Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of
Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker
Band: 78 (1978)

Artikel: L'équation générale d'equilibre d'un risque collectif
Autor: Amsler, Marc-Henri
DOl: https://doi.org/10.5169/seals-555076

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-555076
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’équation générale d’¢quilibre
d’un risque collectif

Par Marc-Henri Amsler, Lausanne

Introduction

Aborder des questions dans lesquelles interviendront les notions de solvabilité,
de ruine, de provision de fluctuations représente bien souvent pour I'actuaire
une entreprise frolant I'aventure. La retenue du praticien devant ce genre de
problémes provient en bonne partie du fait que la mathématique qui formalise
ces notions est délicate: il faut raisonner avec des probabilités... qui ne sont
pas du type «de ces bons g, de 'assurance sur la vie»; il y a lieu en plus d’évaluer
des intégrales ou de procéder a des développements analytiques dont il est par-
fois difficile d’appréhender la légitimité et I'exactitude.

Nous nous proposons dans cet article de contrer la réserve et la méfiance qui
entourent actuellement la notion de ruine: la ruine dont parle la théorie du
risque collectif ne marque point la ruine du raisonnement actuariel. Elle ne
reléve pas non plus d’une sorte d’ésotérisme spéculatif. L’article montre qu’il
est possible de formuler de fagon absolument précise la relation liant, dans un
portefeuille quelconque d’assurance, risques et protections financiéres. Tenant
compte du réle central que joue cette relation dans toute sorte de domaines,
nous la nommerons «équation générale d’équilibre». Il s’agit d’une forme — que
nous croyons nouvelle — de I'inégalité de Cramér

probabilite de ruine < e #t |

inégalité dans laquelle R est justement solution d’une équation ou intervient
une intégrale.

Pour un portefeuille absolument quelconque, I’équation générale d’équilibre
s’écrit:

Ine —Ineg
(P+A)-U+!I/c( ) =0, (15)

equation dans laquelle les différents symboles signifient:

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 2, 1978
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P: la prime pure,

A: la marge de sécurité comprise dans la prime, A = A P,

U: la provision de fluctuation,

¢: la borne supérieure acceptable pour la probabilité de ruine,

Y. la fonction caractéristique réelle du risque collectif.

Sous cette forme, ’équation d’équilibre conserve un degré de généralité encore
peu propice a des applications numériques. En faisant I’hypothése — réaliste
comme nous le verrons — d’un risque collectif de type gamma, '’équation géné-
rale d’équilibre prend la forme élémentaire suivante:

224U+ V-lne=0 (23)
ou A" et V représentent

A’ une partie de la marge de sécurité comprise dans la prime
A =1-P,

le taux réduit A’ étant lié au taux effectif 4 par une relation simple,
V: la variance du risque collectif.

Cette derni€re équation est appelée «équation d’équilibre d’un risque de type
gammay.

La forme extrémement simple de cette équation permet d’extraire, sans diffi-
culté aucune, I'une des grandeurs (A, U, V, ¢) connaissant les trois autres.
Cette équation est exacte (dans le cas d’un risque collectif de type gamma) en
ce sens que son établissement ne fait appel a aucune approximation, a aucun
développement en série ou autre «déformation» mathématique.

Les pages qui suivent sont consacrées a I’établissement de I’équation générale
d’équilibre (15) d’'un portefeuille quelconque et a la spécialisation (23) de cette
formule générale au cas d’un risque de type gamma. La démonstration de la
premiere formule (§1 et §2 ci-aprés) demande un développement mathémati-
que qui n’est pas élémentaire; le praticien peut s’en épargner la lecture. Des
le §3, il retrouvera des raisonnements s’appuyant a nouveau exclusivement sur
I’analyse et I’algébre élémentaires.

Exprimer analytiquement la probabilité de la ruine d’un portefeuille d’assu-
rance directement au moyen des probabilités du nombre des sinistres et des
divers montants possibles des sinistres est une opération des plus compliquées.
Un outil adéquat pour surmonter les difficultés est la «fonction caractéristique
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réelle». Nous exposerons au § 1, sans les démontrer, les quelques propriétés de
ces fonctions dont nous aurons besoin par la suite. Le §2 établira les relations
liant les diverses fonctions caractéristiques correspondant aux variables aléa-
toires déterminant le risque collectif. De ces diverses relations, nous dégage-
rons I'équation générale d’équilibre. Au §3, nous présenterons quelques cas
particuliers de cette équation générale, notamment le cas d'un risque gaussien
et celui d’un risque de type gamma; suivront, au §4, quelques exemples numeéri-
ques. Enfin, le §5 présentera, a titre de premiére application, encore élémen-
taire, le critére de I'indice de solvabilité. Des applications plus élaborées feront
'objet de communications ultérieures.

