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An invariance property of the Swiss premium calculation principle

by Floriaan De Vylder and Marc Goovaerts, Belgium

Abstract

The Swiss premium calculation principle, introduced in [1], associates to a

given risk A a premium p, solution of the equation

£/(X-zp)=/((l-z)p),
where ze [0, 1] and /is a continuous strictly monotonie function. The parti-
cular cases z 0 or z 1 are considered in detail in [2], [3], [6].
Let /be replaced by the strictly monotonie continuous function g. Then we

prove that p does not change, for no A, iff g is a linear combination
g — a + ß/(a, / constants). This result is a rather direct generalization of the

one found in [6], Chapter III, in the case z 0.

As an application, we prove a result very recently indicated in [4], i.e. that
the Swiss premium calculation principle is additive (that means that the pre-
mium corresponding to the sum of two independent risks is the sum of the

premiums corresponding to each risk) iff/is linear or exponential.
In another illustration we show that the Swiss premium calculation principle
is iterative (see section 7.) iff/is linear or exponential. The difficult part of this
result was proved first in [5].
In further applications we characterize translation invariance, positive homo-
geneity, symmetry, homogeneity, multiplicativity.
The concepts are defined and the results proved for risks with arbitrary signs.

From the practical point of view it may be preferable to have a theory restricted
to nonnegative risks. That the results are also valid in the latter case, at least
for 0<z< 1, is indicated in the last section.

1. Definition of the Swiss principle

Let/be a continuous strictly monotonie real function defined on £ ] — oo,
+ oo[. Let z e [0,1]. Let X be a real random variable (we consider it as defined

by the distribution of its probability mass on £). Let pek. Then we say that

p is the Svvzss premium associated to the risk X iff

£/(X — zp) =/((!—z)p). (1)

Mitteilungen der Vereinigung Schweiz. Versicherungsmathematiker, Heft 2, 1979
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Generally, p p(X,/, z) depends on I,/, z. Practically A" is nonnegative and

p is positive, but there is no need to introduce these restrictions here. All num-
bers, functions, random variables considered in this note are finite.
We define:
D2 class of discrete random variables X with strictly positive probability

masses in two distinct points (but no elsewhere).
S class of bounded random variables X (those with all probability mass

in a finite interval).
The Swiss premium is uniquely defined for all X e 23, whatever be/, z satisfying
the indicated conditions. Of course, it generally exists for X in a larger class,

depending in fact on/and z. For simplicity, statements are made for X e®2
or Xe S in the sequel, but often immediate extensions are evident.

2. Lemma

Let/, g be strictly monotonie. Then there exist a, / e R, /j A 0 such that

g(x) <* + /?/(x), (xeR), (2)

iff
/(*")-/(*) ^

g(x")-g(x)
/(x")-/(x') g(x")-g(x')

for each x' <x <x".

Remarks

- We omit the trivial demonstration of this lemma.

- It is interesting, however, that no continuity assumptions are made on the
involved functions/, g. Indeed, starting an argument with continuous func-
tions, continuity may be lost through limiting procedures, e.g. simply by
taking derivatives.

- In the preceding lemma, the assumptions make sure that the involved de-

nominators are not zero. When one of the functions is not supposed to be

strictly monotonie, the lemma has an immediate extension used in section 5.

- Next theorem in section 4 is most appealing, but practically, in this paper, it
is always the version in section 5 that is used. Indeed, even when one starts
an argument with very regular functions, a function g may appear in the dis-
cussion that is not strictly monotonie. For instance, the derivative of a linear
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function is a constant and a constant cannot be used as function / in the

defining relation (1). However, next relation (13) makes sense when g is a

constant.

3. Lemma

Let ze[0, 1] and let /be continuous strictly monotonie. Let 3fe Do have the

distribution defined as follows:

P(* a) l-t, P(X b) f, (ach,Oerel). (4)

Let p(r) p(3f, /, z). Then p(r) takes any value c e ] a, h [ when f varies in

]0,1 [. Moreover, p(r) is strictly increasing. This implies that p(r) is continuous
on ] 0, 1 [. (It is easily seen that these results are also valid for the closed inter-
vais and that p(0) a, p(l) h.)

