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Aninvariance property of the Swiss premium calculation principle

by Floriaan De Vylder and Marc Goovaerts, Belgium

Abstract

The Swiss premium calculation principle, introduced in [1], associates to a
given risk X a premium p, solution of the equation

Ef(X—zp) =f((1-2)p),

where z € [0, 1] and fis a continuous strictly monotonic function. The parti-
cular cases z = 0 or z = 1 are considered in detail in [2], [3], [6].

Let f be replaced by the strictly monotonic continuous function g. Then we
prove that p does not change, for no X, iff g is a linear combination
g = o+ ff(x, p constants). This result is a rather direct generalization of the
one found in [6], Chapter III, in the case z = 0.

As an application, we prove a result very recently indicated in [4], i.e. that
the Swiss premium calculation principle is additive (that means that the pre-
mium corresponding to the sum of two independent risks is the sum of the
premiums corresponding to each risk) iff fis linear or exponential.

In another illustration we show that the Swiss premium calculation principle
is iterative (see section 7.) iff f'is linear or exponential. The difficult part of this
result was proved first in [5].

In further applications we characterize translation invariance, positive homo-
geneity, symmetry, homogeneity, multiplicativity.

The concepts are defined and the results proved for risks with arbitrary signs.
From the practical point of view it may be preferable to have a theory restricted
to nonnegative risks. That the results are also valid in the latter case, at least
for 0 <z <1, is indicated in the last section.

1. Definition of the Swiss principle

Let fbe a continuous strictly monotonic real function defined on R = ]——oo,
+ oo .Letz € [0,1]. Let X be a real random variable (we consider it as defined
by the distribution of its probability mass on R). Let p € R. Then we say that
p is the Swiss premium associated to the risk X iff

Ef(X—zp) =f(1-2)p). (1)

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 2, 1979
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Generally, p = p(X, f, z) depends on X, f, z. Practically X is nonnegative and

p 1s positive, but there is no need to introduce these restrictions here. All num-

bers, functions, random variables considered in this note are finite.

We define:

Dy = class of discrete random variables X with strictly positive probability
masses in two distinct points (but no elsewhere).

B = class of bounded random variables X (those with all probability mass
in a finite interval).

The Swiss premium is uniquely defined for all X € B, whatever be f, z satisfying

the indicated conditions. Of course, it generally exists for X in a larger class,

depending in fact on fand z. For simplicity, statements are made for X € Ds

or Xe 8B in the sequel, but often immediate extensions are evident.

2. Lemma

Let f, g be strictly monotonic. Then there exist a, f € R, # 0 such that

g(x) = 0+ Bf(x),  (xeR), @)
iff
f)—f () _ g(x")-g ()
fEN ) g g )

for each x' <x<x".

Remarks

— We omit the trivial demonstration of this lemma.

— It is interesting, however, that no continuity assumptions are made on the
involved functions f, g. Indeed, starting an argument with continuous func-
tions, continuity may be lost through limiting procedures, e.g. simply by
taking derivatives.

— In the preceding lemma, the assumptions make sure that the involved de-
nominators are not zero. When one of the functions is not supposed to be
strictly monotonic, the lemma has an immediate extension used in section 5.

— Next theorem in section 4 is most appealing, but practically, in this paper, it
is always the version in section 5 that is used. Indeed, even when one starts
an argument with very regular functions, a function g may appear in the dis-
cussion that is not strictly monotonic. For instance, the derivative of a linear
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function is a constant and a constant cannot be used as function f in the
defining relation (1). However, next relation (13) makes sense when g is a
constant.

3. Lemma

Let z € [0, 1] and let f be continuous strictly monotonic. Let Xe D, have the
distribution defined as follows:

PX=a)=1—t, P(X=b=t, (a<b,0<t<l). )

Let p(¢) = p(X, f, z). Then p(t) takes any value ¢ € |a, b [ when t varies in
19,1 [.Moreover, p(t) is strictly increasing. This implies that p(t) is continuous
on |0, 1[. (Itis easily seen that these results are also valid for the closed inter-
vals and that p(0) = a, p(1) = b.)