§ 1 Fonctions caractéristiques réelles (fcr)

1.1 Définitions

Considérons une variable aléatoire X définie sur un ensemble D de nombres
réels. Soit F(x) sa fonction de répartition. L’expression

@(s) = [ es*-dF (1)
D

dans laquelle s est un paramétre réel — a choisir de fagon a assurer I’existence
de I'intégrale — est dite «premiere fonction caractéristique réelle» de la variable
X. La fonction ¢(s) étant positive, son logarithme naturel est réel. La fonction

W (s) = In o(s) 2)

est donc réelle également. Elle est connue sous le nom de «deuxiéme fonction
caractéristique réelle» de X. Tous les raisonnements développés dans le présent
article s’appuyant sur la seule fonction ¥ (s), nous appellerons y(s) «fonction
caractéristique réelle» de X, appellation que nous abreégerons par les lettres
Tt

Pour des variables discrétes, I'intégrale est remplacée par une sommation.
Exemple: si X est une variable de Poisson

t‘x
_— - -t
prob (X =x) = x!e ,
on a (p(s) — et(e“‘—l)

et W(s) = tes—1) (cf. annexe II).
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1.2 Propriétés des fonctions caractéristiques réelles

Les propriétés des fcr dont nous aurons besoin pour mener nos raisonne-
ments sont les suivantes (sans démonstration):

1° y/(0) = 0.
Cette proprieté dit également ¢(0) = 1, c.-a-d. que la somme des probabili-
tés est égale a 'unite. |

2° Si X est une variable positive, la fcr yr(s) est croissante,
si X est une variable négative, la fcr y/(s) est décroissante,

si X admet des valeurs positives et négatives, le graphe de /(s) est en forme
de U.

3° Si X = a = constante, Y/ (s) = a-s (X est dite «variable de Dirac»).

4°Si Y = aX (aréel), Yy(s) = Yxlas).
Cette propriété exprime la transformation de y dans un changement
d’échelle de X.

5° Lestrois premiéres dérivées de ys(s) par rapport a s, prises a ’origine, donnent
les valeurs des trois premiers cumulants de X:

Y'(0) = E(X)  y"(0) = Var(X) " (0) = ps(X)*.

6° SiX;et Xosontdeux variablesstatistiquementindépendantes,a X = X+ X»
correspond

Yx(s) = Y x,(5) + Yx(s).

Cette propriété est classique dans la théorie de la convolution de deux
variables aléatoires.

7° Si 'on dispose d’une famille de variables aléatoires X,, de densité de pro-
babilité f(x,w), pour laquelle la famille correspondante des fcr est linéaire,

c.-a-d. pour laquelle
W(s;w) = w-n(s),
alors a une pondération de la famille des variables X,, par une variable de
structure W
fx) = [flx; w)-dF(w)

correspond, dans le domaine des fcr, une «imbrication»:

W(s) = Yalyls)),
Yu(s) étant la fcr de la variable de structure W [1].

* ug est le troisiéme moment par rapport a la moyenne.
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Le lecteur introduit dans la théorie des transformations de Laplace retrouvera
dans les propriétés 1 a 7 certaines relations classiques du calcul opérationnel.

1.3 Exemple
A titre d’exemple, regardons comment ces proprietés se concrétisent dans le
cas d’une variable de Poisson (qui est une variable discréte). On a vu, de (3), que
Ww(s) =t-(es—1) (t réel positif).
¥ (s) existe quel que soit s. Les propriétés 1 et 2 sont évidentes. La propriété

4 I'est aussi: de sz

prob(X = x) = —e,
x!

la probabilité attachée & Y = aX est la méme que celle attachée a X. Alors
@y(s) = ) e prob(Y = y) = } es9%. prob(X = x) = @,(sa).

En passant aux logarithmes:
Yy(s) = Yx(sa).
La propriété 5 donne
Y(s) =y (s) =y (s) =t-e
c.-a-d. E(X) = Var(X) = us = t.
La propriété 6 est satisfaite: on sait que la somme de deux variables de Poisson

est une variable de Poisson d’espérance mathématique égale a la somme des
espérances mathématiques des deux variables de base:

si E(Xy) =ty E(Xz) = to, C.-a-d. E(X) = t1+1t2,
ona yx(s) = (ti+t2)-(e5—1) =t1-(e5—1)+t2-(e5—1) = l/!Xl(S)+ 'ang(S)-

La propriété 7 est connue des actuaires notamment par la théorie d’Ammeter
sur la fluctuation des probabilités de base: si 'on pondére une loi de Poisson
de moyenne ¢ par une loi de structure de type gamma normé, on obtient une
loi binomiale négative. Les fcr des variables entrant dans la pondération sont
(cf. annexe II):

loi de Poisson Ya(s) =t-(es—1)
formant la famille Ys;w) = w-t-(es—1)

PN
loi gamma normée Yaw(s) = In (E)
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loi binomiale négative
t —h
Y(s) = ln[l—;-(es—l)] .

La propriété 7 est bien vérifiée dans ce cas particulier

' h k t o
l//w(llll(é)) =In (htl’(eTﬁ) =In [I—H-(es—l)} g (4)

§ 2 Equation générale d’équilibre
2.1 Type de risque considére

Le risque dont nous allons nous entretenir est celui que 'on considére ordi-
nairement dans la théorie du risque collectif: il est constitu¢, pendant une
période donnée (une année), par 'apparition d’'un nombre aléatoire de sinistres,
de montants aléatoires. Comme dans la théorie du risque collectif classique,
nous supposerons le risque stationnaire, les montants des sinistres statistique-
ment indépendants les uns des autres et indépendants également du nombre
des sinistres.

Le risque considéré peut comprendre soit la totalité d'un portefeuille, soit
seulement la partie conservée par la compagnie pour compte propre.

