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B. Wissenschaftliche Mitteilungen

HANs LAUX und HANS-JOURGEN WOHLRABE, Ludwigsburg

Dynamische Darlehenstilgung
durch geometrisch steigende Annuitdten

I Einleitung

Der Begriff « Dynamik», der urspriinglich aus dem Bereich der Mechanik
stammt, hat inzwischen in zahlreichen theoretischen und praktischen Ge-
bieten der Wirtschaft Bedeutung und Anwendung gefunden. So versteht man
z.B. in der Lebensversicherung unter « Dynamik » diejenige Form des Lebens-
versicherungsvertrags, bei der jahrlich der Beitrag um einen bestimmten Pro-
zentsatz (in der Bundesrepublik Deutschland z.B. den der Steigerung des
Hochstbeitrags zur gesetzlichen Rentenversicherung der Arbeiter und Ange-
stellten) erhoht wird; Sinn dieser Dynamik ist, die Versicherungssumme in
ihrem realen Wert — unter Beriicksichtigung der Geldentwertung und des
wirtschaftlichen Wachstums — zu erhalten.

Ein weiteres Beispiel ist das Sparstadium des Bausparvertrags [1]': Hier be-
deutet « Dynamik », dass der Bausparbeitrag oder die Bausparsumme in regel-
maissigen Abstdnden mit einem bestimmten Prozentsatz angehoben wird, um
die Bausparsumme in etwa mit der Entwicklung der Bau- und Bodenpreise
mitwachsen zu lassen [2].

In jiingerer Zeit sind auch fiir den Bereich der Darlehenstilgung dynamische
Modelle entwickelt worden. Das bereits praktizierte Modell einer Grossbank
im Bereich der Baufinanzierung geht z. B. von einer Anfangsrate aus, die nur
die Zinsleistung und keine Tilgungsleistung enthélt. Jahr fiir Jahr wird dann
diese Anfangsrate um einen festen Prozentsatz (z. B. 2%,) erhoht; der Zinssatz
ist fiir 10 Jahre festgeschrieben.

Den dynamischen Modellen liegt folgender Gedanke zugrunde: Die iibliche
Form der Darlehenstilgung, die jihrlich (nominal) gleichbleibende Zins- und
Tilgungsraten (Annuitdten) vorsieht, weist real (bezogen auf ein steigendes
Einkommen) zu Beginn die hochste Belastung auf. Das bedeutet gerade fiir
die ersten ohnehin schwierigen Jahre der Finanzierung des Hausbaus oder
-kaufs ein oftmals schwer einzuschiatzendes Risiko. Mit Hilfe der Dynamik
soll dagegen die Riickzahlungsbelastung anfanglich gesenkt und spéter ange-

! Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis und Anmerkungen am
Ende der Arbeit.

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 3, 1980
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hoben werden und damit in einem ausgewogeneren Verhéltnis zur Einkommens-
entwicklung stehen.

Ziel der vorliegenden Untersuchung ist, die Formen und Maglichkeiten einer
dynamischen Darlehenstilgung darzustellen. Dabei werden die Vorausset-
zungen zunichst moglichst allgemein gehalten, um einen systematischen Uber-
blick zu gewinnen. In Abschnitt IT wird der Ausgangspunkt hergeleitet; die
erforderlichen Fallunterscheidungen folgen in Abschnitt III und Fragen der
Anwendbarkeit fiir die Praxis in Abschnitt IV. Einige numerische Beispiele
[3] schliessen die Arbeit ab (Abschnitt V).

II Ausgangspunkt

Fiir ein Darlehen D, wird ein Zinssatz i festgelegt. Die jdhrlich nachschiissig
zu zahlenden Riickzahlungsraten beginnen mit einer Anfangsrate R, die Jahr
fiir Jahr mit einem Progressionssatz p (auf die Vorjahresrate) fortgeschrieben
wird. Der Darlehensstand D, nach 1 Jahr betrigt dann

D,=D,(14+i)—R, ‘ (1)
der Darlehensstand D, nach 2 Jahren
D,=D,(1+i)—R-(1+p) (2)
und allgemein der Darlehensstand D, nach ¢ Jahren
D,=D,_,(1+i)—R- (1+p)y 1. 3)