Demonstration

Here the defining relation (1) for p(t) becomes

(=0 fla—zp@)+1f(b—zp(®) =f((1-2)p()). ()

Let a<c<b and let us replace p(t) by c in (5). Then it will be sufficient to show
that (5) gives a corresponding ¢ strictly between O and 1. We have

a—zc<(l—-z)c<b-zc
and then
fla=ze)<f((1-2)c)<f(b-z0),
because we may assume f strictly increasing. Since (5) can be written
1=t _f(b—zp®)—/ (1-2)p(V)
t f((I=2)p®)—fla—zp(1))

where the last member is strictly positive, we have 0 <t <1. From (6) it is im-
mediate that p(¢) is strictly increasing.

(6)



108

4. Theorem

Let f, g be continuous strictly monotonic and let z€ [0, 1 [. Then

p(X.f,2)=p(X,g,2), (Xe¥B), (7)
iff
glx) =a+f/(x) (xeR) (8)

for some o, fe R, f#0.(The possible dependence of %,  on z is not indicated
since z is fixed.)

Demonstration

Let f, g be connected by (8) and let p satisfy

Eg(X—zp) =g((1-2)p). 9)

Then (1) follows immediatly, 1.e. (7) is true.

Conversely, let (7) hold. In order to prove (8) it is sufficient to show that (3)
holds. Let x' <x<x"”. We define

zZX zX %
a=x"+-—", b=x"+—, c= .
|-z 11—z 11—z

(10)

Then a<c<b. Let us consider the random variable X defined in the lemma of
3. By that lemma there isa t € |0, 1 [ such that the premium p(¢) (it amounts
to the same to calculate it with f or with g) satisfies

X
plt) =c= :
11—z

Then the relations (10) become:

x=((1=-z)pt), x'=a—zp(t), x"=b—zp(t)

and (6) becomes:

o f)—fx)

Since we have the same relation, with freplaced by g, (3) follows.

1=t f(x")=f(x) (11)
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5. Extension

In next theorem no assumptions are made on g, but the conclusion does not
say that f#0.

Theorem

Let z € [0, 1 [, let f be continuous strictly monotonic and let! g be any func-
tion. Suppose that for each Xe Dy, the root p of

Ef(X—zp)=f((1-2)p) (12)
1s also a root of
Eg(X—zp)=g((1-2)p). (13)
Then
gx)=oa+ff(x) (xeR) (14)
for some a, € R.
Demonstration

Under these assumptions, one part of the lemma in 2. is valid in the following
way:
If

(F(x")=f(x)) (g(x")—g(x") = (f (x")=f (x") (g (x") — g (x)) (15)

for any x’ <x <x”, then (2) remains valid, but maybe f =0.

Then the demonstration goes on as in the preceding theorem. The relation (11)
can be written

(1= (f(x)=f(x) =t (F (x")=f (x)).

From the assumptions follows that a similar relation can be written down but
with f replaced by g. Then (15) follows.

! Note that whatever be the function g, not necessarily Lebesgue measurable, E g (X —zp) makes
sense for X € Ds.
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6. Application: Additivity
For fixed f, z and variable X', the premium p (X, f, z) is said to be additive iff
p(X+Yf z2)=pX,f,2)+p(Y. ] 2),

whatever be the independent random variables X, Y in 8.

Theorem
Let />0 exist. Let z€ [0, 1 [. Then p (X, /, z) is additive iff

f(x)=oa+ferr or f(x)=o+fx,(xeR) (16)

for some a, «, feR.
Demonstration

If fis linear or exponential, then clearly, p (X, f, z) is additive.

Conversely, let p(X,f, z) be additive. Let X € Dyand let p = p (X, f, z) satisfy (1).
Let Y be the random variable with its total probability mass 1 placed in the
point ¢# 0. Then ¢ = p(Y, f, z) and X, Y are independent. By the additivity
assumption p + c is solution of

Ef(X+c—zp—zc)=f((1-2)(p+ ). (17)

Substracting (1), then dividing by (1—z)c and letting c—o, we obtain:
Ef'(X—zp) =f'((1-2)p). Since Xe D,, the limiting procedure is evidently
permitted. By the preceding theorem we have f' = «+ Bf. Then ' is conti-

nuous, since fis, and classical calculus applies. If f = o, then fis linear. If f# 0
then f'is exponential.

Remark. It is not necessary to suppose that ' exists, in the preceding theorem.