2.2 Eléments du risque

Les variables décrivant le risque sont:
— le montant d’un sinistre X, de fcr Y1 (s)
— le hasard poissonien H, de fcr Yr(s) =t-(es—1)
— la variable de structure W, telle que I'a
définie Ammeter dans sa théorie des
fluctuations des probabilités de base,
de fer Yw(s).
Le risque collectif résulte du mélange de ces trois variables. Le nombre N des
sinistres étant le résultat de la pondération de la loi de Poisson par la loi

de structure, on a Un(s) = yw(yu(s))

de par la propriété (7) des fer.
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Le montant annuel total des sinistres X, étant le résultat de la pondération
de X,, convolué avec lui-méme, par la variable N, nous obtenons, pour la fcr
du risque collectif X,

Ye(s) = ‘I’N('ﬁl(s))
donc Ve(s) = ww [ (b1 (s)) ). (5)
La fcr du risque collectif est donc une fonction de fonction a trois niveaux,

chaque niveau étant celui de I'une des variables de base X, H et W.
Le montant annuel total X, a une espérance mathématique (propriété 5) égale a

E(X) = Yi0) = Yiw [¥r(41(9) ] Wi [ (9)]-¥i (5)
ens = 0 c.-a-d. E(X.) = E(W)-E(H) E(XH), (6)
et une variance égale a Y. (0):
Var(X,.) = Var(W) E2(H) E%(X;) +

E(W)-Var(H)- E3(X,)+
E(W)-E(H)-Var(X,). (7)

Ces formules sont bien connues de I’actuaire [1].
Le jeu de somme nulle (au sens de la théorie des jeux) qui consiste pour I'un
des joueurs (la compagnie d’assurance) a poser I’enjeu P et pour 'autre joueur
(les assurés) a créer des dépenses totales X, peut étre représenté par la variable
«bénéfice»

Xgp=P-X..

Les fcr des variables P et — X, sont, selon propriétés (3) et (4):

P = constante Yp(s) = P-s
Y=-X, (a=—1) Yy(s) = Ye(—5)

Enfin, pour la somme X g, nous obtenons (propriété 6):
Wa(s) = Yp(s) + Ye(—s) = P-s+ Y —s). (8)
Le jeu étant de somme nulle, on doit avoir E(X ) = 0: de E(Xg) = ¥5(0), ona

Ya(S)ls—0= P+ Ye(—$)|s—=0o=P—yi(0) = P—P =0 cqfd
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2.3 Marges de sécurité et bénéfice

Pour contenir le risque X, I'assureur inclut une marge de sécurité A dans ses
primes et, de plus, a recours a une provision de fluctuation U. Nous opterons
pour une marge de sécurité A venant s’ajouter a la prime pure exacte P et former
la prime pure avec marge de sécurité P’ = P + A. La prime P’ étant constante,

sa fcr est Wp(s) = P's = (P + A)-s.

Le jeu de somme non-nulle (en faveur de I'assureur) basé sur la prime avec
marge de sécurité P’ est caractérisé par la variable «bénéfice»

Xp=P—-X,
de fer Va(s) = (P+ A)s+ Y —s). 9)

Le bénéfice annuel moyen de I'assureur est (propriété 5):
E(Xg) =yp(0)=P+A—y:(0)=P+A—-P = A, (10)

ce qui est 'évidence méme.
La variance Var(X p) est égale a celle du risque collectif Var(X.): en effet, par
dérivation de I'expression pour V¥ g(s) ci-dessus, on obtient

B(S) = Ye(—3)

c.-a-d. pour s = 0
Var(X g) = Var(X,). (11)

Vu que X 5 est une variable qui peut accepter des valeurs soit positives, soit
négatives, le graphe de ¥/5(s) est une courbe en U (propriété 2). La dérivée étant
positive a l'origine, car '

¥5(0) = E(Xp) =4 >0,

I’équation Y g(s) = 0 possede, outre la racine évidente s = 0, une et une seule
seconde racine s”, qui est négative.

2.4 Probabilité de ruine

La théorie générale du risque collectif nous enseigne que, malgré la prise en
considération d'une marge de sécurité A et d’une provision de fluctuation U,
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le risque peut «&tre en situation de ruine». La probabilité de cet événement
hautement désagréable est bornée par la valeur

£ =exVU (12)

"

le coefficient — k étant la racine négative s” de ’équation Ypg(s) = 0: —k = 5",

2.5 Equation générale d’équilibre

De tous les paramétres introduits jusqu’ici, seul le paramétre s” n’a pas de
signification actuarielle directe. Il est relié aux autres parameétres ¢ et U par la
relation (12)
g = 5"+
c.-a-d. Ine
s = — (13)
U

Nous savons que, pour cette valeur de s”, la fcr du bénéfice:

Vals) = (P+A)s+yw[Valvi(—9)]],

selon (9), s’annule. En portant la valeur de s, selon (13), dans I’expression pour
¥ 5(s), nous obtenons une relation dans laquelle s” disparait:

1
(P+A)-%8+l/fw xby(t/u( Une)) =, (14)

Cette équation est 'équation générale d’équilibre recherchée. Elle lie les para-
metres du risque, concrétisés par les trois fonctions i imbriquées, aux 4
parametres A, P, U et ¢ relevant de la gestion de la compagnie.