Demonstration

Here the defining relation (1) for p(t) becomes

(1—t)/(a-zp(t)) + t/(h —zp(t)) /((l-z)p(f)). (5)

Let aeceb and let us replace p(t) by c in (5). Then it will be sufficient to show
that (5) gives a corresponding f strictly between 0 and 1. We have

a —zce(l—z)ceh —zc

and then

/(a — z c) </((l — z) c)e/(f>-zc),

because we may assume/strictly increasing. Since (5) can be written

1-t /(£> —zp(t))—/((l — z)p(t))
t /((l-z)p(0)-/(a-zp(t))

(6)

where the last member is strictly positive, we have 0 < t < 1. From (6) it is im-
mediate that p (t) is strictly increasing.
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4. Theorem

Let/, g be continuous strictly monotonie and let z e [0, 1 [. Then

p(X,/,z) p(X,g,z), (Xe93), (7)

iff
g(x) x + /?/ (at) (xeR) (8)

for some a, /j e R, /? / 0. (The possible dependence of a, / on z is not indicated
since z is fixed.)

Dem<mstr«t/on

Let/, g be connected by (8) and let p satisfy

£g(X-zp) g((l-z)p). (9)

Then (1) follows immediatly, i.e. (7) is true.

Conversely, let (7) hold. In order to prove (8) it is sufficient to show that (3)

holds. Let x'<x<x". We define

ZX ZX X
a x' H h x" H -, c (10)

1 — z 1 —z 1 —z

Then a < c < h. Let us consider the random variable X defined in the lemma of
3. By that lemma there is a t e ] 0, 1 [ such that the premium p(t) (it amounts
to the same to calculate it with/or with g) satisfies

p (t) c —.1 —z

Then the relations (10) become:

x (1 — z)p(f), x' a —zp(f), x" h-zp(t)
and (6) becomes:

1-f /(x ")-/(*)
t /W-Z(x')'

Since we have the same relation, with/replaced by g, (3) follows.

(H)
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5. Extension

In next theorem no assumptions are made on g, but the conclusion does not
say that /i/0.

Theorem

Let 7 £ [0, 1 [, let /be continuous strictly monotonie
tion. Suppose that for each Xe So, the root p of

E/(X-zp)=/((l-z)p)
is also a root of

£g(X-zp) g((l -z)p).
Then

g(x) a + /i/(x) (xefi)

for some a, /ie R.

Z)e/nowsfraf/OM

Under these assumptions, one part of the lemma in 2. is valid in the following
way:
if

(/(*")-/(*)) (*(*")-«(*')) (/'(x")-/(*')) (g(x-)-g(x)) (15)

for any x'<x<x", then (2) remains valid, but maybe /] 0.

Then the demonstration goes on as in the preceding theorem. The relation (11)

can be written

(1-0 (/"(*)-/(*')) î (/"(*")-/(*))
From the assumptions follows that a similar relation can be written down but

with/replaced by g. Then (15) follows.

and let ^
g be any func-

(12)

(13)

(14)

' Note that whatever be the function g, not necessarily Lebesgue measurable, £ g (À' — r/>) makes
sense for X e >.
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6. Application: Additivity

For fixed/', z and variable A, the premium p(A,/, z) is said to be additive iff

p(a + y,/,z) p(A,/,z) + p(yj,z),
whatever be the independent random variables A, y in 33.

Theorem

Let/'>o exist. Let z e [0, 1 [. Then p(A,/ z) is additive iff

/(x) a + /ie"'' or /(x) a + /fx, (x eil) (16)

for some a, a, /ieR.
Demonstration

If/is linear or exponential, then clearly, p(A,/, z) is additive.

Conversely, let p( A,/, z)be additive. Let A e £>-2 and let p p (A,/', z) satisfy (1).

Let y be the random variable with its total probability mass 1 placed in the

point c#o. Then c p(T,/, z) and A, y are independent. By the additivity
assumption p + c is solution of

E/(A + c —zp —zc) =/((l-z)(p + c)). (17)

Substracting (1), then dividing by (1—z)c and letting c->o, we obtain:

E/'(A — zp) =/'((l—z)p). Since Ae £9, the limiting procedure is evidently
permitted. By the preceding theorem we have /' a + /?/. Then /' is conti-

nuous, since/is, and classical calculus applies. If /? 0, then/is linear. If /^ o

then/is exponential.
üemar/c. It is not necessary to suppose that/' exists, in the preceding theorem.

