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A Computer Algorithm for the Cumul Model

By Gottfried Berger

Abstract

The first two sections of this paper describe a risk theory model which was
introduced recently by Tellenbach. The model involves Laplace-Stieltjes transforms

which pose severe computational difficulties.
The remainder of this paper describes a simple algorithm which appears to
work in the special case where the time span considered is reasonably small.
The latter condition is typically met if the model refers to cumulative claims.
A thorough mathematical treatment of the subject is not even attempted.
Rather, the emphasis is on the computational aspect of the problem.

1. A Claims Process

Let tj denote the interclaim time between the j — th and the next following
claim (j 0, 1, 2. Suppose the probability distribution functions Pj(t) for
the stochastic variables tj are known. We assume tj > 0 and thus Pj(t) 0 for
t < 0. Our objective is to find the probabilities pk{t) for k claims in the time
interval (0, t).

Clearly, po(t) 1— Po(t). The rest is not as easy, since we have to perform
convolutions. This can be done, at least in theory, by means of Laplace-
Stieltjes transforms. See for instance Seal (1969), Appendix A, or Tellenbach
(1977).
We thus define the following Laplace-Stieltjes transforms:

<Pj *j(s) L{P}(t)} ] e-'dP}(t),U= 0,1,2.
(1)

n= !P*(s) .L{p*(t)}= J e-*dPM(k 0,1,2...).
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We now introduce two simplifications. First, we require that all interclaim
times tj (except possibly to) are independently and identically distributed, i.e.,

<pj <p1 for j > 1. The theory of the renewal process then shows that:

L{l-po(0}
L{Pl(t)} P, <P0(l-<Pi) (2)

L{pk(t)} ^k «Pt-r <Pi SW-iforfc > 1

Second, we stipulate a stationary claims process:

px(t) Y,k'Pk (t) const-t t/cci (3)
l

If (3) holds, P\(t), the expected claims number in (0, t), is proportional to t,

and inversely proportional to oq average interclaim time mean of Pi(t).
We obtain from (2) and (3):

L{m(t)} f1(l+2<?1 + 3012+...) "Px/(1 <2>0/(l-^i) 1/otis

Thus, we can rewrite equations (2) as follows:

L{1 —po(t)} (t>o (l-<Pi)/ais

L{Pl(t)} «Px 4»o(l —4>i) (4)

L{pk(t)} fVrtffifor/c > 1

Equations (4) confirm that the stationary claims process is completely
determined by the function <Z>i «fq (s), the Laplace-Stieltjes transform of Pi(f), the
d.f. of the interclaim time.

2. The Tellenbach Model

Tellenbach (1977) considered the following choice of Pi(t):

P1(t) h-P(t) + (l-h)-u(t) (5)

Here, P(t) is an arbitrary d.f. which applies to the claims process with the

probability h (0 < h < 1). Multiple claims may occur with the probability
<1-',)'since |0iff < 0,
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Intuitively, P(t) controls the number of events, while Pi(t) determines the
number of claims. The smaller the parameter h is chosen, the more claims
one associates with each claim event.
Let <P <P(s) denote the Laplace-Stieltjes transform of P(t), and let a be the

mean of P(t). If a < oo we obtain from (5):

Tellenbach applied this model to actual data on auto insurance, published
by Thyrion (1961). In doing so, he determined t such that ß\ (t) matches the

empirical mean fli. That is,

This leaves the free parameter h which may be chosen so that an appropriate
error measure is minimized.

Tellenbach considered for P(t) the negative exponential as well as the
onesided Gauss distribution. The results were superior in the latter case which,
however, involves computational difficulties. Tellenbach solved the problem
by Monte-Carlo techniques.

We shall now assume that the distribution function P(t) can be expressed as a

power series of f which converges reasonably fast. This assumption will hold
if t is small enough. The data of Thyrion, for instance, require according to
equation (7) for the one-sided Gauss distribution:

L{Pi(t)} <P1(s) (l-h) + h-<P(s). (6)

t a.iß\(t) ahfii{t) (7)

3. An Algorithm

t ahfi 0.214-h 0.171-A.

Hoping for convergence we thus develop:

P'(t) a e~t2/2 a(l —t2/2 + t4/8— a ]/2/n
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The first equation of (4) yields:

<*>o(s)= 1/xs—l/s2+l/s4-3/s6- • • •

l-p0(f) t/a —12/2! +14/4! — 3tß/6! +

An algorithm to calculate the probabilities pk(t) for k 0, 1, 2... and for the

special value t obtained from condition (7) is described below. Please note
that the three steps refer to the three equations (4).