Die Rekursion fiihrt zu der expliziten Formel

D,=Dy(1+iy—R - Zt: A+ (A+py* 4)

Allgemein gilt -

(=) - 3 7y hrioy (€N, )
so dass (4) wie folgt umgeformt werden kann:
Fur p#i:

D= Do+~ (1 -+ =1 +pY) ©)
oder

D= (Do—l_—f—p) R +i)‘+i—f; (1+p), %)
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fir p=i:
D,=Dy(1+i) =R -t - (14+i) =14y (Dy(1+i)—R - 1). (8)

Es soll nun untersucht werden, welche Kombinationen von R und p zu einer
Tilgung fithren und wie sich der jeweilige Darlehensstand entwickelt.

III  Formen der dynamischen Darlehenstilgung
1 Definition der allgemeinen Funktion

Geht man davon aus, dass das Darlehen D,>0 und der Zinssatz i>0 fest-
gelegt sind, so ist laut (4) der Darlehensstand nach ¢ Jahren abhéngig von ¢,
R und p. Es soll R>0 vorausgesetzt werden und (um auch Extremfélle zu
erfassen) p> —1. Fiir die mathematische Untersuchung ist es zweckmassig,
sich nicht auf die fiir die Praxis relevanten ganzzahligen und positiven Werte
fiir ¢ zu beschrinken, sondern Funktionen D und D zu definieren (aus (7)
bzw. (8)):
D:R, x {[-1, o)\ {i}} x R>R

= (p. -2 LS z
DR, p, 0:= (D=7 ) (1+04= (1+5) ©)

und
D:R, x Ro>R

D(R, 1):=Do(1+i) =R -1 - (14i) ! (10)
D ist fiir p=i nicht definiert; die Untersuchung des Falls p=i wird jedoch

erleichtert durch

lim D(R, p, 1)=D(R, 1) (11)

p—i

fiir alle R> 0 und relR.
Beweis von (11): Nach den Regeln von de ’'Hospital gilt

fim AHP Ay,

p—i I—p
Daraus folgt (11).
Sollen einzelne Variable von D bzw. D mit einem festen Wert belegt werden,
so werden die entsprechenden Funktionen mit D , (%), ﬁ(R)(t) usw. be-
zeichnet.
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2 Verlauf des Darlehensstands fiir p+i

Es seien R>0und p> —1, aber p+i vorgegeben. Welchen Verlauf nimmt die
den jeweiligen Darlehensstand kennzeichnende Funktion D , (2)?
Fiir p<i ldsst sich mit den Bezeichnungen

R R

a:=Dy———,b:=——, u:=14+i,v:=1+p (12)
i—p i—p

D, (1) schreiben in der Form

Dgp p(t)=a-u'+b-0v' (13)
mit
aeR, beR\ {0}, u>1,v>0. (14)

Fall 1: v=0

Dies ist gleichbedeutend mit p= —1; eine Tilgung ist nur moglich, wenn
a<0, also R>D,(1+1i) ist. Betrachtet man nur ganzzahlige Werte fiir ¢, so
ist R=D,(1+) und die Laufzeit 1 Jahr.

Fall2: v>0

In diesem Fall ist Dy ,, (¢) beliebig oft differenzierbar. Fiir die k-te Ableitung
(k=0) gilt:
DR, ()=a - - (nwf+b - v - (In v} (15)

Fall 2.1:

a) Seia-b<0,d.h., @ und b haben unterschiedliche Vorzeichen.
Dann ist
a fir u=1 und v<1} (16)

lim D (t)={
t— (R:P) — o0 sonst

Beweis: Sei zuniachst a> 0, b<0.

Aus (12) folgt: p>i, also v>u>1.

Wie man leicht sieht, wiachst dann b - v* «schneller» gegen — oo als a - '
gegen + oo fur u>1 (fiir u=11st lim a - '=aq)

t—

Also gilt: rlim‘ D p(t)= —o0.
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Wenn andererseits a<0 und 5> 0 ist, so folgt aus (12): p<i, also u>v.
Filir u>1 wichst a - «' «schneller» gegen —oo als b - v' gegen +oo fiir
v>1(firv=1bzw. v<1ist lim b - v'=1 bzw. 0).

t— oo
Also gilt: llim Dg ) (1)=—o00.