Il s’agit d’une relation exacte, aucune estimation n’ayant été faite au cours de
son ¢élaboration (& représente la borne de la probabilité de ruine, non la pro-
babilité elle-méme). L’équation générale d’équilibre permet essentiellement de
déterminer I'un des nombreux paramétres intervenant dans le risque si 'on
connait tous les autres. La valeur du paramétre que l'on extrait ainsi de
I’équation est «exacte».

Le résultat de I'imbrication des trois { représentant la fcr du risque collectif
X, 'équation générale d’équilibre peut s’écrire également

P Alng " —Ine ~0 5
(+)?+0(U)—- (13)
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Cette forme simplifiée sera préférée a I'autre si 'on connait non les fcr des trois
variables de base, mais la fcr du risque collectif lui-méme.

2.6 Structure de l'équation d’équilibre

L’¢quation générale d’équilibre (14) relie 7 grandeurs et I’équation (15) 5

grandeurs: P, A, ¢, U et les .

Quatre remarques liminaires s’imposent:

a) La prime P est liée a la fonction y/.(s) puisque y;(0) = P.

b) La marge A et la provision U sont des paramétres exogenes au risque; ils
peuvent étre «choisis» indépendamment du risque: ce sont des paramétres
de caractére commercial et économique

c) La borne ¢ et la provision U n’apparaissent dans I’équation que par leur

mélange
Ine

_6".
Il est donc possible de modifier la situation d’un portefeuille sans altérer
I’équilibre en faisant varier proportionnellement Ine et U. La liaison entre

U et ¢ est donc élémentaire. Cette propriété est bien slir une conséquence

de I’équation de Cramer
e =e"U,

d) Lesdéveloppements mathématiques réalisés pour obtenir cette équation fon-
damentale, ainsi que I’équation elle-méme, ne font appel qu’aux fcr a 'exclu-
sion de toute fonction de répartition.

2.7 Conditions de validité

Il est utile de rappeler que I’équation générale d’équilibre est valable quel
que soit le risque considéré, notamment que le portefeuille soit réassuré ou non,
également quelles que soient les trois variables de base X, H et W intervenant
dans le processus.
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§ 3 Modéles particuliers

Il est intéressant de relever que I'équation générale d’équilibre peut, dans
certains cas particuliers, prendre une forme spécialement simple.

3.1 Risque collectif gaussien

Remarquons tout d’abord que ’hypothése d’un risque collectif gaussien ne tient
pas trop bien compte des réalités. Un risque gaussien varie de moins a plus
I'infini, ce qui n’est assurément pas le cas d’'un risque collectif réel. De plus
on sait que, selon ’hypothése gaussienne, pour une variance donnée les proba-
bilités des trés mauvaises années sont trop faibles. Le seul avantage du risque
gaussien est, pour le praticien, d’arriver a ses fins sans grande difficulté algeé-
brique ou numérique!

On sait que pour une variable gaussienne d’espérance mathématique E et de
variance V

1
Es + - Vs?
2

p(s)=e

1
c.-a-d. Y(s) = Es + 5 Vs2  (cf. annexe II). (16)

Dans ce cas

Ug(s)=(P+ A)s+ (—Es+%V52) = s-(A +£Vs)

2
puisque E = P. L’équation Wwp(s) =0
a deux solutions " =0
—24
et s = —
vV

L’équation générale d’équilibre

Ine
w( - —) =0

U
o 1 Ine
s’écrit donc A+=-V—=0
2 U
c.-a-d, 2-A-U + V-lne = 0. (17)

On ne peut trouver relation plus simple: les 4 parameétres A, U, V et ¢ peuvent
étre extraits sans difficulté de I'équation. Notamment

g=e V . (18)
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3.2 Risque collectif de type gamma

Lerisque collectif de type gamma a ses adeptes [2]. En effet, une variable gamma
ne prend que des valeurs positives et, pour une variance donnée, les probabilités
des mauvaises années sont plus grandes que sous I'hypothése d’un risque
gaussien. La fcr d’une variable gamma d’espérance mathématique E et de

variance Vest _ s

—_ 1 V. ¥
P(s) = ( E 3)

2 vV
“In (1 ———-s) (cf. annexe II). (19)
|4 E

c.-a-d.

Y(s) =
Dans ce cas, vu que E = P:
P e At 3 e
VB(s) = (P + A) S—T/— n( +F S).
L’équation yg(s) = 0 a deux solutions
s =0ets”

difficile a extraire algébriquement.
L’équation générale d’équilibre est donc

Ine P2 V Ine

( ) U Vv P W (29
Seul A peut étre extrait aisément de cette équation. Pour tirer les autres para-
meétres —et normalement ce sont justement ces autres parametres qui intéressent

l'actuaire — il y a lieu de transformer légerement I’équation: en multipliant

I'équati
¢quation par v

p?
on obtient (vu que A = A P):

{ 4 V-Ine | 1_}_V-lm: _0
A N TR G 7 A

Dans cette équation, les parametres qui nous intéressent (V,P,U,¢) appa-
raissent toujours groupés de la méme maniere. Posons donc, en introduisant
un facteur 2 pour simplifier la suite des développements, et en remarquant que
seul [ne est négatif:

— V- Ine

2-P-U

= } ()L’ > 0) (21)
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L’équation d’équilibre prend alors la forme
2(1+4)- A +In(1-24) = 0. (22)

Il s’agit d’extraire A’ connaissant 4!

