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HiLARY L. SEAL, Apples

Ruin Probabilities for Mixed Poisson Claim Numbers
without Laplace Transforms

There i1s a theorem attached to any risk process with claims occurring as a
mixed (including simple) Poisson process and arbitrary independent claim
sizes that allows the calculation of finite term ruin probabilities without the
necessity of employing — and inverting — Laplace transforms. This is of some
importance because, as far as the writer knows, the on/y claim occurrence input
ever used in practice has been mixed (or simple) Poisson. We propose to prove
the theorem and mention its consequences from a numerical viewpoint.

The Theorem

If p,(¢) denotes the probability of #» claims occurring in an interval of length ¢,
the mean of the distribution being 7, the mixed Poisson is defined by

pa0=] e 2 ar) 1)

0 n!
where F(-) is any distribution function (df) with unit mean on the positive
semi-axis. When F(-) is the gamma df p,(¢) is the negative binominal; when F(-)
is a single-step function increasing from O to 1 at A=1 p, (¢) is the simple Poisson.
Suppose now that »n claims are known to have occurred in the interval of
time (0,¢). The theorem provides the conditional joint probability density that
the n claims occurred at epochs #; (j=1,2, .. .n) where 0<t; <, < ...<f, <L
Define A;(z) as the intensity (or force) of claim occurrence at epoch t after i
claims have occurred. O. Lundberg (1940, Ch. V) shows that

(r‘+ 1)(7.')
e
the parenthetical indices denoting differentiation of a specified order. Hence
(i+1)
exp [ [ 4 (r)dr] =exp [[pom () dr]
(1)
=exp [In p§’ (7)lc]
=p6' (b)/py (a).
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We note, too, that the probability density of survival from epoch ¢; at which
the ith claim occurred to epoch ¢;,, and for a claim then to occur is

Li+1
exp |- ] Ax(o)de] A
ti
The required conditional joint probability density is thus
ti+

5P [—;f:io(t)dt] ﬂbo(zl){':lj exp [— ! l,-(t)dr] Ai(z,.ﬂ)}x

wexp |- 12 0y =

_ & (1) Py (1) Pt 1) Py (1)
=90 ) {1 e O st b
y (")(t) n!

(1) ( 1'p (1)

Observing that the terms in ¢, (i=1,2, .. .n) are

PV ()
@) PO
the whole expression reduces to n!/t", the uniform density for n independent

random variables uniformly distributed over (0, ¢). This theorem is proved on
similar lines by Cane (1977) and quite differently by McFadden (1965).

The probability of survival

Let us now apply this theorem to a risk process in which claims are occurring
in a mixed Poisson process and the concomitant claim amounts are indepen-
dently distributed with df B(-) of unit mean. We assume that the initial risk
reserve is w and we require U(w,1), the probability of non-ruin, or survival,
through the interval (0,7). A unit unloaded premium is supposed payable
continuously throughout the interval so that an aggregate premium of ¢, the
expected claims, will have been paid by the end of the interval.

Suppose it is known that n independent claims have occurred in (0, ). The first
problem is to find the density of the times between these claims including the
times between the origin and the first claim and between the nth claim and
epoch . Applying the theorem this is the problem of the random division of an
interval of length ¢ by means of n points inserted on it, discussed by Feller
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(1971, Ch. 1.7). He first shows that all n+ 1 subintervals formed by the n points
have the same densities. To do this he adds a further random point and bends
the line into a circle. Symmetry implies that all n+1 sub-intervals have the
same distribution. Reverting to the straight line by cutting the circle at the added
point and eliminating it, all » points are at, or to the right of, the first point
supposed located at a distance y from the new origin. The probability of this is
(E=y/y)".

For every sub-interval the distribution function of the length of any sub-
interval (including the first, measured from the origin) is thus

A(y)=1— (1—3;’) 0<y<t

n—1
a(y)=§ (1—%) el e,

and the density is

which it is convenient to write as a,(y) to indicate that » claims are involved.
We now write g, (x) for the density of the loss, x, sustained by the risk business
on the occurrence of one of n claims. This loss is equal to the amount of the
claim minus the aggregate premium paid since the previous claim (or since the
time origin in the case of the first claim).

Consider the probability of survival through epoch ¢ based on an initial risk
reserve of w when only the first of #» independent claims has occurred in (0, 7).
Write it as W, (w).