Indeed, let us assume only that f is continuous strictly monotonic. Let g be
defined by the relation

gx)=f(x+c(l-2), (xeR).
Then (17) reads
Eg(X—zp)=g((1-2)p)

and by the theorem in 5., g is a linear function of f. But now the coefficients
may depend on ¢ (not assumed non-zero here). Replacing ¢(1—2z) by y, it is
seen that there exist functions «(y), f(y) such that

flx+y) =a)+B0)f(x), (x,yeR). (18)
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It can probably be shown by elementary arguments that this relation implies
that f 1s linear or exponential. Here we shall use the preceding theorem and
the fact that f has a derivative (finite) in at least one point x,. (By Lebesgue
measure theory it is known that it has one a.e.).

Let z € R. Define y = z—Xxg. Then, by (18), for 4 z # o:

1 1
S0+ AD—f @) = (ot dz4 )= (xo+)
Z Z

1
=0 (f (xo + 4 2)—f (x0)).
Z

For 4 z—o, the last expression has a finite limit. This means that f'is derivable
in z, l.e. in any point.

7. Application: Iterativity

For fixed fand z, the Swiss premium calculation principle is said to be iterative
iff for each X, Ye !B, the relations

E(f (X—zq(V)/Y)=f((1-2)q(Y)) (19)
Ef(q(Y)—zp) =f((1-2)p) (20)

imply '
Ef(X—zp) =f(1-2)p). (21)

Thus, in (19), the principle is applied conditionally, given Y. The obtained pre-
mium is a random variable g(Y), a function of the conditioning variable Y.
Then (20) defines the premium p corresponding to ¢(Y). Iterativity means that
the premium corresponding directly to X is the same as that one corresponding
to g(Y).

Theorem
Letf'>oexist. Let z € |0, 1 [. Then the corresponding Swiss premium calcula-
tion principle is iterative iff f'is linear or exponential (i.e. iff (16) holds).
Demonstration

If f is linear or exponential, then the principle is iterative. This easily follows
from general properties of conditional expectations, in particular the property:
E(Xg(Y)/Y)=g(Y)E(X/Y).
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Conversely, let the principle be iterative. Let us consider the couple (X, Y) with
distribution defined by (see fig. 1):

i

(a, 1)

Y

(l=s)t (=) (=)
0o (b0 (fig. 1)

PX=a,Y=0)=(1—-s)t,P(X =b,Y=0)=(1-s)(1-1),

22
P(X=a,Y=1)=s,(a<b,o<s<l,o<t<l). &2

Then, for the conditional variable Xo = X, _
P(X0=a)=t,P(X0=b)= 1—t.

For the conditional variable X; = X,y _ : P(X1 = a) = L.
For the marginal variable X : P(X = a)=s+t—st,P(X =b)=(1-s)(1—1¢).
By (19), the variable g(Y) is distributed as follows:

Pg()=a)=s,Pq(V)=q) =(1-s)t+(1=s)(1-1t) = 1-s,
where q is solution of
tfla—zq)+(1—1)f(b—zq) =f((1-2)q). (23)
Then (20), (21) become

sfla=zp)+(1=9)f(g—zp) = f((1-2)p), (24)

(t+s—st)fla—zp)+(1=s)(1=t)f(b—zp) =f((L-2)p). (25)
From (24), (25) results:

tfla—zp)+ (1 —t)f(b—zp) =f(g—2zp). (26)

Now we consider s as variable. From (23) results that g does not depend on s.
From (23), (25) and the lemma in 3. results that p # q. The same lemma and (25)
show that p is a continuous function of s and that lim p = q¢ when s—o. There-
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fore, taking the difference of (23) and (26), then dividing by z(q — p) and letting
s—o0, one obtains

tf'la—zq)+ (=0 f'(b—zq) = f'((1-2)q). (27)
But (23), (27) can be written down as
Ef(Xo—zq)=f((1-2)q), Ef'(Xo—zq) =f'((1-2)q).

Since X can be considered as being an arbitrary variable in Dy, one has
f' = a4+ Bf by the theorem in 5. Then f'is linear or exponential.