Indeed, let us assume only that/is continuous strictly monotonie. Let g be

defined by the relation

g(x) =/(x T c (1 -z)), (xeR).

Then (17) reads

Eg(A-zp) g((l-z)p)
and by the theorem in 5., g is a linear function of /. But now the coefficients

may depend on c (not assumed non-zero here). Replacing c(l—z) by y, it is

seen that there exist functions a(y), ß(y) such that

/(x + y) a(y)+£(y)/(x), (xjeR). (18)
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It can probably be shown by elementary arguments that this relation implies
that / is linear or exponential. Here we shall use the preceding theorem and
the fact that /has a derivative (finite) in at least one point .xq. (By Lebesgue
measure theory it is known that it has one a.e.).

Let :eR, Define y z — -Xo- Then, by (18), for d z # o:

~ (/" (z + d z) -/ (z)) -Î- (/" (jco + d z + y) -/' (.xo + y))
d z d z

ßCy) ~7~ (/(xo + d z)—/(xo)).
d z

For d z->o, the last expression has a finite limit. This means that/is derivable
in z, i.e. in any point.

7. Application: Iterativity

For fixed /'and z, the Swiss premium calculation principle is said to be iterative
iff for each A, Ye 23, the relations

£(/(X-zg(Y))/Y) =/((l — z) <7 Y)) (19)

£/faM-zp) =/((l-z)p) (20)

imply

£/(X-zp) =/((l-z)p). (21)

Thus, in (19), the principle is applied conditionally, given Y. The obtained pre-
mium is a random variable r/(Y), a function of the conditioning variable Y.

Then (20) defines the premium p corresponding to <?(Y). Iterativity means that
the premium corresponding directly to A is the same as that one corresponding
to <? Y).

T/icorem

Let/'>o exist. Let z e ] 0,1 [. Then the corresponding Swiss premium calcula-
tion principle is iterative iff/is linear or exponential (i.e. iff (16) holds).

Demonsfration

If/ is linear or exponential, then the principle is iterative. This easily follows
from general properties of conditional expectations, in particular the property:
E(Xg(Y)/Y) g(Y)£(X/Y).
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Conversely, let the principle be iterative. Let us consider the couple (X, 7) with
distribution defined by (see fig. 1):

S

(a, 1)

(l-s)f (l-s)(l-r)
(«, o) (M)

*> 7
(% l)

P(X a, y o) (1 -s) t, P(X b, y o) (1 -s) (1-0, (221
P(2f a, 7 1) s, (a<b,o<s<l,o<f<l).

Then, for the conditional variable Xo AT, y o:

P(Xo a) f,P(Xo ft) 1-L

For the conditional variable Xi X P(AT a) 1.

For the marginal variable AT : P(X a) s + t — st, P(X b) (1 — s) (1 — 0-
By (19), the variable q(T) is distributed as follows:

Pfo(y) a) s,Pfo(y) 9) (l-s)t + (l-s)(l-0 l-s,
where <j is solution of

f/(a-z<5f) + (l-r)/(b-z4) /((l-z)<?). (23)

Then (20), (21) become

•s/(a-zp) + (l-s)/(«-zp) /((l-z)p), (24)

(t + s-sf)/(a-zp) + (1 -s) (1 -r)/(b-zp) =/((l — z) p). (25)

From (24), (25) results:

f/(a-zp) + (l-t)/(b-zp) /(<j-zp). (26)

Now we consider s as variable. From (23) results that <7 does not depend on s.

From (23), (25) and the lemma in 3. results that p ^ q. The same lemma and (25)

show that p is a continuous function of s and that lim p g when s-»o. There-
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fore, taking the difference of (23) and (26), then dividing by z (4 — p) and letting
s-»o, one obtains

t/'(a-zg) + (l-f)/'(b-zg) /'((l-z)<?). (27)

But (23), (27) can be written down as

£/(X„-z<?) =/((l-z) 9), £/'(Xo-zq) /'((l-z)g).
Since Xo can be considered as being an arbitrary variable in one has

/ ' a + ß/by the theorem in 5. Then/is linear or exponential.

