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Théorie mathématique des assurances de personnes

Modéle markovien

Par R.Consael et J.Sonnenschein

Section 1. Propriétés fondamentales des processus markoviens
a un nombre fini d’états

1. Probabilités et intensités de transition

Soit N ={1,2, ..., N} I'ensemble des états possibles d’un assuré. Notons
S(t) e N la variable aléatoire représentant I’état de ’assuré a I'instant t compté

depuis l'origine du contrat (t = 0) et soit
P(s,t) = (Pi(s, 1)), ik =1,2,...,N
la matrice de probabilités de transition avec
Py (s, t) = P[S(t) = k|S(s) = i]

définie pour Vs > 0et VYVt > s.
P(s, t) est une matrice stochastique:
Pix(s,t) > O pour Vsett > 0, soit en notation matricielle P(s,t) > 0

N
et Zsz (s,t) =1
k=1

ou P(s,t)e = e.
Suite a la définition on a
P(s,s)=1 Vs=>0,

ou I est la matrice unité N x N.
La matrice P(s, t) vérifie les équations de Chapman/Kolmogorov.

Onapours <t <u:
P(s,u) = P(s,t)-P(t,u)

N
ou P‘UC (Sa u) = Z P‘ij (Sa t)Rk‘(t’ u)'
J=1

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 1, 1978

(1.1)
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Supposons que la fonction d’intervalle P(s,)-I soit continument dérivable
dans le sens que
P(s,t)—1

Iim ——— = M(u) (1.3)
t—s—0 t—s

existe lorsque I'intervalle [s, ¢] se contracte au point u, c.-a-d. lorsque t > u et
s < u convergent vers u avec toujours t —s > 0 et que M(u) est une fonction
continue.

Notons p;x(u) les éléments de la matrice M(u).

Il vient pour i = k,

. Pu(u,u+ Au)—1 . Pii(u—Au,u)—1
pailu) = lim T = lim = <0 (1.4)

et 'on note pi(t) = —pis(t) dou () > 0.
La matrice diagonale aux éléments u;;(1) est notée D(u). Pour i # k on obtient:

Pig (u, u+ Au) . Pig(u— Au, u)
———=lm — >
Au Au—0 Au

,uik(u) =A11:11}»10 0. (15)
Nous notons N(u) = M(u)— D(u) la matrice qui contient les éléments p;x(u)
non diagonaux et dont la diagonale principale est nulle.

Nous pouvons interpreter u;x(t) At comme étant la valeur asymptotique (At — 0)
de la probabilité de transition de I’état i vers I’état k dans l'intervalle At et

i (t) At comme €tant la valeur asymptotique (At —0) de la probabilité de quitter
letat i dans I'intervalle de temps At.

En vertu de (1.1) on a la relation

1—Py(t, t+ At) = Z Py (t, t + A4t)

K#i
d’ol pa(t) =kZ pixl(t). (1.6)
#i
La relation (1.6) peut encore s’écrire:
M(t)e = N(t)e+D(t)e = 0. (1.6

La fonction p;x(t) est appelée intensité de transition ou taux instantané de

transition de I’état i vers I'état k, la fonction y(t) est appelée intensité de sortie
de I’état i en t.
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2. Equations différentielles de Kolmogorov

Nous supposons que la matrice M (u) est donnée et nous en déduisons la matrice
P(s, t).

Tenant compte des relations (1.2) de Chapman/Kolmogorov et de la dérivabilite
de P(s,t) — I on obtient:

P(s,t+At)—P(s,t) _ P(s,t)(P(t, 1+ At)—1)
At B At

ou pour At —0
opP
P P(s, t) M(¢). (1.7)

D’une manicre analogue on trouve:

P(s—As,t)—P(s,t) (P(s—A4s,s)—1) P(s,t)

As As

ou pour As—0

ﬂﬁzM@mu) (1.8)
as

(1.7) et (1.8) sont les équations de Kolmogorov prospectives et rétrospectives,
respectivement.

3. Relations de récurrence et solution des équations de Kolmogorov

Introduisons les matrices P® (s, t) = (P{}’ (s,t)) pour n =0, 1, 2, ... ou
P{® (s, t) est la probabilité que I'assuré qui a I'instant s > 0 se trouve dans i,
soit a 'instant t > s dans I'état k apres avoir effectué n transitions.

Il résulte de cette définition que P©) (s, t) est une matrice diagonale vérifiant
pour s < t < u la relation

PO (s,u) = PO (s, t) PO (¢, u) (1.9)

avec P05 sy = I (1.10)

et P (s,5) = Opourn >0



78

D’autre part on a nécessairement

Ps,t)= Y P (s, 1) (L.11)
n=0

uniformément en s et .
La matrice P© peut étre calculée aisément, en effet:

ona P (s, t+At) = P (s, 1)- P (¢, t + At)
et par suite P (s, t+At) = P (s, 1) (1 — pit) At) +0(At).
On constate aisément que les P’ (s, t), i N sont continues et dérivables en

vertu de la continuité des p;(t) et que

d
EP?E'?) (Sa t) = _tul(f) P§'LO) (S: t)

ou %J”mBJ)PWW&ﬂIHQ. (1.12)
Tenant compte de (1.7), on obtient:

¢
PR (s, t) = exp (—j ui(‘c)dr) ou

t
PO (s, 1) = exp (j D(r)dr). (1.13)

S

Semblablement on a:

_gmm&n=pmﬂm@&
S

Pour trouver la valeur de P (s, t) pour n > 0 on utilise la récurrence suivante.