Firu=1istv<1und lim Dy ,(t)=a<0.
t— oo

Fall 2.1 bedeutet also:

Wenn a> 0 und <0, alsop>i
oder wenn a<0 und >0, also p<iund R> D,(i—p)
ist, filhrt die Ratenzahlung zur Tilgung.

b) Zur ndheren Untersuchung von D , (#) werden die Nullstellen der k-ten
Ableitungen (k> 0) bestimmt:
Nach (15) ist

v

I(x) a- In u k
Dgﬁ’,,,)(z(ko:o@(;) __a (nuf

b - (In v)*
(sofern k=0 ist fiir v=1) 17)

< [y - In (E)zln (—%%E—:‘;—z)

(sofern k=0 oder gerade ist fiir v<1 bzw. k=0 ist fiir u=1) (18)

" (5 mep)

< = (19)
v
In (—)
u
Insbesondere gilt also, falls v>1 (also p> 0) ist:
Inln(14+i)—Inln (1+
kv y=twy— P) (20)

In(1+i)—In(14+p)

(17) bis (20) bringen innerhalb von Fall 2.1 folgendes Ergebnis:

Fiir 0 <v < I (also p < 0) und u= I existieren genau eine Nullstelle und genau
ein Wendepunkt fiir D, ,,(¢), jedoch keine Extremwerte.

Fiir v=1 (also p=0) oder u=1 (also i=0) existiert genau eine Nullstelle
fiir Dk, (?), jedoch kein Extremwert und kein Wendepunkt.
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d)

Fiir v>1 (also p>0) und u=+1 existieren genau eine Nullstelle, genau ein
Maximum und genau ein Wendepunkt fiir D ,, (7). Diese Punkte liegen
aquidistant; der Abstand ist symmetrisch in p und i und hingt nicht von
R ab.

Die Nullstelle von D , (¢) bestimmt die Laufzeit des Darlehens :

o (292,

Fiir die Praxis muss natiirlich genauer gesagt werden:

(21)

Laufzeit=[t)]+1,

wobei [f)] die grosste ganze Zahl <t bezeichnet und die letzte Rate in
der Regel eine Restrate ist.
!0, Nimmt mit wachsendem Progressionssatz bzw. mit wachsender An-

fangsrate ab und mit wachsendem Zinssatz zu.
Aus (21) folgt noch:

fir R—0 falls p>i

t
=% { fiir R—»Dy(i—p) falls p<i.

Entsprechendes gilt wegen (20) auch fiir 7, und ¢, (dies ist natiirlich nur
von theoretischem Interesse).

Der hochste Darlehensstand wird erreicht bei

tmax =max (O: t(l))? (22)
Dy(p—i) In (1+1)
In ((=252—+1) - ———~
v EF) w) -

( )

Fiir die Praxis ldsst sich zunidchst nur sagen, dass der hochste Darlehens-
stand — falls 7,,,, nicht selber ganzzahlig ist — bei [z, ] oder [#,..]+1 an-
genommen wird; zur genauen Entscheidung miissen Dz, ,([fma]) und
D g, p([tmax]+1) berechnet werden. Im allgemeinen ist der ganzzahlige
Wert zutreffend, dem ¢_,, am néchsten liegt.



275

(1)

(D

(I

(V)

o0<«v=1, ut1

u=1

v>1,u*1

_ Figur 1
Formen des Tilgungsablaufs
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t . Und der hochste Darlehensstand nehmen mit wachsender Anfangsrate
bzw. (fir ¢,,,>1) mit wachsendem Progressionssatz ab und (fiir 7_,,>1)
mit wachsendem Zinssatz zu.

Derjenige Punkt, von dem an das Anwachsen des Darlehensstands ver-
langsamt wird, ist (sofern existent) durch 7, festgelegt. Von eher theore-
tischem Interesse ist die Aussage

- Do(p—i) - (In (140))
fw> 0= R o) —(n A+ @4)
- e =13

In Figur 1 sind die verschiedenen Formen der Darlehensentwicklung fiir
den Fall 2.1 grafisch dargestellt.

Fall 2.2:

Seia -b>0,d.h., b>0und a>0 (b<0 und a<0 ist nicht moglich); dann
gilt (vgl. (13)):
D ,»(2)>0 fir alle zeR.