8. Application: Translation invariance

For fixed/, z, the Swiss premium calculation principle is said to be truns/ation
invananf iff for each Xe 23, c e £ (or 00; alternative definition),

p(X + c,/, z) c + p(X,/, z). (28)

Since for any constant random variable T c, we have c p(T,/,c) and since

such a random variable is independent from any other random variable, trans-
lation invariance seems to be a much less stringent condition than additivity.
However, the demonstration of the theorem in 6. shows that the concepts are
equivalent when applied to the Swiss premium calculation principle.

Theorem

Let/'>o exist and let z e [0, 1 [. Then the corresponding Swiss premium cal-
culation principle is translation invariant iff it is additive, i.e. iff/is linear or
exponential (i.e. iff (16) holds).

9. Application : Homogeneity

For fixed/, z, the Swiss premium calculation principle is said to be homogeneous

iff for each Xe SB, cell,
p(cX,/, z) cp(X,/, z). (29)

It is said to be posifive/y homogeneous iff (29) holds for each XeS and 00.
It is said to be symmetric iff (29) holds for each Xe Sand c — 1.



114

F/ieorem

Let z 6 [0,1 [ and let/be continuous strictly monotonie. Then the correspond-
ing Swiss premium calculation principle is positively homogeneous iff

ra + /x'' f x > o)

/M (30)
la— y( — x/ (x<o)

for some a, /J, y g F, / y>o, r>o.

Démonstration.

Let /be defined by (30) and let Xg ®. Let F be the distribution function of
X. Then the premium p corresponding to X satisfies

zp oc

— y J (zp —x)''dF(x) + / J (x —zp/dF(x) c)(l —z/lp/, (31)
-OO zp

where <5 — y if p<o and <5 / if p >o. Multiplying (31) by C, where c>o,
one obtains, after evident transformations, the relation expressing that cp is

the premium corresponding to cX.
Conversely, let the principle be positively homogeneous. We may assume that

/ is strictly increasing. Substracting / (o) from /, we may also assume that

/ (o) o. Let X g T>2 and let p be the premium corresponding to X. Then (1)

holds and by the homogeneity assumption: £/(cX —zep) =/((l —z) cp),
(c>o). This relation can be written down as F g(X —zp) g ((1 —z)p), where

g is defined by g(x) /(cx), (x gF). By the theorem in 5. g is a linear combi-
nation of/. The coefficients may depend on c. Thus, there exist functions x(c),
/? (c) such that

/ (c x) a (c) + / (c)/ (x), (x g F, c > o).

For x o, this relation shows that a(c) o. Then

/(cx) /(c)/(x), (x gF, c>o). (32)

For x 1, we find that /(c) =/ (c)// (1) and then (32) becomes

/(cx) =/(c)/(x)//(1),(xgF,oo). (33)

We now consider two cases.

Case f :x >o. We define/i (x) /(x)//(l). Then (33) gives:/i (cx) =/) (c)/i (x),
(x >o, c>o). Since/ is continuous this implies that/i (x) x>" for some reF.
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Since /t(o) o, we must have r>o. Then/(x) /TV where / =/(l).
Case 2: x<o. Then we put y — x and we define g(v) —/(v) —/( — x).
Then y>o, g(y)>o and (32) implies: g(c.v) /3(c) g (y). Similarly as in case 1

wehaveg(y) y y®, where s > o, y g (1 —/(—1). Then/(x) — y( —x)*,
(x <o).
Using the obtained results in (33), we see that we must have r s.

Theorem

Let z e [0, 1 [ and let/be continuous strictly monotonia Then the correspond-
ing Swiss premium calculation principle is symmetric iff

/(x) a + //o(x), (x eR), (34)

where a, (ieR and /, is a function satisfying/o( —x) —/o(x), (xeR). (This
means that/, is an "odd function".)