Soitm > 0etn > 0.Silassuré est dans ’état iens > O et dans ’état kent > s
ayant passé par m+n+ 1 transitions dans I'intervalle [s, t], alors on peut scinder
I'intervalle [s, t] en 3 intervalles partiels:

[s;t]=[s,7] U Jn,t+4at[ U [t+ 41, 1]

avecs < t < ttels qu’il y ait m transitions en [s, t], 1 transitionen ]z, 7+ At[
et n transitions dans [t+ 4z, t]. La probabilite d’avoir m transitions en [s, 7]
est P{/* (s, 1), 1a probabilité d’avoir 1 transition en ]z, T+ Az[ est uj(t)47 +0(47)
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et la probabilité d’avoir n transitions en [t+ 4, t] est P} (t+ 4z, t). Comme
j et [ sont arbitraires avec j # [ et que t est arbitraire on aura pour 47 —0:

N t
Piptn sty =3 Y [ P (s, 1) palr) PiP (7, t)dx. (1.14)
j=ll#j s

Nous avons négligé le terme 0(4t) du fait que l'intégrand est borné pour
T € [s, t]. Sous forme matricielle on obtient

t
Pm+n+1) (5, 1) = [ PO (s, 1) N (1) P™ (1, t) d, (1.15)

Pour s et t donnés on peut écrire (1.15) sous forme d’un produit (co) de con-
volution généralisée défini par (1.14):

P(m+n+l) — P(m) o P(0). (1.16)

Suite a sa définition, ce produit de convolution est commutatif et associatif
pour les P@:i =0, 1, ...;o0n aen particulier P = P© o0 PO} et

P®) = P(r-1) oo PO) = . = P(0)eon+l (1.17)

ou P®=7 représente la n-iéme puissance de convolution généralisée.
La formule (1.15) nous permet de calculer de proche en proche les P©),
PO . PO et par suite

P(s,t= 3 P (s1),

n=0

la solution unique des équations de Kolmogorov.

On a encore en tenant compte de (1.17):

P = PO 4P oo PO (1.18)

et P =PO®4+PO oo P, (1.19)

4. Capitaux différés unitaires

Notons E(s, 1) = (Eu (s, t)) la matrice des capitaux différés unitaires. E,(s, t)
est la valeur actuelle d’un capital unitaire payable a I'instant ¢ si I'assuré se
trouve dans 'état / sachant qu’il est dans I'état v en s.
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On a Ey(s, t) = Py(s, t) w(s, t) ou w(s, t) est le facteur d’actualisation

t
w(s, t) = exp (—j 5(0) d@).
En écriture matricielle:
E(s,t) = P(s, t)w(s, t). (1.20)

E(s, t) est une matrice sous-stochastique:

N
Eip(s,t) = 0et > Ej(s,t) = w(s,t)ou E(s,t)e = w(s, t)e,

k=1 (1.21)
E(s,s)=1 Vs=>0.

En vertu des équations de Chapman/Kolmogorov et en tenant compte de la
relation w(s,u) = w(s,t)w(t,u) ontrouve pour s <t < u larelation:

E(s,u) = E(s, t) E(t, u) (1.22)

ou E; (s, u) =
j

Ei_,i(S, t) Ejk:(t, ll) VI, keN.

|1M*<
—

On peut vérifier aisément que E(s, t) satisfait aussi des ¢équations différentielles
du type de Kolmogorov:

OE(s, t)
= E(s, 1) M(1) (1.23)
ot
et aE;S’ N _ M (s) E(s, t) (1.24)
S

ol M (1) est la matrice M(t) dont on diminue chaque ¢lément de la diagonale

principale de 4(t).

Introduisons les matrices E() (s, t), n = 0, 1, 2, ... que nous définissons par
Efmi(8, b)) = PO(s, 1) wis. t)- (1.25)

E{)(s, t) est la v.a. pour un assuré qui a I'instant s se trouve dans I'état v, d’un
capital unitaire payable a I'instant ¢ si I'assuré se trouve dans I’état [ aprés avoir
effectu¢ exactement n transitions.



81

On a en particulier

t
E©) (s, t) = exp (j (D(t)—6(2)I) dr)

8

avec E®)(s,s) =1 (1.26)
et EM(s,s) =0 pour n>0. (1.27)
En outre E©@ (s, u) = EO)(s,t)-EO(t, u) (1.28)
pour O<s<t<u.