En annexe, nous montrons que I’équation (22) accepte une et une seule valeur A’
pour un 4 donné, cette valeur A’ étant comprise entre 0 et 0,5 et toujours infé-
rieure a A.

Ainsi, pour un A donné, il existe un seul A’ satisfaisant I’équation (22). La valeur
numérique de 4’ peut étre extraite de la table donnée sous point 4 de 'annexe 1.
Connaissant ', la relation (21) s’écrit

2-X-P-U+V-lne=0.
Si maintenant on désigne par A" la marge de sécurité calculée au taux réduit A’:
A = A" ~P,
I'¢équation d’équilibre prend la forme définitive
2-AU+V-lne=0. (23)

Il y a lieu de remarquer que cette équation a exactement la méme structure que
celle qui découle d’un risque gaussien (17), la marge de sécurité devant étre
calculée, pour un risque de type gamma, au taux réduit A, alors qu’elle doit
étre prise au taux effectif A pour un risque de type gaussien.

Ainsi, en présence d’un portefeuille donné (et pour lequel on peut supposer que
le risque collectif est de type gamma), I'équation d’équilibre (23), par son extréme
simplicité, permettra d’aborder dans de bonnes conditions la résolution de
problémes pratiques.

3.3 Solutions approchées
Lorsque le risque collectif X, est connu essentiellement par ses composantes
X1, Het W, seule I’équation d’équilibre (14) sous sa forme générale est susceptible

de donner p.ex. ¢ & partir des autres parametres.
Toutefois, il est imaginable que la valeur de s”, c.-a-d. le quotient

soit, en valeur absolue, faible par rapport aux autres parametres du modele.
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Dans ce cas, on peut tenter de développer la fonction .(s) en puissances de s
1 1
Ye(s) = E- s+ V- 24—z s8+... .
2 6
L’équation d’équilibre (15) devient
1 1
(P+A)'S—E'S+§‘ V-sz—g-,ug-s:’-i- sy == s

Enneretenant que les termes jusqu’en s2 (méthode du développement quadrati-
que), on obtient 1
(P+A)s—E- s+§- V-s2 =0
c.-a-d.
2-A+-V-s" =0,

et en introduisant

, Ine
-
U

on obtient
24U+ V-lne =0.

On retrouve la situation du risque gaussien! Cela n’est guére étonnant, puisque
le Y(s) d’une variable de Gauss est un polynome du second degré: le développe-
ment s’arréte de lui-méme au terme de deuxieme degré. Si 'on retient un terme

de plus dans le développement de y.(s) (méthode du développement cubique),
on obtient:
6-A4+3-V-s+puz-s2=0

dont les solutions sont aisément calculables. Ordinairement le coefficient pg est
difficile a estimer (ug3 est le 3¢ moment centré par rapport a la moyenne).
Le cadre des développements en série limités offre d’autres possibilités: le
coefficient —x = s” (cf. point 2.4) de I’équation de Cramer est défini par

Ya(s") =0
c.-a-d. par Pp(s”) = eVBG") = 1,

Le développement de ¢ g(s) en série de puissances, arrété au terme en s2, égalé
a 1 donne [3]

2:44+(V+4+42)-5" =0

c.-a-d. 2.A4-U+(V+A42)-Ine = 0.
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La méthode des développements quadratiques et cubiques ne donne qu’une
valeur approximative pour le paramétre extrait de I’équation d’équilibre, en
particulier pour la borne supérieure de la probabilité de ruine. Cette méthode
est néanmoins tres utilisée.

3.4 Modéles complets

On peut se demander comment se présenteraient développements et calculs si
I'on faisait des hypothéses non sur X, c.-a-d. sur (s), mais sur les trois com-
posantes de X, a savoir Xy, H et W. Voici un exemple, simple, mais qui pour-
rait fort bien correspondre a un portefeuille réel.

Supposons les montants des sinistres X; distribués selon une loi gamma. En
normant E(X;) a 'unité, nous avons

Y1(s) = :I;l—-ln (1-V-3), (24)

expression dans laquelle V est la variance de X;. En pratique la variance est
beaucoup plus grande que I'espérance,c.-a-d. V est beaucoup plus grand que 1.
Prenons maintenant pour le nombre N des sinistres une loi binomiale néga-
tive, loi qui s’obtient — selon H.Ammeter — par pondération de la loi de
Poisson de moyenne ¢ par une loi de structure gamma de parameétre h:

Yn(s) = —h-In (1 —%(es— I)) (cf. annexe II).

Pour le risque collectif X, nous obtenons, en utilisant (24):

Ve(s) = W (Ya(s)) = —hln [1 —-:;((1 V)i — 1)]

et pour le bénéfice
Yg(s) = (P+ A)s+ -3

= (P+ A)'s—h-ln[l—é((l + V'S)M';—l)]-
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[
(5
Ine t Ine ‘1”
(P+ Ay =hln 1—;1((1“/-?) —1) ~0. (25)

Il n’y a pas beaucoup d’espoir de pouvoir extraire facilement par 'algébre la
probabilité ¢ de cette équation, connaissant tous les autres parametres. Dans
un cas concret, le moyen le plus simple est de résoudre I’équation par approxi-
mations successives. L’inconvénient d’un calcul fastidieux devrait étre com-
pensé par la perspective de trouver, pour la borne ¢, une valeur exacte. Nous
aborderons un tel calcul au paragraphe suivant.