Demonstration

For/defined by (34), the principle is clearly symmetric.
Conversely, let the principle be symmetric. Let/o(x) /(x)—/(o), (x eS). For
the premium p corresponding to X e £>2, we have £/o(2f — zp) =/,((! — z)p)
and then, by the symmetry assumption, £/,( —X + zp) =/,( —(1 — z)p). Let

go(x) =/o( — x). Then £ go (X — zp) go((l—z)p). By the theorem in 5. we
have go ao + /o/o- Letting x o, we see that a,, o.Then/o( — x) /0/0M

/?o/o( —x). Then /3q 1 and obviously, /o — F

Theorem

Let z [0,1 [ and let /be continuous strictly monotonia Then the correspond-
ing Swiss premium calculation principle is homogeneous iff

/(x) a + /?Ix/ sign x, (xeR),

for some a, )3 eR, r>o.

Demonstration

This results from the two preceding theorems since the principle is homo-
geneous iff it is positively homogeneous and symmetric.
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10. Application: Multiplicativity

For fixed/, z, the Swiss premium calculation principle is said to be mu/tip/icative
'

p (x y, /, z) p (x, /, z) p y, /, z) (35)

for each couple of independent random variables X, y e 33.

In the next demonstration, we could use the last theorem of the preceding sec-

tion. We prefer to use the first one because we later indicate versions of the
theorems using only nonnegative risks and in that case the following demonstra-
tion remains valid.

T/teorem

Let z 6 ]0,1 [ and let/be continuous strictly monotonie. Then the correspond-
ing Swiss premium calculation principle is multiplicative iff

/(.x) a + ßx, (xeR), (36)

for some a, ßeP.

Demonstration

For/given by (36), the principle is clearly multiplicative.
Conversely, let the principle be multiplicative. Then it is positively homo-

geneous and (30), where we may assume a o, holds. We consider the inde-

pendent random variables X, T distributed as follows

P(X o) 1 — s, P(X 1) s, (o<s< 1),

p(y o) l-t, P(y l) t, (o < t < l).

Then

p(xy o) i-st, P(xy l) st.

Let p(s), p(t) be the premiums corresponding to X, T respectively. Then, by
the lemma in 3., p(s)>o, p(f)>o. By the multiplicativity assumption, p(s)p(f)
is the premium corresponding to X T.

By (30), we have:

— (1 — t)yz'-p'-(t) + t/?(l-zp(f)/ ^(l-z/p^t),
- 1 - S f 7 Z' pr (s) pr (f + S t / 1 - Z P (s) P (t)/ ß 1 - z)r pr (S) pr (t).
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Multiplying the first relation by p'(s) and substracting the last, then dividing
by f, we obtain

-(1-s) yz'p'(s)p'(f) + s /?(l-zp(s)p(f))'' jS(l -zp(t))'p'(s). (37)

For r —, we have p(f)-»o by the lemma in 3. and then the last relation gives:
s p'' (s). Now we replace p (s) by x and note that x can take any value in ] 0, 1 [
by the lemma in 3. We divide by s p'(s) and replace p(f) by 1. This is per-
mitted since for t->l, we have p(f)->l by the lemma in 3. Then it results from
(37) that

— y(1 — x')z' + /?(1 — zx)'' /i(1 — z)', (o <x < 1). (38)

We may take the derivative in x:

}' X'~' Z' /I Z (1 - zx)'"' (o <x < 1).

Letting x->o, we see that the last relation is only possible if r 1. Then (38)
becomes

— yz + yxz— /fxz —/iz, (o<x< 1).

For x—>o, we obtain y /f.

11. Special cases (z o or z 1)

Previous arguments break down for z o or for z 1, but some results remain
valid.
The theorems in 4. and 5. are valid for z 1. We sketch a proof. One works
with the functions/o(x) /(x)—/(o), go(x) g(x) —g (o) having the property:
/o (o) o, go (o) o. The lemma in 2. is replaced by the following simpler one :

Ifio(x)go(x') /o(x')go(x) for each x<o<x', then go a/o and conversely.
One makes use of the variable X defined in the lemma of 3. and relation (6)

that now becomes
i-t ^

/o(fr-p(Q)
f /o(fl-fW)

(or that relation written without denominators). Then the point is to show that,
given x<o<x', one can find a, b, t such that a —p(f) x, b —p(t) x'. This
is immediate since one can take a x, b x', p(r) o and then for t the one
resulting from (39).

