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A Computer Algorithm for the Cumul Model

By Gottfried Berger

Abstract

The first two sections of this paper describe a risk theory model which was
introduced recently by Tellenbach. The model involves Laplace-Stieltjes trans-
forms which pose severe computational difficulties.

The remainder of this paper describes a simple algorithm which appears to
work in the special case where the time span considered is reasonably small.
The latter condition is typically met if the model refers to cumulative claims.
A thorough mathematical treatment of the subject is not even attempted.
Rather, the emphasis is on the computational aspect of the problem.

1. A Claims Process

Let t; denote the interclaim time between the j—th and the next following
claim (j =0, 1, 2. ..). Suppose the probability distribution functions P;(t) for
the stochastic variables ¢; are known. We assume t; > 0 and thus P;(¢) = 0 for
t < 0. Our objective is to find the probabilities px(t) for k claims in the time
interval (0, 1).

Clearly, po(t) = 1—Py(t). The rest is not as easy, since we have to perform
convolutions. This can be done, at least in theory, by means of Laplace-
Stieltjes transforms. See for instance Seal (1969), Appendix A, or Tellenbach
(1977).

We thus define the following Laplace-Stieltjes transforms:
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We now introduce two simplifications. First, we require that all interclaim
times ¢; (except possibly o) are independently and identically distributed, i.e.,
®; = &, for j > 1. The theory of the renewal process then shows that:

L{l—pu(t)} = @
L{pl(t)} = lPl = @0(1 —@1) (2)
L{pk(t)}

Second, we stipulate a stationary claims process:

Il
~
=

= 'Pkfl d>1 = lpl@lk_l fork > 1

() = Y k-pilt) = constt = t/a 3)
1

If (3) holds, u(t), the expected claims number in (0, t), is proportional to ¢,

and inversely proportional to «; = average interclaim time = mean of Py (t).
We obtain from (2) and (3):

L{p(t)} = W1 (14201 430,24+ .. .) = Wi /(1 — @)% = Bpf(1 — Dy) = 1/oys
Thus, we can rewrite equations (2) as follows:
L{l=po(t)} = @0 = (1 =P1)/ors
Lipi(©)} =¥ = Po(1-2) (4)
L{px(t)} =Y, =W, 1@ fork > 1

Equations (4) confirm that the stationary claims process is completely deter-

mined by the function @; = @,(s), the Laplace-Stieltjes transform of P,(¢), the
d.f. of the interclaim time.

2. The Tellenbach Model

Tellenbach (1977) considered the following choice of P (t):
Pi(t) = h-P(t)+(L—h)u(t) (5)

Here, P(t) is an arbitrary d.f. which applies to the claims process with the
probability h (0 < h < 1). Multiple claims may occur with the probability

(1—h), since uiey = {0 <0,
T ltifr > 0.



191

Intuitively, P(t) controls the number of events, while Py(t) determines the
number of claims. The smaller the parameter h is chosen, the more claims
one associates with each claim event.

Let @ = @(s) denote the Laplace-Stieltjes transform of P(t), and let « be the
mean of P(t). If a < oo we obtain from (5):

L{P1(0)} = ®1(s) = (L= h)+h-B(s). 6)

Tellenbach applied this model to actual data on auto insurance, published
by Thyrion (1961). In doing so, he determined ¢ such that p,(t) matches the
empirical mean ;. That 1s,

t = oqp(t) = ohp(t) = ohf. (7)
This leaves the free parameter & which may be chosen so that an appropriate

error measure is minimized.

Tellenbach considered for P(t) the negative exponential as well as the one-
sided Gauss distribution. The results were superior in the latter case which,
however, involves computational difficulties. Tellenbach solved the problem
by Monte-Carlo techniques.

3. An Algorithm

We shall now assume that the distribution function P(t) can be expressed as a
power series of t+ which converges reasonably fast. This assumption will hold
if t is small enough. The data of Thyrion, for instance, require according to
equation (7) for the one-sided Gauss distribution:
t = ahy = /2/n-0214-h = 0.171-h.
Hoping for convergence we thus develop:
P(t)=oaet? =q(1—t22+t48—...)a=|/2/n
Hence,
&(s) = a(l/s—1/s3+3/s5—...),
and from (6):
D1(s) =(1—h)+ha(l/s—1/s3+3/s5—...).
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The first equation of (4) yields:
Dy(s) = ljas—1/s2+1/s4 —3/s6— . ..
1—pol(t) = tjo—t2/2)1 +1t4/41—3t5/61+ . ..

An algorithm to calculate the probabilities py(t) for k =0, 1, 2. .. and for the
special value ¢t obtained from condition (7) is described below. Please note
that the three steps refer to the three equations (4).