L’équation générale d’équilibre

s’écrit alors

§ 4 Exemples numériques

Les considérations qui précédent nous ont donné divers modéles. Il peut étre
intéressant de voir ce qu’ils deviennent dans un cas numeérique particulier.
Considérons un portefeuille d’assurance caractérisé par les éléments suivants:
Montant des sinistres individuels X;: une variable gamma

de moyenne E(X;) = 1 (une unité opérationnelle)

de variance V5 = 50.
Hasard pur de Poisson H:

nombre moyen des sinistres E(H) = 1000
Variable de structure W: une variable gamma

de moyenne E(W) = 1

de variance V, = % == (.0
Sous ces hypotheses le montant total annuel des sinistres X, suit une loi de
type inconnu, mais pour laquelle on a [formules (6) et (7)]:

E(X,) = E(W)-E(H)-E(X;) = 1000
Var(X,) = 0,01-106+ 103+ 103-50 = 61000 = V.
L’encaisse annuelle des primes pures exactes étant P = E(X.) = 1000,

choisissons une marge de sécurité de 20% de P A =200

et une provision de fluctuation de 30% de P U = 300.
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Sous les hypothéses faites, I'équation générale livre les bornes supérieures ¢
des probabilités de ruine suivantes:

a) hypothese du risque collectif gaussien (cf. chiffre 3.1): '’équation d’équilibre

224U+ V-lne=0 (17)
donne une borne ¢ de

e = e19672 = (01398 (14%);

b) hypothése du risque collectif de type gamma (chiffre 3.2):

ici A= A = 0,20
c.-a-d. selon table en annexe I: P
A= 0,1568.
L’équation d’équilibre
2 AP-U+Vine=90 (23)

donne une borne ¢ de
g = ¢-1,5423 = () 2139 (21%);

c) par approximation quadratique de ¢ g(s) (chiffre 3.3): I’équation d’équilibre
224U+ (V+ A2):lne =0
donne une borne ¢ de

g =e 11881 = 03048  (30%):

d) par le modéle exact complet (chiffre 3.4): I'équation d’équilibre

Ing 1000 Ing \-0.02
100 | 1——— (14502 ) o1l =
1200350 "[ 100 {( i 300) H
c.-a-d.

Ine 1 -0,02
lﬁs(ﬁ)=4'ln£—100-ln[1—10{(1+81n8) —1}:,=0

donne une borne ¢ de (valeur exacte):

g = g~1Lb718 = 2077 (21%).
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Il est intéressant de remarquer que, dans cet exemple particulier, 'hypothese
d’un risque collectif de type gamma livre une bonne approximation de la
borne exacte ¢: 21%. L’hypothese de 'approximation quadratique conduit a
une borne ¢ trop forte: 30%. Il fallait enfin s’attendre a ce que ’hypothése
d’un risque collectif gaussien donnat une perspective trop optimiste du risque
de ruine: 14% seulement.

Rappelons ici que la valeur de ¢ est celle de la borne supérieure de la pro-
babilité de ruine. La probabilité elle-méme se situe au-dessous de e.

§ 5 L’indice de solvabilité

L’équation d’équilibre d’un risque de type gamma suggére une méthode prag-
matique pour mesurer le degré de solvabilité. L’hypothése d’un risque collectif
de type gamma a permis d’établir une équation d’équilibre de structure spéciale-
ment simple:

24 U+V-Ine =0. (23)

De plus, les exemples numériques du §4 ont montré que, dans un cas particulier
imaginé au hasard, mais pour lequel il a été possible de calculer exactement
la borne supérieure de la probabilité de ruine, I’hypotheése du risque de type
gamma menait pratiquement a la méme probabilité de ruine. Une hirondelle
ne fait bien slir pas le printemps: les risques collectifs des portefeuilles d’assu-
rance seraient-ils d’'une fagon générale assimilables a des risques de type
gamma? Si cette supposition devait se confirmer, peut-étre partiellement seule-
ment, il serait possible, grace a I’équation d’équilibre des risques de type
gamma, de formuler un critére de solvabilité fondé sur la probabilité de ruine
sans que cette probabilité intervienne formellement.

En effet, divisons I’équation (23) par P2. Nous obtenons

2:Aut+o2-lne=0,

équation dans laquelle les minuscules représentent des taux par rapport a la
prime pure: A U v
P p 7 TP

o est I'écart-type relatif, bien connu en théorie de la crédibilité.
Isolons ¢ (lne < 0): 2w

= |Ine|. (26)
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Par cette équation, I'exigence imposée a ¢ pour s’assurer de la solvabilité d’un
portefeuille peut étre transposée en une exigence imposée a ’expression du
membre de gauche. Vu que pour des 4 inférieurs a 30%, on a approximative-

ment*, a 1% d’erreur,
L A
141444
L’équation (26) devient
2-Au
—
(1+ 1,4 1) o2

Appelons «indice de solvabilité» 'expression

_ 2:Au
TR g

Indice Solvabilité Valeur
o correspondante
de ¢
7 || _ 0,001
acquise

6 - 0,002
5 0,007
4 T
3 faible 0,050
2 _EBA . o ____ 0,135

1 trés faible 0,368
0 By __________ 1,000

*Cf. annexe I, chiffre 4.