8. Application: Translation invariance

For fixed f, z, the Swiss premium calculation principle is said to be translation
invariant iff for each Xe B, c € R (or ¢ >o0; alternative definition),

p(X+c,f,z2)=c+pX,f, 2). (28)

Since for any constant random variable Y = ¢, we have ¢ = p(Y, f, ¢) and since
such a random variable is independent from any other random variable, trans-
lation invariance seems to be a much less stringent condition than additivity.
However, the demonstration of the theorem in 6. shows that the concepts are
equivalent when applied to the Swiss premium calculation principle.

Theorem

Let f'>o exist and let z € [0, 1 [. Then the corresponding Swiss premium cal-
culation principle is translation invariant iff it is additive, i.e. iff f is linear or
exponential (i.e. iff (16) holds).

9. Application: Homogeneity
For fixedf, z, the Swiss premium calculation principle is said to be homogeneous
iff for each Xe B, ceR,
pcX.f,2)=cp(X,f, 2). (29)

It 1s said to be positively homogeneous iff (29) holds for each Xe B and c>o.
It is said to be symmetric iff (29) holds for each Xe Band ¢ = — 1.
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Theorem

Let z € [0, 1 [ and let fbe continuous strictly monotonic. Then the correspond-
ing Swiss premium calculation principle is positively homogeneous iff

f(x) =

o+ Bx" (x>0)
{ (30)

a—y(=x)y  (x<o)

for some o, B, yeR, fy>o0,r>o0.

Demonstration.

Let f be defined by (30) and let Xe B. Let F be the distribution function of
X . Then the premium p corresponding to X satisfies

—/j (zp—x)dF(x +Bj(~c—zp)’dF() o(l—z)|p|r, 31

where 6 = —yif p<o and é = fif p>0. Multiplying (31) by ¢7, where ¢>o,
one obtains, after evident transformations, the relation expressing that c¢p is
the premium corresponding to ¢ X .

Conversely, let the principle be positively homogeneous. We may assume that
f 1s strictly increasing. Substracting f (o) from f, we may also assume that
f(0) = 0. Let X € Dy and let p be the premium corresponding to X. Then (1)
holds and by the homogeneity assumption: Ef(cX —zcp) = f((1—2)cp),
(c>o0). This relation can be written down as E g(X —zp) = g ((1 —z) p), where
g 1s defined by g(x) = f (cx), (x € R). By the theorem in 5. g is a linear combi-
nation of f. The coefficients may depend on c. Thus, there exist functions «(c),
B (c) such that

flex) = a(c) + B(e)f (x), (xeR, c>0).

For x = o, this relation shows that «(c) = o. Then

flex) = Ble)f(x), (xR, c>0). (32)
For x = 1, we find that #(c) = f(¢)/f (1) and then (32) becomes
=f()fx)/f (1), (xeR, c>o0). (33)

We now consider two cases.

Case l:x >o0.Wedefine fi (x) = f(x)/f (1). Then (33) gives: fi (cx) = fi(¢) f1(x),
(x >0, c>0). Since f is continuous this implies that f; (x) = x7 for some r e R.
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Since f1 (0) = o, we must have r>o0. Then f (x) = f x” where f = f(1).

Case 2: x<o. Then we put y = —x and we define g(v = —f(y) = —f (—x).
Then y>o0, g(y)>o0 and (32) implies: g(cy) = f(c) g(y). Similarly as in case 1
we have g (y) = yy¥, wheres>o0,y =g(l) = —f( —1 .Thenj(x) = —7y(—x)%,
(x<o).

Using the obtained results in (33), we see that we must have r = s.

Theorem

Let z € [0, 1 [ and let f be continuous strictly monotonic. Then the correspond-
ing Swiss premium calculation principle is symmetric iff

fx)=a+ pfo(x), (xeR), (34)

where o, e R and f, is a function satisfying fo(—x) = —fo(x), (x € R). (This
means that f; is an “odd function™.)

Demonstration

For f'defined by (34), the principle is clearly symmetric.

Conversely, let the principle be symmetric. Let f,(x) = f(x)—f(0), (x e R). For

the premium p corresponding to X € Dy, we have E fo(X —zp) = fo((1—2) p)

and then, by the symmetry assumption, Efo(—X + zp) = fo(—(1 —2z) p). Let
0(x) = fo(—x). Then E go(X —zp) = go((1 —z) p). By the theorem in 5. we

have gg = o + fo fo. Letting x = o, we see that oy = 0. Then fo(—x) = Bofo(x)
= B2 fo(—x). Then Z = 1 and obviously, By = — 1.