Step 1 - Define: <f>i (s) z0 + zi/s + z2/s2 +

Calculate: <PQ(s) (l — <P1)/a1s yi/s + y2/s2 + •

Calculate: p0(t) 1 — yif — yz{t'll2\)—

Step 2 —Calculate: 'Pi 4>0(1 — <Pi) ((1 — z0)yi)/s +

((l-zo)y2-ziyi)/s2+
Redefine: 'Pi yi/s + y2/s2+ •

Calculate: pi(t) y\t + y2-t2/2! +

Set: k 1

Step 3-Calculate: Vk+1 pk<Pi zoy2/s + (zoy2 + ziyi)/s2+

Redefine: Vk+i yi/s + y2/'s2 +

Calculate: p k+i(t) yit + y-2tz/zl+

Set: k k+ 1, return to Step 3.

In the computer language APL, Step 3 would read:

W^W,T+ xY^-Z+-x Y. (8)

Please note the APL statements are evaluated from the right to the left. The

symbols contained in (8) have the following meanings:
Y is a vector which holds the first n coefficients y} of *P k, to be replaced by the

coefficients y;- of f^+i -

Z is a matrix built from the first n coefficients of <hi. For n 3, Z looks like:

Zo 0 0

Zi Zo 0

Z2 Zi Zo
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T is a vector holding the values f, f2/2tn/n!
W is a vector holding the values Pk(t). Each time Step 3 is traversed, the

value Pk-+i(t) is appended to W.

4. Numerical Results

The APL program described above runs fast even on a micro-computer. The
main practical difficulty is that we do not know beforehand how far to extend
the vector Z. The length of n of Z should be determined by the condition that

tn/nl (ahpi)n/n!

becomes insignificantly small. However, it is advisable to make additional
control runs with increased values of n. Of course, the required length n of Z
may exceed the computer space; then the method suggested in this paper has to
be abandoned.
For the data considered by Tellenbach, final results were already achieved for
n 5.

Attached are copies of two sample runs; namely, for h 0.86 and 0.83. The
former run yields the lowest sum of error-squares; this is the measure used by
Tellenbach. The latter run (with h 0.83) approximates the actual second

moment ju.2(f) J]kzPic(0- The printouts apply the terminology of Tellenbach
which differs from the terminology used in this paper as follows:

Tellenbach

Q(s)

Pi(s)

p

This paper

Po(t)

P(t)

h

The printouts display:

Comments

1 — Error Function

Gauss

e tn/n!

P,T h,t

MOM Y,kjPic(t) for j 0,1 and 2

ERR £(Pfc(0-Pit);' for j 1 and 2
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The columns show:

N k

P[N] p*(t)

P-P Pk{t)~Pk

(P-P)*2 (pk(t)-ßkf

Appendix 1 compares the actual number of claims (namely, pk • 9,461) with the

corresponding figures from Tellenbach and the runs for h 0.86 and h 0.83,

respectively.
The run h 0.86 comes reasonably close to the Monte-Carlo results of Tellenbach.

This may justify the "naive" approach suggested in this paper.
The run h 0.83 fits better to the tail than the run h 0.86, but is less accurate
for k 0 through 4.

Appendix 1

Number of Policies

Number Actual Tellenbach Computer-Algorithm
of Claims (Monte-Carlo) h 86 h 83

0 7,840 7,831 7,819 1 7,8729
1 1,317 1,311 1,327 6 1,242 1

2 239 255 255 6 271 8

3 42 54 47 9 58 5

4 14 9 88 124
5 4 1 3 1 6 26
6 4 0 03 05
7 1 0 0 01

9,461 9,461 3 9,460 9 9,460 9

Ai _ 0 214 0 214 0 214 0214
A2 0 335 0316 0315 0 333

Z(P;n-pn)2 566 907 8,058

Note Computer printout figures are multiplied by 9,461 For example 0 826453 9,461 7,819 1
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reCOo 0 ,86
xx X G=1~ERP xxx P1-BAUSS XXX XXX a=l-ERF xxx P1=BAUSS XX*