240

Selon la valeur que prendra ledit indice « (c.-a-d. en fait selon la valeur que
prendra Ine), il sera possible de juger si la solvabilité est acquise ou non.
Le tableau de la page précédente présente un «barometre» du degré de sol-
vabilité d’'un portefeuille. L’évolution d’un portefeuille sera favorable si en cours
de «navigation» le barometre se maintient au-dessus de I’échelon 5 (e < 0,7%).
Considérons un exemple numérique afin de concrétiser I'emploi de I'indice de
solvabilité «. Imaginons un portefeuille d’assurance présentant un écart-type
relatif de 10%, c.-a-d. un portefeuille pour lequel les résultats annuels fluctuent
avec un écart-type de 10% par rapport & la moyenne (un actuaire peut con-
naitre en ordre de grandeur, par I'observation, la variabilité de ses résultats
annuels). Supposons que la prime comporte une marge de sécurité de 20%
et que la compagnie dispose d’'une provision de fluctuation de 17% des
primes. L’indice de solvabilité vaut

2-0,20-0,17
p= ot 531,
1,28-0,01

Selon notre baromeétre, le portefeuille se situe dans la zone de la «solvabilité
acquise». En effet, en langage de ruine, nous avons

e = 531 = 0,005.

Si la compagnie ne disposait que d’une provision de fluctuation de 10% des
primes, on aurait

= ——— = 3125
T8 001
et la solvabilité ne serait que «faible» (¢ = 0,044).

Vu la simplicité du critére, il est pensable que l'indice de solvabilité a soit
mieux regu de I’actuaire praticien que la notion de probabilité de ruine:

£ =¢ekU,

Ces deux criteres sont équivalents.

La mise au point du critere de I'indice de solvabilité représente une premiere
application, encore €lémentaire, de I’équation générale d’équilibre. D’autres
développements, plus €laborés, suivront dans des articles ultérieurs.
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Annexe I
sur la relation implicite intervenant dans I’équation d’équilibre
d’un risque de type gamma (cf. 3.2 du texte principal)

Taux effectif A de la marge de sécurité comprise dans les primes et taux réduit
/' sont liés par la relation:

20+ )X +In(1-24) =0 (4,4 positifs) (22)

Propriétés de cette relation implicite

1. Existence et unicité de A’ pour un A donné

L’eéquation peut s’écrire
In(1-21)= =2(1+4)-4".

Le membre de gauche représente — en fonction du paramétre A — une courbe
décroissante, convexe, de concavité orientée vers le bas et ayant une asymptote
verticale en ' = 0,5 (cf. figure).
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Le membre de droite représente une droite, de pente négative. Courbe et droite

passent par 'origine; en ce point, les pentes sont:

pour la courbe: —2

pour la droite: —2-(1+4)

ler cas: A strictement positif.

La droite coupe la courbe a I’origine puisque en ce point sa pente est plus forte

que celle de la courbe. Vu la concavité de la courbe et la présence de 'asymptote

verticale, la droite coupe la courbe en un second point 4. Ce second point

d’intersection est unique.

2¢ cas: A = 0. La droite est tangente a la courbe. L’équation n’admet que la

solution ' = 0.

Résultat: Pour un A positif donné, I’équation a exactement une solution A’
positive. Pour 4 = 0, ’équation n’admet que la solution ' = 0.

2. Valeurs possibles pour A’

Pour 4 = 0,onavuque A' = 0.

Lorsque 4 augmente, la pente de la droite s’accentue. L’augmentation de la
valeur absolue de la pente de la droite entraine (pour les raisons géométriques
invoquées ci-dessus) une augmentation de 4. Pour un A de plus en plus grand,
A’ tend vers la valeur 0,5.

Résultat: A', en fonction de A, est une fonction monotone croissant de 0 a 0,5.

3. Valeurs relatives A.:1

En tirant A de I’équation (22) en fonction de A':

In(1 =24
L e
—2X

et en développant le membre de droite en série de Maclaurin, on trouve
1 1
)= A’+§(2A’)2+ Rt 2 et S
n

ce qui montre que

A> A
c.-a-d.
A< A

Résultat : le taux A’ est inférieur au taux effectif A.