Step | — Define:  @4(s) = zo+z1/s+z2/52+ . ..
Calculate: @¢(s) = (1 — @1)/a1s = y1/s+ys/s?+ ...
Calculate: po(t) = 1 —yit —ya2(¢2/2)—. ..

Step 2— Calculate: W1 = ®o(1 —P1) = ((1 —zo) y1)/s+

((1=zo)yo—ziy1)/s2+. ..
Redefine: W) = yi/s+ys/s2+. ..

Calculate: pi(t) = yit+y2-t2/21+ . ..
Set: k=1
Step 3 — Calculate: Wry1 = ux®1 = 2oy2/s+(zoye +z101)/82+ . ..
Redefine: Wir1 = yi/s+ye/s2+ ...
Calculate: pr+1(t) = yait +yot2/z!+ . ..
Set: k = k+ 1, return to Step 3.

In the computer language APL, Step 3 would read:
WeW, T+ xYeZ+ %Y. (8)

Please note the APL statements are evaluated from the right to the left. The

symbols contained in (8) have the following meanings:

Y is a vector which holds the first n coefficients y; of ¥y, to be replaced by the
coefficients y; of Wy+1.

Z 1s a matrix built from the first n coefficients of ®,. For n = 3, Z looks like:

Z0 O 0
Z1 20 0

Zo Z1 Z0



193

T is a vector holding the values t, t2/21,..., t"/n!
Wis a vector holding the values pi(¢). Each time Step 3 is traversed, the
value pr+1(t) is appended to W.

4. Numerical Results

The APL program described above runs fast even on a micro-computer. The
main practical difficulty is that we do not know beforehand how far to extend
the vector Z. The length of n of Z should be determined by the condition that

tn/n! = (ahfiy)"/n!

becomes insignificantly small. However, it is advisable to make additional
control runs with increased values of n. Of course, the required length n of Z
may exceed the computer space; then the method suggested in this paper has to
be abandoned.

For the data considered by Tellenbach, final results were already achieved for
n=>3.

Attached are copies of two sample runs; namely, for h = 0.86 and 0.83. The
former run yields the lowest sum of error-squares; this is the measure used by
Tellenbach. The latter run (with h = 0.83) approximates the actual second
moment ps () = > k2ps(t). The printouts apply the terminology of Tellenbach
which differs from the terminology used in this paper as follows:

Tellenbach This paper Comments

Q(s) Pslt) 1 — Error Function
P1(s) P(t) Gauss

p h

The printouts display:

&= {%nl
P, T= ht ‘
MOM = > kipi(t) forj =0,1and?2
ERR = Y (pk(t)—px)? forj = 1and?2
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The columns show:

N =k
P[N] = px(t)
P—P = pi(t)—px
(P—P)*2 = (px(t)— pr)?

Appendix 1 compares the actual number of claims (namely, p - 9,461) with the
corresponding figures from Tellenbach and the runs for h = 0.86 and h = 0.83,
respectively.

The run h = 0.86 comes reasonably close to the Monte-Carlo results of Tellen-
bach. This may justify the “naive” approach suggested in this paper.

Therun h = 0.83 fits better to the tail than the run h = 0.86, but is less accurate
for k = 0 through 4.

Appendix 1

Number of Policies

Number Actual Tellenbach Computer-Algorithm

of Claims (Monte-Carlo) h = .86 h = .83

0 7,840 7,831 7,819.1 7,872.9

1 1,317 1,311 1,327.6 1,242.1

2 239 255 255.6 271.8

3 42 54 479 58.5

4 14 9 8.8 12.4

5 4 1.3 1.6 2.6

6 4 0 0.3 0.5

7 1 0 0 0.1

9,461 9,461.3 9,460.9 9,460.9
i = 0.214 0.214 0.214 0.214
fa = 0.335 0.316 0.315 0.333

Y (pn—DPn)? = 566 907 8,058

Note: Computer printout figures are multiplied by 9,461. For example: 0.826453 - 9,461 = 7,819.1.