The loss suffered on that claim must not exceed w. Remembering that the maxi-
mum loss possible is — (a gain of ¢) when the claim is (theoretically) zero

W,w)= | g,(x)dx n=1,23,....
<t

Next suppose that the first two independent claims out of #>2 have not led to
ruin and that the first of these resulted in a loss of x. The risk reserve available
for the second claim would then be w—x, and letting x vary up to its limit w we
have

Wy, W)= | W, (w—x)g,(x)dx n=2,3,4, ...
-1
Continuing, we have generally

W,w)= | W,_ ,(w—x)g,(x)dx j=1,2,3,...n (2)
—t
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defining
w,,(w)=1 w>0.

We observe that relation (2) is identical with that for Beard’s survival prob-
ability through the occurrence of the nth claim (Seal, 1978, p. 52). However,
in (2) the probability is conditional on the occurrence of n claims; hence the
required unconditional probability of survival is

Uw,1)= i Pa(6) Wi (). 3)

An important property of this relation is that ¥, (w) may be calculated before
it is known what member of the mixed Poisson class is to be used for p, (7).
The survival probability U(w,?) therefore does not depend on the actual
properties of the stochastic process corresponding to the chosen p, () (e.g.
the precise form of dependence of successive intervals between claims) but
only on the probability distribution of the » claims occurring in the interval
(0,1). Claim occurrences of mixed Poisson type can accordingly join the class
of (impractical) renewal processes to constitute what Benes (1963, Ch. 4, § 2)
would call “‘weakly stationary” claim processes justifying the use of his (4.4)
and thus of (4.1) of Seal (1978) in the calculation of U(w, t)'. On the other hand
it should be observed that the mixed Poisson process is not ergodic (McFadden,
1965) so it is not possible to select a A at random from F(4) of (1) and continue
with a simple Poisson process.

Reverting to g,(x) we note that it takes a different form depending on whether
x is positive or negative. In an appropriate notation

;[b(x+y) (1—%)"_1@ 0<x<oo (4)

&+ (=] b(x-w)a,,(y)dy:’t3

t t n—1
& (0= [ btnad=" [ by (1-2) & —r<x<0 )

where b(+) is the density corresponding to B(-), and the product in the first pair
of integrands represents the density of a claim amounting to x + y reduced by a
unit premium paid for an inter-claim interval of length y. If the premium is risk
loaded the changes in these integrals are seen from Seal (1978, p. 53).

1 The three-parameter generalized Waring (G.W.D.) of Seal’s book has not been proved to be
“weakly stationary”. The three or more parameters of a given mixed Poisson could be deter-
mined by equating the equivalent number of moments to the corresponding moments of the
G.W.D. and the latter would then be “‘nearly weakly stationary’.
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Numerical calculations

The recursive relation (2) can, in general, only be evaluated by quadrature of
the integral. Because w appears both in the integrand and as the superior limit
of the integral successive values of w must proceed in equidistant steps from
w=0 upwards. For given w the integration over the negative axis to obtain
W,,(w), namely

0 '
[ Wioiaw—x)g,_(x)dx=[ W,;_, ,(w+2)g,_(—z)dz j=2,3,...n
-t 0

involves arguments of the prior set of W(-) through w+t so that W,_, ,(w+z)
must be “guessed”” beyond the desired highest w. If this w is reasonably large
for small ¢ the guessed values may be set at unity for small n-values but this
becomes invalid at larger n. The accuracy of W,,(-) thus attenuates as n increases.
To illustrate these ideas suppose that b(y)=e™, 0<y<oo, and choose
t=>5. If the eventual mixed Poisson claim number distribution is to be the
negative binomal with =20 (see Appendix) p,(5)=10"> when n=20 and this
may be chosen as the upper limit of n.

From (4) and (5)

t - PR, n—1 —-x
8- (=] b(x+1)a,()dy=""[ e~ (1—%) H=""10  0sx<o
0 0

-Xx t n—1 =%
e =" e (1-2) =t r-n —rsxs0

g

where

t n—1 n—1 _
La=fer (1-2) w=e (-] -2l L@ a0

on integrating by ‘“‘parts”. Further
t
Li(a)=[eYdy=e*—e™"

and successive values I, (a), I;(a), ... follow by recursion.

The computer program used to evaluate (2) was based on Seal’s (1978) POLLAK
recognizing that the recursions have to be calculated for each n=1,2,3, ...20.
The method of quadrature was retained, namely repeated Simpson at steps of
1/10 in w. The resulting values of W,,(w) for three selected values of w, namely
w=0, 5 and 10, are given to five decimal places in Table 1. Values of W,,(w)
for n=1 and 2 can be calculated exactly without too much algebraic effort and



302

they agreed with the three pairs of approximate values in Table 1. This looks
promising, but the continued use of approximate values to produce further
approximate values is bound to make itself felt for larger values of n.