243

4. Valeurs numériques

\ , P p A

- ;_ (1 +03.)(1+ 1) 1+1.47
0.00 0.0000 1.0000 0.0000 0.0000
0.01 0.0099 0.9870 0.0099 0.0099
0.02 0.0195 0.9740 0.0195 0.0195
0.03 0.0288 0.9613 0.0289 0.0288
0.04 0.0380 0.9490 0.0380 0.0379
0.05 0.0468 0.9370 0.0469 0.0467
0.06 0.0555 0.9252 0.0556 0.0554
0.07 0.0640 0.9137 0.0641 0.0638
0.08 0.0722 0.9025 0.0723 0.0719
0.09 0.0802 0.8914 0.0804 0.0799
0.10 0.0881 0.8807 0.0883 0.0877
0.11 0.0957 0.8701 0.0959 0.0953
0.12 0.1032 0.8598 0.1034 0.1027
0.13 0.1105 0.8497 0.1107 0.1100
0.14 0.1176 0.8397 0.1179 0.1171
0.15 0.1245 0.8300 0.1248 0.1240
0.16 0.1313 0.8205 0.1316 0.1307
0.17 0.1379 0.8111 0.1382 0.1373
0.18 0.1444 0.8020 0.1447 0.1438
0.19 0.1507 0.7930 0.1511 0.1501
0.20 0.1568 0.7842 0.1572 0.1563
021 0.1629 07756 0.1633 0.1623
0.22 0.1688 0.7672 0.1692 0.1682
0.23 0.1745 0.7589 0.1749 0.1740
0.24 0.1802 0.7507 0.1805 0.1796
0.25 0.1857 0.7427 0.1860 0.1852
0.26 0.1911 0.7349 0.1914 0.1906
0.27 0.1963 0.7272 0.1967 0.1959
0.28 0.2015 0.7196 0.2018 0.2011
0.29 0.2065 0.7122 0.2068 0.2063
0.30 02115 0.7050 02117 0.2113

Pour des A inférieurs a 30% (4 < 0,3), A’ vaut approximativement:

ou

’

A

= (1+034)(1+7)

).f

o « I
avec une erreur inférieure a 3%.

A

=1+ 144

(colonne 4)

(colonne 5)
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Annexe 11
Définitions et formules d’'usage courant

Variable de Poisson

prob(X = x) = —e?
x!
EfX)=1 Var(X) =t

fer: Y (s) = t(es—1).

Variable binomiale négative (Polya)

xX+a—1\ [ a \* [ t \*
ot = (74 (2] ()

EX)=t Var(X)=t(1+—;>

fer:y(s) = —a-ln [1 -g(es— 1)}.

Variable de Gauss

oy = L AT

Variable gamma

U

I (v)
EXX) =1 Var(X) =

fer: Y(s) = —v- ln(l—l s)

Variante: si E(X)=E#1 et Var(X)=V
B2, [V
fer: i (s) = ( )

xXv- | g-ux

flx) =
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Zusammenfassung

Imvorliegenden Artikel wird eine mathematische Gleichung, «allgemeine Gleichgewichtsgleichung»
genannt, aufgestellt, welche die Risikomerkmale eines Versicherungsbestandes mit den vor dem
«Ruin» des Portefeuilles schiitzenden finanziellen Mitteln verbindet. Die Gleichung wird dadurch
gekennzeichnet, dass sie ganz allgemein gilt (sie ist an jedes Portefeuille anwendbar) und dass sie
genau ist (deren Aufstellung erfordert keine Néaherung). Wenn fiir den Totalbetrag der Versiche-
rungsleistungen pro Jahr eine stochastische Variable vom Gamma-Typus angenommen wird,
nimmt die allgemeine Gleichgewichtsgleichung eine einfache Form an, welche es gestattet, einen
Risiko- oder Sicherheitsparameter des Portefeuilles in Abhingigkeit der {ibrigen miihelos auszu-
driicken. Anwendungen dieser allgemeinen Gleichung werden spiter angegeben.

Résume

Le présent article propose une équation mathématique, dite «équation générale d’¢quilibre», liant
les risques compris dans un portefeuille d’assurance aux sécurités protégeant le portefeuille du risque
de ruine. Cette équation se caractérise par le fait qu’elle est générale (elle s’applique a tout porte-
feuillej et qu'elle est exacte (elie ne fait pas intervenir d’approximations). Si 'on suppose que le total
annuel des prestations versées est une variable de type gamma, I'équation générale d’équilibre
prend une forme simple permettant d’exprimer sans difficulté 'un des paramétres du risque ou

des sécurités en fonction des autres. L’auteur indiquera ultérieurement des applications de cette
équation d’équilibre.

Riassunto

L’articolo propone un’ugualianza matematica detta «ugualianza generale d’equilibrio» che mette
in relazione le caratteristiche dei rischi in portafoglio con le riserve a protezione dello stesso.
Questa ugualianza ¢ generale (perche si puo applicarla ad un portafoglio qualunque) ed esatta
(perche non si deve fare nessuna approssimazione). A condizione che il totale dei danni in un
anno sia una variabile del tipo gamma, I'ugualianza generale d’equilibrio prende una forma
semplice. Questo fatto permette di esprimere senza difficolta i parametri dei rischi in funzione dei
parametri delle misure di sicurezza e viceversa. Infine I'autore indica le possibilita di come appli-
care questa ugualianza.

Summary

The present article proposes a mathematical equation, called the “general balance equation”, which
connects the parameters of the risks in the portfolio with the securities preventing the portfolio
from the ruin situation. This equation is distinguished by the fact that it is general (applicable to
every portfolio) and exact (uses no approximation). If it is supposed that the total amount of the
claims per year is a gamma variable, the general balance equation takes a very simple form which
allows one of the risk or security parameters to be expressed as a function of the others. Applica-
tions of the general balance equation will be given in coming articles.
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