Theorem

Let z [0, 1 [ and let f be continuous strictly monotonic. Then the correspond-
ing Swiss premium calculation principle is homogeneous iff

f(x) =a+ B|x|"signx, (x€eR),
for some o, feR, r>o0.
Demonstration

This results from the two preceding theorems since the principle is homo-
geneous iff it 1s positively homogeneous and symmetric.
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10. Application: Multiplicativity

For fixedf, z, the Swiss premium calculation principle is said to be multiplicative

t PXY.f.2) = p(X.[,2) p(Y. . 2) (35)

for each couple of independent random variables X, Y € B.

In the next demonstration, we could use the last theorem of the preceding sec-
tion. We prefer to use the first one because we later indicate versions of the
theorems using only nonnegative risks and in that case the following demonstra-
tion remains valid.

Theorem
Let z € |0, 1 [ and let f be continuous strictly monotonic. Then the correspond-

ing Swiss premium calculation principle is multiplicative iff

f(x)=a+Bx, (xeR), (36)

for some «, feR.

Demonstration

For f given by (36), the principle is clearly multiplicative.

Conversely, let the principle be multiplicative. Then it is positively homo-
geneous and (30), where we may assume o = o, holds. We consider the inde-
pendent random variables X, Y distributed as follows

P(X=0)=1-s5,P(X =1)=3s,(0<s<]),
P(Y=0=1-t,P(Y=1)=1t,(o<t<]).
Then
P(XY=0)=1-st,P(XY=1) = st.

Let p(s), p(t) be the premiums corresponding to X, Y respectively. Then, by
the lemma in 3., p(s)>o, p(t)>o. By the multiplicativity assumption, p(s) p(¢)
1s the premium corresponding to X Y.

By (30), we have:

—(1=t)yyzrpr(t) +tB(1—zp(t) = B(l—z) pr(1),
—(1=st)yzrp (s)p" () + st f{1—zp(s)p () = (L —z) pr(s) p7 (¢).
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Multiplying the first relation by p7(s) and substracting the last, then dividing
by ¢, we obtain

—(I=s)yzrpr(s)pr (O + s Bl —zp(s) p(1)) = BL—zp () p"(s). (37)

For t =0, we have p (t)—o by the lemma in 3. and then the last relation gives:
s = p’(s). Now we replace p (s) by x and note that x can take any value in ]0, 1 [
by the lemma in 3. We divide by s = p7(s) and replace p(t) by 1. This is per-
mitted since for t—1, we have p(t)—1 by the lemma in 3. Then it results from
(37) that

—y(l—=xn)zr+ p(l —zx)r = (1l —2), (o<x<1). (38)
We may take the derivative in x:

yxrlzr = fz(l—zx)y-1, (o<x<1).

Letting x—o0, we see that the last relation is only possible if r = 1. Then (38)
becomes
—yz+yxz—fxz=—pz,(o<x<l).

For x—o, we obtain y = f.

11. Special cases (z = o or z = 1)

Previous arguments break down for z = o or for z = 1, but some results remain
valid.

The theorems in 4. and 5. are valid for z = 1. We sketch a proof. One works
with the functions fo (x) = f (x)—f (0), g0 (x) = g(x)— g (0) having the property:
fo(0) = 0,g0(0) = 0. Thelemma in 2. is replaced by the following simpler one:
If fo(x) go(x") = fo(x') go(x) for each x <o <Xx’, then gy = afy and conversely.
One makes use of the variable X defined in the lemma of 3. and relation (6)
that now becomes

=8 _fo(b—P(f))

t fola—p ()
(or that relation written without denominators). Then the point is to show that,
given x <o <Xx’, one can find a, b, t such that a—p(t) = x, b—p(t) = x'. This
is immediate since one can take a = x, b = x’, p(t) = o and then for ¢ the one
resulting from (39).
These extensions can be used to generalize previous results. But we must insist

on the fact that there are situations where the cases z = o or z = 1 are far from
trivial. See e.g. [2], [3], [6].

