeinert:

Falls die Verteilungen von 7 und 9 bestimmten Exponentialfamilien angehoren, so wird obige

Formel — wobei sie exakt bleibt — zu
1

(9D =[(ro =) T* +7,. 1"

mit &> 0 (¢ =1 entspricht also der klassischen Formel).
Verschiedene o-Werte charakterisieren verschiedene Tarife; verschiedene 3-Werte mit demselben
o charakterisieren verschiedene Risikoklassen innerhalb desselben Tarifs.

Résumeé

La formule de crédibilité classique est
2(3) =01 =) T+?Jl )

T, =sinistralité individuelle de la classe de risque k, T =sinistralité collective (portefeuille ou tarif)
et y, =crédibilité. Cette formule est, on le sait, également exacte (c’est-a-dire identique a 1'espé-
rance mathématique a posteriori E[¢(9)|T]) pour certaines paires de distributions de T (variable
des sinistres) et 3 (paramétre de risque). La plus connue de ces paires est la combinaison Poisson-
Gamma.

Le présent article généralise le résultat classique de la maniére suivante:

Si les distributions de T et 3 appartiennent a certaines familles exponentielles, la formule préce-

dente — tout en demeurant exacte — deviendra
1

A =[(o —7) T+ ana]”&-

avec >0 (x=1 correspondant a la formule classique).
Des valeurs différentes de « caractérisent des tarifs différents; des valeurs différentes de 3 avec le
meéme a caractérisent des classes de risques différentes a I'intérieur d’un méme tarif.



342

Summary

The classical credibility formula is
A =01 =2 T+nT,,

where 7, =individual claims experience of risk class number k, T=overall claims experience of
the entire portfolio (or tariff) and 7y, =credibility. This formula is, as we know, even exact (i.e.
identical with the posterior mean E[u(9)|T]) for certain combinations of distributions of T (claims
variable) and 9 (risk parameter), the best known such combination being the Poisson-Gamma.
In the present paper the classical theory is generalized as follows:

If 7 and & are distributed according to certain representative members of exponential families,

the above formula — while remaining exact — extends to
1

A =[(— 1) T*+ 0T "

for some a>0 (x=1 being the classical case).
Different values of o characterize different tariffs; different values of 3 with the same « characterize
risk categories within the same tariff.
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