Das bedeutet nach (12):
Wenn p <iund R< D, (i—p) ist, fiihrt die Ratenzahlung nicht zur Tilgung.
Ohne die Einzelfille zu untersuchen, sind in Figur 2 die moglichen Formen
von D ,(¢) dargestellt.

Figur 2
Formen ohne Tilgung

AD

Rp ®
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3 Verlauf des Darlehensstands fiir p=i

Nunmehr wird die Voraussetzung p=i aufgegeben. Fiir den Fall p=i folgt
aus (11) und den Ergebnissen von Fall 2.1:

Fiir p=i fiihrt jedes R> 0 zur Tilgung.

Mit (20) und (21) gilt im Fall 2.1 fiir die Nullstellen der k-ten Ableitung von

»(0): .
(R p) " (Do(p—l)+1)
(o — R _k.ln In (I-H_)—ln In (1+p) (25)
In (1 +p) In(1+i)—In (1+p)
1+4i

| (4 in Abhdngigkeit von R und p).
Nun gilt fiir jedes R>0und £>0:

D,(1+i)  k
lim #&-P=—0 - = 1) 26
p3E R In(l+i) "% 0

Beweis: Nach den Regeln von de ’'Hospital ist

( R DO)
11m -

(R,p) __ "
o oo . (1+z 1)
lim
i \14+p 141
; ( 1 1 )
lim :
g B In(1+p) 1+4p
: 1
lim —
p=i14p
=D0(1+.i)_ k ~ (26)
R In (1+41) '
Aus (11) und (15) folgt:
hm DR ()= D(“‘)(t) firalle R>0, teRR, (27)

wobel (k) die k—te Ableitung kennzeichnet (k> 0). Hierbei wird die Tatsache
eingesetzt, dass fir jede Folge (p,),.n—i die Funktionenfolge (DR , ,(t))nen
auf kompakten Intervallen gleichméssig konvergiert.

Aus (26) und (27) erhdlt man leicht:

DY, (#8)=0 fiir k>0, R> 0. (28)
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Figur 3
Fall i=p=0.
AL )
D)
Do
< i D >
Jc(o)_?_

Fiir i> 0 ist damit IV von Figur 1 zutreffend, wobei ¢, #,, und ¢,, durch (26)

festgelegt sind und der Abstand dieser Punkte vom jeweils folgenden .
betrigt. Fir i=0 gilt Figur 3. In (1+7)

Insgesamt ordnet sich damit der Fall p=i ganz in den Fall 2.1 ein.

4  Zwischenergebnis

Fasst man nun alle Fille zusammen, erhilt man folgende Ubersicht:

Wenn R>max (0; Dy(i—p)) (bzw. fiir p=—1:R>D,(i—p)) ist, fiihrt die
Ratenzahlung zur Tilgung. Der Verlauf des Darlehensstands wird fiir p> —1
durch die Figuren 1 und 3 gekennzeichnet.

In den sonstigen Fillen fiihrt die Ratenzahlung nicht zur Tilgung (Figur 2
firp> —1). '

Der Tilgungsfall ist also durch die in Figur 4 dargestellten Kombinationen
von R und p gekennzeichnet (die gestrichelten Linien zdhlen nicht mit).

5 Abhdngigkeit des Darlehensstands von der Anfangsrate

Fiir festes p> —1 und 7> 0 gilt nach (9) und (10) folgende Aussage:

D, (R)= (Do—.i) (1 +i)’+% (1+p) (falls p#i)
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Figur 4
Kombinationen von Anfangsrate R und Progressionssatz p, die zur Tilgung
fithren.
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N
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0.1 \\/
CRl \/

A

P

bzw.

ﬁ(r)(R)zDO(l—l—i)‘—R (140! (falls p=1i)

sind lineare, streng monoton fallende Funktionen von R.