The 20 approximate values of W,,(w), n=1,2,3, .. .20, were then combined
with three selected sets of p,(5) values by means of relation (3).

These sets were, respectively, Poisson, negative binomial with A=20, and
double Poisson

p,(1)=ce™ ! &E‘l—l-(l —c)e M n=0,1,2, ...
n! n!

with 4, #4, and ¢4, + (1 —¢)4,=1 (choosing ¢=0.6 and 1, =0.9), distributions.
These are shown on the right of Table 1. The result of using (3) is printed at the
foot of the Table, the designation S indicating repeated Simpson at 1/10
intervals.

In Seal (1978) Table 2.5 is believed to be a five decimal representation of a wide
range of U(w, ) values for the Poisson/exponential case with no risk loading
in the premium. The three appropriate values from that Table to four decimal
places were copied into Table 1 and indicate:

(1) the repeated Simpson quadrature of (2) produces barely two decimal results
correctly for w=0 but this has improved to “almost” three decimal correctness
by w=10;

(ii) because any selected form of p, (5) is applied to a fixed approximate set of
W, (w) values, a similar judgement may be applied to the negative binomial
and double Poisson results even before their calculation by means of the
computer programs GETUWT or GETBRM of Seal (1978) (using UINTEG
for the double Poisson) — see Table 1.

The calculations of (2) and (3) for Poisson claim numbers were rather dis-
appointing so in an attempt to improve them we halved the step in w which thus
became 1/20 — with a more than tripled amount of computer time, namely 10
minutes! The relatively small reductions in W,,(5) and W,,(10) are shown on
the left of Table 1 and these scarcely affected the survivorship probabilities
U(w, 5). It was suspected that the quadrature over the negative axis might lend
itself to amelioration so Dufton’s Rule (Squire, 1970, p. 135) was applied there
five times at intervals of 1/10. There was some improvement in the results
(S & D in Table 1) so that the “almost” third decimal accuracy for U(10,5)
with Poisson claim numbers became ‘“‘actual” third decimal accuracy. Never-
theless there is no sign that we are approaching accuracy to the fourth decimal.
These calculations made for a small ¢-value, namely /=35, indicate that long
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Table 1.
n W,,(0) W,.(5) W, (10) Poisson Negative Double
binomial Poisson
h=20
0 1.00000 1.00000  1.00000  0.00674  0.01153 0.00794
1 0.80135  0.99866  0.99999  0.03369  0.04612 0.03731
2 0.60132  0.99385  0.99994  0.08422  0.09685 0.08853
3 043177 098194  0.99971(1) 0.14038  0.14204 0.14157
4 0.29542 095794 099896  0.17547  0.16335 0.17187
5 019199 091667  0.99696  0.17547  0.15681 0.16918
6 0.11827  0.85448  0.99233  0.14622  0.13068  0.14078
7 0.06900 0.77092  0.98292(1) 0.10445  0.09707  0.10191
8  0.03812(1) 0.66960  0.96582(1) 0.06528  0.06552  0.06553
9 0.01994 0.55765  0.93780(1) 0.03627  0.04077  0.03801
10 0.00989  0.44408(1) 0.89594(2) 0.01813  0.02365  0.02012
11 0.00466  0.33758(1) 0.83848(2) 0.00824  0.01290  0.00980
12 0.00208  0.24479(1) 0.76558(3) 0.00343  0.00666  0.00443
13 0.00089  0.16930  0.67959(4) 0.00132  0.00328  0.00187
14  0.00036  0.11173(1) 0.58481(4) 0.00047  0.00155  0.00074
15 0.00014  0.07040  0.48684(6) 0.00016  0.00070  0.00027
16  0.00005  0.04240(1) 0.39147(6) 0.00005  0.00031 0.00010
17~ 0.00002  0.02443  0.30377(6) 0.00001 0.00013  0.00003
18 0.00001 0.01348  0.22736(6) — 0.00005  0.00001
19 — 0.00714  0.16412(6) — 0.00002  —
20 — 0.00363  0.11426(6) — 0.00001 o
The parenthetical results are the 1.00000 1.00000 1.00000
reductions in the fifth decimal place
as a result of halving the
interval of integration.
0.2585 0,2722 0.2627(1) (3)S
0.2586 0.2723 0.2628 (3)S&D U(0,5)
0.2491 0.2637 0.2525 Seal (1978)
0.8722 0.8639 0.8696 (3)S
0.8738 0.8655 0.8712 (3)S&D U(5,5)
0.8822 0.8696 0.8780 Seal (1978)
0.9871 0.9834 0.9860 (3)S
0.9892 0.9856 0.9882 3)S&D U(10,5)
0.9888 0.9848 0.9880 Seal (1978)
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computer runs would be involved for ¢ of the order of 100 or more because
p,(t) would then extend to large n-values before evanescing. A possible alter-
native would be to calculate U(w,t) by relation (3) for as large a t-value as
computer time permits and to bridge the gap between this value and U(w, 00)=
= U(w) by interpolation using 1/¢ as the argument. Unfortunately more work
needs to be done on eternal survival probabilities when claims are occurring as
a mixed Poisson process. Ammeter’s (1948) extension of the Lundberg limit for
1—U(w) (e.g. Seal, 1978, p. 60) to the mixed Poisson case should be read in
conjunction with Thyrion’s (1969) remark that the transformed mean of B(-)
must remain finite. On the other hand Seal’s (1974) expression for the limiting
form of the Laplace transform of the survival probability U(w, ¢) — equivalent
to Prabhu’s (1965, (7.162)) expression for the transform of the content of adam —
has not yet been inverted numerically.