0.83 0.86
®x% Q=1-ERF %%% P1=GAUSS xxx ®%% Q=1-ERF %x% P1=GAUSS xxx
ol BO3GE "7 e~S, TI6TE "7
P,T = 0.83 0.14195 P,T = 0.86 0.14709
MOM = 1 0.21435 0.33249 MOM = 1 0.21435 0.31451
ERR = “2,443BE"B 9.00S8E"S ERR = "3.2897E°8 1.0159E7%
0 .832145 . 003480  ,000012 0 .826453 ~,002212  ,000005
1 .131286  ©.007917  ,000063 1 . 140327  .001124  , 000001
2 .028732  ,003uw71  .000012 2 ,027016  .001755  .000003
3 .006180  .001740 . 000003 3 .005067 .000628  .000000
4 ,001310 ~.000169  .000000 4 .000931 ".00054% . 000000
S .000275  T.000148 . 000000 S .000168 .000254  , 000000
6 .000057 ~.000366  .000000 6 .000030 ".000393  .000000
7 .000012 T,00009%  ,000000 7 .000005 ~.000100  .000000
8 ,000002  .000002 .000000 8 .000001 .000001 ..000000
9 .000000  .000000 .000000 9 .000000 ,000000 000000
10 .000000  .000000 .000000 N PEND P-P (P=P)*2
N PINI p-p (P-P)x2
exB . B79E 14
gl WS03E 1Y P,T = 0.86 0.14709
%,T = 0.83 0,14195 MOM = 1 0.21435 0.31452
MOM = 1 0.21435 0.3325 ERR = "3,3131E715 1.0158E°5
ERR = “1,0693E"14 9,006E "5 0 .826453 ~.002212  ,000005
0 .832145 003480  .000012 1 .140327  .001124  .000001
1 131286 ~.007917  .000063 2 .027016  .001755  .000003
2 .028732 003471 .000012 3 .005067  .000628  .000000
3 .006180  .001740  ,000003 4 ,000931 ".000549  .000000
4 .001310 ".000169  .000000 5 .000168 ~.000254  ,000000
5 .000275 ".000148 ., 000000 6 .000030 ~.000393 . 000000
6 000057 ~.000366  .000000 7 .000005 ~.000100 .000000
7 .000012 ~.00009%  .000000 8 .000001 .000001  .000000
8 ,000002  ,000002 .000000 9 ,000000  .000000 .000000
9 ,000000 .000000 .000000 10 .000000 .000000 .000000
10 .000000  .000000  .000000 11 .000000  .000000 .000000
11 .000000  .000000 .000000 12 ,000000  .000000 .000000
12 ,000000 .000000 .000000 13 .000000 .000000 .000000
13 .000000 .000000 ,000000 14 .000000 .000000 .00000O
14 ,000000 .000000 .000000 15 ,000000  .000000 .000000
15 ,000000  .000000 .000000 16  .000000  .000000 .000000
16 .000000  .000000  .000000 17 .000000  .000000 .000000
17 .000000  .000000 .000000 18 ,000000  .000000 .000000
18 .000000 .000000  .000000 N PLNI p-p (P=P)%2
19 .000000  ,000000 .000000
N PLNI PP (P=P)®2
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Zusammenfassung

In der Arbeit von Tellenbach (Mitteilungen 77/1) geht es darum, aus der Verteilung der Zwi-
schenschadenzeiten auf die Anzahl Schidden im Intervall (0,t) zu schliessen. Dieses Problem lisst
sich mittels der Laplacetransformierten theoretisch 16sen. Insbesondere hat Tellenbach Zwischen-
ankunftszeiten, deren Verteilung ein Atom im Nullpunkt hat, fiir die Beschreibung von
Kumuleffekten verwendet. Numerisch hat er die auftretende Laplacetransformierte aber nicht
invertiert, sondern sich mit Monte-Carlo-Methoden beholfen. Berger gibt nun einen konkreten
Algorithmus zur Inversion der auftretenden Laplacetransformierten, welche er in eine Reihe ent-
wickelt.

Résume

Au début lauteur présente un modele introduit récemment par Tellenbach qui permet de tirer
des conclusions sur le nombre des sinistres en (0, t) si on connait la distribution entre deux
sinistres consécutifs. Ce modéle demande des transformations du type Laplace-Stieltjes qui ne sont
pas faciles a calculer numériquement.

Dans la deuxiéme partie on trouve un algorithme simple qui semble bien fonctionner dans le cas
ou l'intervalle de temps est suffisamment petit. Cet algorithme permet I'inversion de la transforma-
tion Laplace; I'article traite surtout des problémes de calcul et moins des rapports mathématiques.

Riassunto

All’inizio I'autore presenta un modello, introdotto recentemente da Tellenbach, che permette delle
conclusioni sul numero dei danni nell'intervallo (0, t) quando si conosce la distribuzione del tempo
tra due danni consecutivi. Questo metodo richiede I'applicazione delle integrali Laplace-Stieltjes
che non sono facili da calcolare. Poi viene proposto un algoritmo semplice, per I'inversione di
trasformazioni di Laplace, che sembra funzionare bene nel caso dove (0, t) ¢ piccolo.
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