Will man zu vorgegebenem p> —1 und einer gewiinschten Laufzeit ¢ die
passende Anfangsrate R bestimmen, so gilt:

) 0w R Do) —p)
pFi: D, ,(R)=0< R= A+ —(+p) (29)
p=i: Dy(R)=0< R:ﬂ’@. (30)

Betrachtet man den Verlauf des Darlehensstands in Abhidngigkeit von R, so
ist nach den Ergebnissen von Kapitel ITI 2 und obigem fiir festes p <i die Rate
R=D,(i—p) die grosste Rate, die nicht zur Tilgung fiihrt. Die den Verlauf
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~

des Darlehensstands kennzeichnende Funktion D , () hat wegen ,—R—=D0
i

Dz, (£)=Do(1+p)". (31)

Fiir jede Folge (R,),.n, die von oben gegen R konvergiert, gilt:

(Dir,, .y (t)nen konvergiert punktweise von unten gegen Dy (1+p), d.h., die
«Grenzfunktion» Dy(1+p)" kann auf kompakten Intervallen beliebig nahe
durch «Tilgungsfunktionen» D, (1) approximiert werden.

folgendes Aussehen:

6  Abhdngigkeit des Darlehensstands vom Progressionssatz
Fiir festes R> 0 und ¢> 0 ist durch (9), (10) und (11) mit

(Doui) (1+i)‘—+—_i (1+4+p) fur —1<p=i
i—p i—p

D(R,t)(P)3=
D0(1+i)‘—R-1‘-(1—}—1')’_1 fiir p=i

eine stetige Funktion definiert, die fiir 1<1 streng monoton wachsend, fiir
t=1 konstant und fiir > 1 streng monoton fallend ist.

Soll zu einer vorgegebenen Anfangsrate R und einer gewiinschten Laufzeit ¢
der passende Progressionssatz p bestimmt werden, so kann dies mit einem der

1+p

i
suchte p dar als eindeutig bestimmte positive reellle Nullstelle des Polynoms

x‘—1_D0(1+i)
x—1 R

bekannten Niherungsverfahren geschehen (mit x:= stellt sich das ge-

P(x):=

_Dy(1+4)

=x""14x"2+ . 4x+1 (teZ).

Zusammen mit den Ergebnissen von Kapitel 1112 ist fiir festes R<Dy(1+1)

' ~ . R " . . ,
der Progressionssatz p=i ~%. der grosste, der nicht zur Tilgung fithrt. D g 5 (¢)
0

hat dann folgende Form:

 RY
Dig.(1)=Do (1 +t—~1—)—) . (32)

0

Mit jeder Folge (p,),.n, die von oben gegen p konvergiert, konvergiert dann
die Funktionenfolge (D ,.,(2)),en punktweise (fiir 7<1 von oben, fir 7> 1
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y - RN .
von unten) gegen D, (1 + z—D—) ; diese « Grenzfunktion» kann also auf kom-
0
pakten Intervallen beliebig nahe durch «Tilgungsfunktionen» D , (1) an-

gendhert werden, wie auch schon in Kapitel 5 festgestellt wurde.

7 Abhdngigkeit des Darlehensstands vom Zinssatz

Betrachtet man den Darlehensstand nur in Abhéngigkeit von i (also mit festem
R>0,p> —1und t>0), so gilt:

R _ R Lty
(o= ) iy gy furisep
Die Funktion Dk , ()= P -

Dy(1+pY—R-t-(1+p)1! fiir i=p
ist eine stetige und streng monoton wachsende Funktion.

Der Zinssatz i=p +D£ ist der kleinste, der nicht zur Tilgung fiihrt. Die ent-
0
sprechende « Grenzfunktion» hat folgendes Aussehen:

. RY
Dig,p,5(1)=Dy (1 +l__) : (33)
D,

Mit jeder Folge (i,),.n, die von unten gegen i konvergiert, konvergiert dann
die Funktionenfolge (D ,.i,)(t))nen Punktweise von unten gegen die Grenz-
funktion.

8  Verlauf des Darlehensstands bei fester Anfangstilgung

Bezeichnet
K:=R—-D,-i _ (34)

die Anfangstilgung, so liasst sich die den Darlehensstand kennzeichnende

Funktion D in folgender Form schreiben:

K+ D, - i(1+p),__K—I—DO - p
D(K,p, [): I—p 1—

A+ ' Do+ —1)i)—K -1)  fiiri=p

(1+i) firi+p
(35)

Bei festem K ist D(K, p, t) symmetrisch in i und p. K= — D, - p ist die nied-
rigste Anfangstilgung, die nicht zur Tilgung insgesamt fiihrt.
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Fiir die Laufzeit bzw. den maximalen Darlehensstand gilt nach (21) bzw. (23)

sowie (26):
In ((D -p+1<)_ (In (1+i))")
. / k
g = Dy-i+K/ (In(1+4p)) ke{O,l},H:p
1+p
i (1 )
bzw. T

I ___‘DO ' i+D0_ k
©7 Dy i+K  In(1+1)
Bei festem K

ke{0,1}, i=p

fallt z,, mit wachsendem i
fallt ., mit wachsendem p.