These extensions can be used to generalize previous results. But we must insist
on the fact that there are situations where the cases z o or z 1 are far from
trivial. See e.g. [2], [3], [6].
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12. Only nonnegative risks

From a practical point of view, it may be preferable to consider only non-
negative risks. For z e ] 0, 1 [, almost all preceding results can be seen to be

valid in that situation. Then the theorem in section 5 must be replaced by the

following theorem, the proof of which is left to the reader.

Theorem

Let z e ] 0, 1 [. Let /be continuous strictly monotonie and let g be any func-
tion. Suppose that for all nonnegative AeîL, the root p of £/(A — zp)

/((l -z) p) is also a root of £ g (A — zp) g((l -z) p). Then g(x) a + /?/(x),
(x e £) for some a, /j e R.

Appendix.
When is the Swiss premium calculation principle expectation exceeding?

1. Let /be continuous strictly increasing, ze[0, 1], Let A e SB be such that
P (fl < A < b) l.We define

gi(x) £/(A-zx), g2 (x) =/((l— z)x).

Then gi, go are continuous, gi is decreasing, gg is increasing and at least one
of the functions gi, g2 is strictly monotonie.
Since a < A <b (a.s.):/(a —zx) </' (A — zx) </(£> — zx) (a.s.)

Taking expectations://«: —zx) <£/(A — zx) </(b-zx).
For x u the first inequality gives go (a) <gi («) and for x h the second gives

gi(h)<go(h). This implies that the Swiss premium p p(A,/, z), the root of
gi(x) go(x), exists and is unique and moreover that a<p(A,/, z)<b.
2. In [1] it is proved that when / is convex, the stronger result
E (A) <p(A,/, z) <b holds (see 4. below). From the practical point of view, the

property £ (A) < p (A, /, z) is essential, at least for positive risks A.
3. For fixed / z, the Swiss premium calculation principle will be called expec-
fafion exceeding iff £ (A) <p (A, / z) for each nonnegative A 6 23.

In this appendix we show that it is not essential, for that property to hold, that

/be convex on the whole of £. When z o, this is immediate, since then/
is not used on ] —oo, o [ if A >o, but we shall give a less trivial example.
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4. For fixed / z, the Swiss premium calculation principle is expectation ex-

ceeding iff for each nonnegative Xe 33.

/((l-z)m)<£/(Jf-zm), (A)

where m £X. This is immediate from the discussion in 1. (Draw the graphs
representing gi, g2.) Note that when / is convex, Jensen's inequality gives

/(£(À'-zm))<£/(X —zm) and that this is exactly relation (A).
5. For /' (x) *3 (x relation (A) becomes

(1 —z)3 m3<£(X — zm)®,

(1 — 3 z + 3 z® —z®) <E(X3 — 3 X^ zm + 3 X z^ m^-z^ m®),

1 — 3 z) m< £ X3 — 3 z m £ X'^.

Forz 1/3:
fi X • £ A® <£ A3. (B)

6. It is easy to see that (B) holds for each nonnegative AG 33. Indeed, let £ be

the distribution function of A. Then

2 (£ A» - £ A • £ X?) j' {(x» + y3 - x y* - x* y) d £ (x) d £ (y)

1 j (* - y) - J'®) ^M
where the inequality holds because (x —y) (x^ — y2)>o when x, y >o.

Conclusion of the Appendix

For/(x) x3 (x eR), z 1/3, the Swiss premium calculation principle is ex-

pectation exceeding, although/is not convex on R.
It would be most interesting to have a simple characterization, in terms of
/ and z only, of the property of being expectation exceeding. The problem seems

to be intricate. It is easily seen that it is not sufficient that / be convex on

[0,oo[.
The discussion in this appendix justifies the general definition of the Swiss

premium calculation principle that we adopted at the start. Of course, it is easier

to draw practical conclusions when / is supposed to be convex, but a lot of
work can be done without that assumption.
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Zusammenfassung

Das sogenannte «Schweizer» Prämienberechnungsprinzip wird in verschiedener Hinsicht verall-
gemeinert und kommentiert.

Résumé

Le soi-disant «principe suisse» de tarification est analysé et généralisé sous plusieurs aspects et

commenté.

Riassunto

Viene analizzato e generalizzato da diversi punti di vista il cosidetto principio svizzero del calcolo
di premi.

Summary

The Swiss premium calculation principle is analyzed and generalized in various directions.
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