(39)
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12. Only nonnegative risks

From a practical point of view, it may be preferable to consider only non-
negative risks. For z € |0, 1[, almost all preceding results can be seen to be
valid in that situation. Then the theorem in section 5 must be replaced by the
following theorem, the proof of which is left to the reader.

Theorem

Let ze |0, 1 [. Let f be continuous strictly monotonic and let g be any func-
tion. Suppose that for all nonnegative X € ®., the root p of Ef (X —zp) =

f((l—=z)p)isalsoaroot of Eg(X —zp) = g((1—2z)p). Then g(x) = a+ ff(x),
(x e R) for some o, feR.

Appendix.
When is the Swiss premium calculation principle expectation exceeding?

I. Let f be continuous strictly increasing, z € [0, 1]. Let X € Bbe such that
P(a<X <b) = 1. We define

g1(x) = Ef(X—zx), ga(x)=f((1—2)x).

Then gy, g» are continuous, g; is decreasing, g is increasing and at least one
of the functions g1, gs is strictly monotonic.

Sincea<X <b(as): fla—zx)<f(X—zx)<f(b—zx) (a.s.)

Taking expectations: f(a—zx) <Ef(X —zx)<f (b—zx).

For x = athe first inequality gives gs(a) <g; (a) and for x = b the second gives
g1(b) <gs(b). This implies that the Swiss premium p = p(X, f, z), the root of
g1(x) = go(x), exists and is unique and moreover that a <p(X, f, z) <b.

2. In [I] 1t 1s proved that when f is convex, the stronger result
E(X)<p(X,f,z)<bholds (see 4. below). From the practical point of view, the
property E(X)<p(X, f, z) is essential, at least for positive risks X .

3. For fixed f, z, the Swiss premium calculation principle will be called expec-
tation exceeding ff E(X)<p (X, f, z) for each nonnegative X €B.

In this appendix we show that it is not essential, for that property to hold, that
f be convex on the whole of R. When z = o, this is immediate, since then f
is not used on |—oo, o [ if X >0, but we shall give a less trivial example.
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4. For fixed f, z, the Swiss premium calculation principle is expectation ex-
ceeding iff for each nonnegative Xe 8.

S(I=2)m)<Ef (X —zm), (A)

where m = E X . This is immediate from the discussion in 1. (Draw the graphs
representing g;, go.) Note that when f is convex, Jensen’s inequality gives
J(E(X —zm))<Ef (X —zm) and that this is exactly relation (A).

5. For f (x) = x3 (x € R), relation (A) becomes

(1—zPm3<E(X—zm)3,
(1=3z+322—-23)m3<E(X3-3X2zm+ 3 Xz2m2—2z3m3),
(1-=3zym3<EX3-3:z:mE X2,

Forz = 1/3:
EX+ EX?<EX3, (B)

6. It is easy to see that (B) holds for each nonnegative X € 8B. Indeed, let F be
the distribution function of X. Then

2EX3—EX -EX? = [[(x3+)3—xy2—x2y)dF(x)dF ()
= [J(x=y) (x2=y)dF{x)dF(y)=o,

where the inequality holds because (x — y) (x2—y2) >0 when x, y >o0.

Conclusion of the Appendix

For f(x) = x3 (x e R), z = 1/3, the Swiss premium calculation principle is ex-
pectation exceeding, although fis not convex on R.

It would be most interesting to have a simple characterization, in terms of
fand z only, of the property of being expectation exceeding. The problem seems
to be intricate. It is easily seen that it is not sufficient that f be convex on
[0. oo [.

The discussion in this appendix justifies the general definition of the Swiss
premium calculation principle that we adopted at the start. Of course, it is easier
to draw practical conclusions when f is supposed to be convex, but a lot of
work can be done without that assumption.
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Zusammenfassung

Das sogenannte «Schweizer» Primienberechnungsprinzip wird in verschiedener Hinsicht verall-
gemeinert und kommentiert.

Résume

Le soi-disant «principe suisse» de tarification est analysé et généralisé sous plusieurs aspects et
commente¢.

Riassunto

Viene analizzato e generalizzato da diversi punti di vista il cosidetto principio svizzero del calcolo
di premi.

Summary

The Swiss premium calculation principle is analyzed and generalized in various directions.
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