Bei festem i und p fillt £, mit wachsendem K.

IV Anwendungsmoglichkeiten der dynamischen Darlehenstilgung

In Abschnitt ITI wurden sdmtliche Moglichkeiten der dynamischen Darlehens-
tilgung ausgelotet. Fiir die Praxis ist indes nur ein Teil dieser Formen interes-
sant.

1 Abschreibung

Natiirlich fallt die Abschreibung nicht unter den Begriff der dynamischen
Darlehenstilgung im engeren Sinne. Interpretiert man jedoch das Darlehen D,
als Anschaffungswert (gegebenenfalls vermindert um den Restwert) und setzt
den Zinssatz i=0, so ergeben sich folgende Methoden der Abschreibung:
a) p=0

Dies ist die Form der linearen Abschreibung; zutreffend ist Figur 3.

b) p>0
Fiir diese Form der progressiven Abschreibung trifft wegen

a:[)om__R_.=DO+£>O I1T von Figur 1 (Fall a> 0) zu.

I—p p
c) —1<p<0
Hier liegt die geometrisch-degressive Abschreibung vor, wobel

R=—p Dy, also a=D0“_—Ii-=0 gilt. Es trifft Figur 2 zu mit der posi-
i—p
tiven Abszisse als Asymptote.
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2 Kreditbereich

Hier liegt wohl das Hauptanwendungsgebiet der dynamischen Tilgung, wo-
bei nur ein positiver Progressionssatz p eine Rolle spielt. Von den Kombina-
tionsmoglichkeiten der Anfangsrate R und des Progressionssatzes p, die zur
Tilgung fiihren, sind sicherlich zunéchst diejenigen unbedenklich, bei denen
R>D, ‘i und der Progressionssatz so bemessen ist, dass die Laufzeit eine
geschiftspolitisch gewiinschte Dauer nicht iiberschreitet.

Sobald R< D, - i ist, wird ein zusétzliches Darlehen gegeben; es muss dann
gepriift werden, ob dies zu den gleichen Konditionen mdoglich ist wie beim
urspriinglichen Darlehen D,. Insbesondere muss beachtet werden, dass der
Zinssatz im allgemeinen nur fiir einen begrenzten Zeitraum festgelegt werden
kann und auch bei Erh6hung des Zinssatzes die Laufzeit {iberschaubar bleiben
muss. Das in Abschnitt III entwickelte mathematische Instrumentarium er-
laubt es, auch die voraussichtliche oder geschitzte Entwicklung des Zinssatzes
einzubeziehen.

Aus der Sicht des Kunden bietet die dynamische Tilgung vorwiegend Vor-
teile; wichtig ist fiir ihn jedoch, dass Entwicklung und Dauer der Belastungen
deutlich zu ersehen sind. Freiziigigkeit kann insoweit gegeben sein, wie der
durch die Anfangsrate und den Progressionssatz festgelegte Tilgungsplan als
Mindestforderung eingehalten wird.