Appendix
The negative binomial

Ever since O. Lundberg (1940) introduced it and applied it to accident and
sickness policyholders, and Ammeter (1948, 1949) used it for an entire port-
folio, the expanded negative binomial

(@_i)_"
hh

h+n—1)( h )"( t )"
=0,1.2. ...
( n h+t) \h+1t = e

has been the favourite claim occurrence distribution for actuaries. Its mean is ¢
and its variance (14 t/h).

In the first — and only — published application of the negative binomial to a
whole portfolio Ammeter (1949) showed that the annual deviations from the
trend line of average claim numbers in 90 years’ experience of a growing Swiss
fire insurance company were well-fitted by a negative binomial with parameter
h=37.5 (or 48.1 when 8 years of economic crisis were omitted). On the other
hand when negative binomials are fitted to individual policyholders’ experiences
(Andreasson, 1966) 4 is as low as 0.2 and ¢ is only 0.086.

Since the sum of N negative binomial random variables with the same 4 and
same ¢ is still a negative binomial random variable with unchanged ¢/h but an

namely
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index —Nh (Andreasson, 1966), a company insuring a portfolio of N auto-
mobile policies, for example, would have, on Andreasson’s figures, to base its
survival calculations on a negative binomial with index —0.2 N, mean 0.086 N
and variance 0.086 N (14 0.086/0.2), the latter being 1.43 times the mean, the
same as for the individual policies and well in excess of the Poisson value, unity.
It is, perhaps, as well to emphasise this because the well-known theorem that
the negative binomial tends to the Poisson for large # does not apply when ¢/A
remains constant. The actuarial propensity to use the negative binomial is thus
amply justified even for large negative binomial indices, say one-fifth of the size
of the portfolio.

Prof. Hilary L. Seal
La Mottaz
1143 Apples
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Summary

The introductory paragraph provides a summary of the paper.

Zusammenfassung

Risikoprozesse, deren Schadenanzahlen nach einem zusammengesetzten (oder einfachen) Poisson-
Gesetz verteilt sind und deren Schadenhdhen einer beliebigen Verteilung folgen, verfiigen iiber
die Eigenheit, dass die Berechnung von Ruinwahrscheinlichkeiten iiber eine begrenzte Dauer
ohne Zuhilfenahme von Laplace-Transformationen erfolgen kann. Diese Tatsache ist von grosser
Bedeutung, weil — soweit dem Autor bekannt — bis heute in der Praxis fiir die Schadenereignisse
nur solche Poisson-Prozesse verwendet wurden. Der Autor schligt einen Beweis fiir die erwihnte
Eigenheit vor und zeigt die sich hieraus fiir die numerische Berechnung ergebenden Konsequenzen.

Résume

Les processus aléatoires comportant un nombre de sinistres distribué selon une loi de Poisson
pondérée (ou pure) et un montant des sinistres de distribution quelconque jouissent d’une pro-
priété qui permet de déterminer la probabilité de ruine durant une période limitée sans avoir
recours a la théorie des transformations le Laplace. Ce fait est d’'une grande importance car — au
su de I'auteur — seuls des processus de type Poisson pondéré ont été considérés jusqu’a ce jour par
les actuaires. L’auteur propose une démonstration de la dite propriété et signale les conséquences
qu’on peut en retirer au point de vue du calcul numérique.
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