-:~4 8036E~7 7367E"7
p, r 0.83 0.14195 P,T 0.86 0.14709

MOM 1 0.21435 0,33249 MOM 1 0,21435 0.31451
ERR "2.4438E" 8 9.0058E 5 EIRR -3.2897E" 8 1.0159E"5

0 .832145 ,003480 .000012 0 .826453 -.002212 .000005
1 .131286 007917 .000063 1 .140327 .001124 .000001
2 028732 ,0034/1 .000012 o .027016 .001755 .000003
3 .006180 ,001740 .000003 3 .005067 ,000628 .000000
Lj. 001310 000169 .000000 4 .000931 ".000549 .000000
5 .000275 ".000148 .000000 5 .000168 -.000254 .000000
6 .000057 " 0 0 0.566 .000000 6 .000030 ".000393 .000000
7 00001 2 ".000094 .000000 7 .000005 ",000100 000000
B .000002 .000002 .000000 8 .000001 .000001 .000000
9 ,000000 .000000 .000000 9 000000 .000000 .000000

to ,000000 .000000 .000000 N PEN J P-P (P-P)x2
N pi NU P-P (P-P)*2 -8 879E"14

fc~6 4503E"14 P,T 0.86 0 14709

f' T 0.83 0.14195 MOM 1 0,21435 0.31452
MOM 1 0,21435 0.3325 ERR =• "3.3131E - 15 1.0158E "5
ERR - "1,06938 ~ 14 9.006E" 5 0 82645,3 -.002212 .000005

0 .832145 .003480 .000012 1 ,140327 .001124 .000001
t ,131286 007917 .000063 '•) .027016 .001755 .000003
2 .028732 ,003471 .000012 3 ,005067 .000628 000000
3 .006180 .001740 .000003 4 .000931 -.000549 .000000
if 00131 0 ".000169 .000000 5 ,000168 '.000254 .000000
5 000275 ".000148 .000000 6 .000030 ".000393 .000000
6 ,000057 ",000366 ,000000 7 .000005 -,000100 .000000
7 .000012 ".000094 .000000 8 .000001 .000001 .000000
8 .000002 ,000002 .000000 9 .000000 000000 000000
9 ,000000 .000000 .000000 10 .000000 .000000 .000000

10 .000000 .000000 .000000 11 .000000 000000 .000000
I L .0 0 0 0 0 0 ,000000 .000000 12 .000000 .000000 .000000
] :• .000000 .000000 .000000 13 .000000 .000000 .000000
13 .000000 .000000 .000000 14 .000000 .000000 .000000
14 .0 0 0 0 0 0 ,000000 .000000 15 .000000 .000000 .000000
15 ,000000 000000 .000000 16 .000000 .000000 .000000
16 .000000 .000000 .000000 17 .000000 000000 .000000
17 ,000000 .000000 .000000 18 .000000 ,000000 .000000
18 .000000 .000000 .000000 N PUN! P-P (P-P)* 2

19 .0 0 0 0 0 0 .000000 ,000000
N PI Nil P--P (P-P)*2
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Zusammenfassung

In der Arbeit von Tellenbach (Mitteilungen 77/1) geht es darum, aus der Verteilung der Zwi-
schenschadenzeiten auf die Anzahl Schaden im Intervall (0,t) zu schhesscn Dieses Pioblem lasst
sich mittels der Laplacetransformierten theoretisch losen Insbesondere hat Teilenbach
Zwischenankunftszeiten, deren Verteilung ein Atom im Nullpunkt hat Pur die Beschreibung von
Kumuleffekten verwendet Numerisch hat ei die auftretende Laplacetransformieite abet nicht
invertiert sondern sich mit Monte-Carlo-Methoden beholfen Beigei gibt nun einen konkreten
Algorithmus zur Inversion der auftretenden Laplacetransformierten, welche er in eine Reihe
entwickelt

Resume

Au debut l'auteur presente un modele introduit recemment par Teilenbach qui permet de tirer
des conclusions Sur le nombre des sinistres en (0, t) si on connait la distribution entre deux
simstresconsecutifs Ce modele demande des transformations du type Laplace-Stieltjes qui ne sont
pas faciles a calculer numenquement
Dans la deuxieme paitie on tiouve un algonthme simple qui semble bien fonctionner dans le cas

ou l'mtervalle de temps est suffisamment petit Cet algonthme permet l'inversion de la transformation

Laplace Particle traite surtout des problemes de calcul et moins des rapports mathematiques

Riassunto

All'imzio 1 autore presenta un modello, introdotto recentemente da Teilen bach, che permette delle
conclusioni sul numero dei danni nell'intervallo (0, t) quando si conosce la distnbuzione del tempo
tra due danni consecutivi Questo metodo nchiede l'applicazione delle integrah Laplace-Stieltjes
che non sono facih da calcolare Pol viene proposto un algontmo semphce per Pinversione di

trasformazioni di Laplace, che sembra funzionare bene nel caso dove (0 t) e piccolo
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