3 Bausparen

Fiir das Bausparen gilt zwar generell auch das im vorstehenden Kapitel 2
Gesagte, jedoch muss einer Bausparkasse wegen der Funktionstiichtigkeit des
kollektiven Systems weitaus mehr daran gelegen sein, dass die Zins- und
Tilgungsleistungen ziigig und in moglichst gleichbleibender Hohe der Zu-
teilungsmasse zufliessen. Wenn man auf Dauer eine Verldngerung der Warte-
zeit bis zur Zuteilung der Bausparsummen vermeiden will, ist es unmaoglich,
uiber die tarifliche Tilgungszeit hinauszugehen. Mehr noch, da im (statischen)
Beharrungszustand [4] die Darlehenssumme bei dynamischer Tilgung die Dar-
lehenssumme bei tariflicher Tilgung nicht iiberschreiten darf, muss die dyna-
mische Darlehenstilgung sogar mit einer kiirzeren Tilgungszeit einhergehen.
Innerhalb des durch die Forderung gleichhoher Darlehenssummen gegebenen
Rahmens konnte jedoch durchaus eine dynamische Tilgung ermoglicht werden,
sofern sich dadurch — abgesehen von einem Anlaufeffekt bei Einfiihrung einer
solchen Tilgungsform mit geringfiigiger Wartezeitverlingerung — global die
Entwicklung der Zuteilungsmasse nicht verdndert. Dabei werden den Kombi-
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nationsmoglichkeiten von Anfangsrate und Progressionssatz ziemlich enge
Grenzen gesetzt sein; insbesondere diirfte ein Anwachsen des Darlehens iiber
den Anfangsstand hinaus angesichts der hohen Anfangstilgungssitze fiir Bau-
spardarlehen und der geschilderten Wartezeitproblematik ausgeschlossen sein.
Die Verwirklichung einer begrenzten Auswahl von Kombinationsmoglich-
keiten fiir die dynamische Tilgung von Bauspardarlehen erscheint aber, wie
an anderer Stelle schon beschrieben wurde [5], als durchaus realisierbar.

V  Numerische Beispiele

In der Tabelle 1 ist die Entwicklung des Darlehensstands bei einem Zinssatz
von 8%, Anfangsraten R von 6; 7; 8 und 99, (des Anfangsdarlehens) sowie
verschiedenen Progressionssidtzen dargestellt.

Die Figuren 5 und 6 geben fiir einen Zinssatz von 8%, zum einen den Kurven-
verlauf bei festem p (=49,) und variablem R (=4; 5; 6; 7; 8 und 9%), zum
anderen bei festem R (=79%;) und variablem p (=1; 2; 4; 6 und 89,) wieder.
Tabelle 2 weist fiir verschiedene Kombinationen von Anfangsrate, Progres-
sionssatz und Zinssatz die nach Formel (21) bzw. (26) berechneten Laufzeiten
aus. In Tabelle 3 sind die nach Formel (23) bzw. (26) berechneten maximalen
Darlehensstinde nach Zeitpunkt und Hohe aufgefiihrt.

Dr. Hans Laux und Dr. Hans-Jiirgen Wohlrabe
Wiistenrot Lebensversicherungs-AG.

Im Tambour 2

D 7140 Ludwigsburg
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Tabelle 2
Tilgungszeiten bei der dynamischen Darlehenstilgung
mit jahrlicher Ratenzahlung und Tilgungsabsetzung

Anfangs- Pro-  Tilgungszeiten bei einem Zinssatz von ...%,

rate gres-
sions-
satz
6 6,5 7 7,5 8 8,5 9
(1) (2) (3) (4) (5) (6) (7) (8) )
A A Jahre Jahre Jahre Jahre Jahre Jahre Jahre
4 4 36,39 41,29 48,75 62,82 " X *
6 26,50 28,38 30,64 33,45 37,08 42,08 49,67
8 21,69 2277 23,99 25,38 27,00 28,91 31,21
5 2 41,84 5333 s ¥ ¥ * *
4 26,82 29,18 32,22 36,37 42,65 54,36 *
6 21,20 22,39 23,76 25,38 27,33 29,73 32,83
6 2 28,56 32,11 37,44 47,32 * . *
4 21,29 22,69 24,37 26,45 29,11 32,73 38,16
6 17,67 18,49 19,42 20,47 21,69 2312 24,84
7 0 33,40 41,91 * * * * *
2 22,03 23,85 26,18 29,33 34,04 42,72 *
4 17,66 18,60 19,68 20,94 22,45 24,31 26,68
6 15,14 15,75 16,42 17,16 18,00 18,95 20,05
8 0 23,79 26,58 30,73 38,34 ¥ * N
2 18,02 19,15 20,50 22,15 24.25 27,10 31,33
4 15,10 15,77 16,53 17,38 18,37 19,52 20,89
6 13,25 13,71 14,22 14,78 15,39 16,07 16,84
9 0 18,85 20,34 22,23 24,78 28,55 35,43 ¥
2 15,28 16,06 16,95 17,98 19,22 20,73 22,66
4 13,19 13,70 14,26 14,88 15,57 16,36 17,27
6 11,78 12,15 12,54 12,98 13,44 13,96 14,53
10 0 15,73 16,67 17,79 19,17 20,91 23,25 26,72
2 13,28 13,85 14,48 15,20 16,03 16,99 18,14
4 11,71 12,11 12,54 13,01 13,54 14,11 14,76
6 10,60 10,90 11.22 11,57 11,94 12,34 12,78

