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Naherungsformeln bei unterjihriger Zahlung

von Hans U.Gerber und Donald A.Jones

1. Einleitung
Die von vielen Autoren ([1], [2], [3]) empfohlene Formel

(1)

kann hergeleitet werden unter der Annahme, dass die Diskontierte Zahl der
Lebenden stiickweise linear sei. Bei grossen Zinssitzen ist diese Annahme un-
realistisch, und die Niherungsformel (1) ist dementsprechend schlecht.

In dieser Notiz soll fiir die Formel

d . S{-1

T gm T g Az @)

geworben werden, welche anhand von S{ = i/i‘ und der Identitit
A, = 1 —da, umgeschrieben werden kann als

oy 41 i—itm
4™ = Gr— :
-’” dm jm) " jm) qom)

3)

Diese Formeln kann man von der Annahme herleiten, dass die Zahl der Leben-
den stiickweise linear sei ([2], Seiten 34 und 395), und ihre Qualitdt hdangt nicht
von der Hohe des Zinssatzes ab.

Formel (2) hat {ibrigens eine ansprechende Interpretation:

a'™ ist kleiner als ¢, aus zweierlei Griinden: Erstens besteht ein Zinsverlust
(der sich im Faktor d/d™) dussert), und zweitens wird weniger ausbezahlt im
Todesjahr, was den negativen Ausdruck auf der rechten Seite von (2) erklart.
Die entsprechende Formel fiir kontinuierliche Zahlungen ist

d, Sp-1
Uy = <Ay — 15 - 4)

0

Man erhilt sie aus (2) im Grenziibergang m—co.

In methodischer Hinsicht soll im folgenden exemplifiziert werden wie proba-
bilistische Methoden Herleitungen von Formeln in der Lebensversicherungs-
mathematik wesentlich erleichtern konnen.
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2. Die stiickweise Linearitiit der Zahl der Lebenden
im Lichte der Wahrscheinlichkeitsrechnung

Fiir einen x-Jdhrigen definieren wir die Zufallsvariablen T, K, U, U,, wie folgt:
T ist die restliche Lebenszeit, also Pr(T>t) = p,, t>0. K = [T] ist die rest-
liche Lebenszeit, abgerundet auf ganze Jahre, also Pr(K = k) = pps qu+ks
k=0,1,2,...,und U = T—K ist der Bruchteil eines Jahres, der im Todes-

jahr verlebt wird. Ferner nimmt U, die Werte !/m, 2/m, ..., 1 an, gemiss der
Regel
i+ 1 ' i+ 1
Up =10, falls L<u<l™ 5)
m m m

Sinngemidss Uy = lund U_ = U.

Anhand dieser Zufallsvariablen konnen Barwerte als Erwartungswerte aus-
gedriickt werden. Beispielsweise,

| — pK+1
&x=E[&m]=E[ - } (6)
1—- VK+Um
i = E [c’i Rt ] =E [—W} -0
Az = E[vE+1] (8)
A, = E[v7] )

Im folgenden nehmen wir an, dass

lyve = lz—t-dr, O0=Zt=Z1,(x ganze Zahl), (10)

oder, gleichbedeutend, dass
e =t qs, O0ZtZ1,  (x ganze Zahl). (1)

Unter dieser Annahme berechnet sich die gemeinsame Verteilung von K und
U wie folgt:

Pr(K=k und Usu)=Prk<T<k+u)
= kPz ulz+k = kPz Qz+r "4 = Pr(K = k) Pr(U =Zu). (12)
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Die Zufallsvariablen K und U sind also unabhingig, und U ist gleichverteilt
tiber dem Einheitsintervall. Es folgt, dass K und U, ebenfalls unabhiingig sind,
und dass U, gleichverteilt ist iiber den Werten /m, 2/m, ..., 1.

3. Herleitung von Formel (2)

Offenbar ist

1 — pE+U, d 1 —ypK+l K+U, _ yK+1

dm g dm

K+ MU,
I ol s ' .’ k. ot BTN (13)

dm d d(m

Daraus erhalten wir (2), indem wir den Erwartungswert nehmen, unter Beriick-
sichtigungvon (6), (7), (8) und den oben genannten Eigenschaften von K und U,,.

4. Todesfallversicherung mit Auszahlung beim Tode

Wenn man in der Identitat
pT = pK+U = (] 4 )I-U pk+1 (14)

den Erwartungswert bildet, erhélt man, unter Beriicksichtigung von (8), (9) und
den oben erwidhnten Eigenschaften von K und U die Formel

Zx:Eﬂ1+m4qAx=éAp (15)
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Anhang

Vergleich der Naherungsformeln

i (iy atl®

“(Jl 2

gemadss (1) gemiss (2)
.05 217 20.542 20.538
14 13.542 13.536
7 6.542 6.535
3 2.542 2.534
10 11+ 10.542 10.534
7 6.542 6.531
3 2.542 2.528

* Also keine Sterblichkeit

Hans U. Gerber & Donald A.Jones
University of Michigan
Department of Mathematics

Ann Arbor, Michigan 48104

USA

(H.U. Gerber bis Herbst 1980:
Mathematisches Forschungsinstitut
ETH Ziirich)

Zusammenfassung

Mit einer probabilistischen Methode ist es sehr einfach, die Ndherungsformel (2) herzuleiten. Diese
ist realistischer als die iibliche Niherungsformel (1), ist aber bis heute wenig verwendet worden.

Résume

A l'aide d’une méthode stochastique, il est aisé de déduire la formule d’approximation (2). Celle-ci
est plus proche de la réalité que la formule habituelle (1). Elle n’a été cependant que peu utilisée
jusqu’a ce jour.

Riassunto

Con un metodo probabilistico &€ molto facile derivare una formula d’approssimazione (2), che &
piu realistica della ben conosciuta formula (1) ma che malgrado & stata meno utilizzata.

Summary

With a probabilistic argument it is very easy to derive approximation (2). This formula is more
realistic than the usual approximation (1), but has not found yet the recognition it deserves.
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