* Kombinationen, die nicht zur Tilgung fiithren
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Tabelle 3
Zeitpunkt und Hohe der maximalen Darlehensstiande
bei der dynamischen Darlehenstilgung mit jahrlicher
Ratenzahlung und Tilgungsabsetzung

Zinssatz Anfangsrate =~ Maximale Darlehensstinde bei einem Progressionssatz von .. .%

2 4 6
Zeitpunkt Hdohe Zeitpunkt Hohe Zeitpunkt Hohe
(1) (2) (3) 4) (5) (6) (7) (8)
7 v Jahre % Jahre % Jahre %
6 3 ' * 36,89 208,41 18,17 140,03
4 * * 15,61 120,58 9,34 111,59
5 13,78 108,42 6,04 103,55 4,04 102,43
6,5 3 - * 55,49 399,04 22,24 163,84
4 * * 21,36 139,46 11,87 119.39
5 26,54 128,83 9,25 108,41 5,89 105,29
6 5,31 101,55 2,76 100,86 1,99 100,67
7 3 - * * . 27,27 203,96
4 " * 29,57 178,75 14,73 130,93
5 " * 13,05 116,86 7,85 109,65
6 11,77 107,15 5,20 103,08 3,51 102,14
7.5 3 * - . * 33,95 281,01
4 . * 44,34 297,68 18,07 148,52
5 4 * 17,89 131,87 10,01 116,04
6 22,65 124,06 7,96 107,22 5,10 104,60
7 4,67 101,37 2,45 100,79 1,79 100,63
8 4 ” s ¥ ¥ 22,20 177,07
5 * * 24,78 162,03 12,44 125,38
6 * * 11,25 114,35 6,81 108,33
7 10,29 106,24 4,59 102,74 3,12 101,93
8,5 4 4 " * " 27,64 228,85
5 » * 37,07 246,90 15,30 139,37
6 * * 15,44 126,84 8,69 113,76
7 19,80 120,71 7,02 106,36 4,52 104,10
8 4,18 101,24 2,23 100,73 1,64 100,59
9 3 * * * * 35,65 344,70
5 * . b * 18,81 161,50
6 s "‘ 21,39 151,31 10,81 121,63
7 " * 9,91 112,54 6,03 107,37
8 9,17 105,56 4,12 102,49 2,82 101,77
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Zusammenfassung

Wihrend bei der bisher iiblichen statischen Darlehenstilgung die Riickzahlung des Darlehens
mit (nominal) gleichbleibenden Raten erfolgt, sieht die dynamische Darlehenstilgung jahrlich um
einen festen Prozentsatz steigende Raten vor, die damit in einem in etwa gleichbleibenden Ver-
hiltnis zum steigenden Einkommen gehalten werden kénnen.

Untersucht wird, welche Kombinationen von Zinssatz, Anfangsrate und Progressionssatz zu
einer Tilgung fiithren, wie sich der jeweilige Darlehensstand entwickelt und wie die Laufzeit und
der maximale Darlehensstand berechnet werden.

Résume

L’amortissement usuel statique d’une dette prévoit un remboursement par des versements (nomi-
naux) constants; ’amortissement dynamique, lui, prévoit une progression annuelle constante

des versements, qui ainsi evoluent parallélement & un revenu croissant.

L’auteur étudie quelles combinaisons de taux d’intérét, de versement initial et de taux de crois-
sance conduisent a 'amortissement complet de la dette, comment se développe 1’état de la dette,
et comment se calcule la durée d’amortissement et le montant maximal de I’état de la dette.

Summary

Whereas under the usual static loan repayment method the loan is paid off by means of (nominally)
identical amounts, the dynamic repayment method provides for payments that increase at a
fixed rate, so as to remain approximately in the same proportion to an increasing income.

The purpose of the investigation is to discover what combinations of interest rate, initial level of
periodic repayment and rate of increase in the latter lead to a given amortization, how the unpaid
balance develops over time and how the period of repayment and the maximum balance can be
calculated.
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