En partant de la relation (1.15) on trouve

¢
E(m+nil) (s, t) = j P (s, 1) N(t) PM) (1, t) w(s, t) dt

t

= f Em) (s, 1) N(z) E™(1,t) dt (1.29)

ou en écriture abrégee:
E(m+n+l) — E(m) co E(n);
en particulier E(® = E(-D oo EO = ||| = E0)en+tl, (1.30)

D’autre part on a aussi:

E(s,t)= 3 Em(s,1) (1.31)

n+0
ainsi que E=EO0O4+EOQE (1.32)
ou E=EO4+E EO. (1.33)

Section 2. Les assurances de rentes et de capitaux.
1. Définitions

Soit 4, une assurance qui prévoit le payement de capitaux (differés) C;(t,),
v=1,2 ... kaux instants t; <ty < ..... < ty a condition que l'assuré se
trouve dans I'état i a ces instants et d’'une rente d’intensité R;(t) a tout instant
7 ol I'assuré se trouve dans I’état i; on suppose R;(t) continue.
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Notons

zz(r = Z i(ty) H(t—ty)+ _‘ERi(V)dV
0

ou H(t) est la fonction de Heavyside définie par:

Opourt <0
H(7) =
Il pourz >0

et soit a”(r) la matrice diagonale dont les eéléments diagonaux sont
(af1 (2), oba(t), - . ., oAy (1))

L’assurance A, est univoquement définie par la matrice o’ (1).

Soit A, une assurance qui garantit le payement d’un capital a;;(7) & I'instant
7 81 & cet instant I'assuré transite de I'état i vers I'état j (i # j). Soit aN(1) la
matrice (aij(r)), i,j=1,2... N,i# jdont les ¢léments diagonaux sont nuls.
On appelle assurance générale une assurance qui réunit les garanties de A4, et
de 4.. Une assurance générale est définie par la matrice a(t) = a’(7)+a¥ (7).
Les obligations n de I’assuré sont définies par des primes n;;(t,), v =1,2 ... [
payables aux instants t; < t3 ... < 71; si 'assuré se trouve dans I’état i a ces
instants et par une prime d’intensité n;(t) payable a tout instant t ol 'assuré
se trouve dans I’état i. 7

l

Soit afi(t) = Y . mis(w) H(r— rv)+f n;(v)dv et a7(7) la matrice diagonale dont
v=1

les éléments diagonaux sont (], (1), ad5(7), - - -, 23 &(1))-

Les garanties et les obligations d’'une assurance générale sont ainsi définies par
les matrices a(7) et a"(1).

On suppose que I’assurance s’¢tend sur un intervalle de temps [0, u].

2. Valeurs actuelles des rentes, des capitaux différés et des primes

Soit 0 < s <t < uetsoit a;(s:t,u) la valeur actuelle a I'instant s, ou I'assuré
est supposé se trouver dans I'état v, de 'assurance A, définie par la matrice
o’ (t) restreinte a Pintervalle [, u].
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Il vient:
u

abi(s:t,u) = | E.i(s, ©) daf;(tr) ou sous forme matricielle
¢
u

ar(s:t,u) = | E(s, 1) dar(z),
4

et en tenant compte des équations de Chapman/Kolmogorov:
ar(s:t,u) = E(s, t)ar(t, u),

ou par définition
ar(t,u) = ar(t:t,u).

On a évidemment
ar(s,u) = ar(s,t)+ar(s:t, u).

On trouve d’une maniére analogue la valeur actuelle des primes:

av(s:t,u) = | Evi(s, v) dof(z)
t

u
et a"(s:t,u) = | E(s, 1) da"(z) respectivement.
t

Si 'on note encore a(s:t, u) la différence:

a(s:t,u) = ar(s:t,u)—a”(s:t,u), alors
on a
u
a(s:t,u) = | E(s, t) daP (1)
t

avec aD(t) = o (r)—a"(1); en particulier:

a(s,u) = j E(s, 1) doP (7).

3. Equation différentielle de a(s, u)

(2.1)

La fonction a(s, u) est discontinue en s pour s =t;,i = 1,2,...,k et pour

se=y, J= L2 ..l
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Pour d’autres valeurs de sla fonction a(s, u) est dérivable. En dérivant la relation
u
a(s,u) = | E(s, t) daP (1)
L)

par rapport a s aux points de dérivabilité on obtient:

adal(s, u)

= — Mg(s)a(s, u)— E(s, s) 2P’ (s)
as

= — Mg(s)a(s, u)—a”(s) (2.2)
puisque E(s,s) = I,

et en tenant compte des discontinuités:

dsa(s,u) = —Mg(s)a(s, u)ds—d aP(s). (2.2)

4. Rentes payables aprés n transitions
Soit &\ (s, u) la valeur actuelle en s < u d'une rente et prime définie par a?(t)

a tout instant ¢t de I'intervalle (s, u) ol 'assuré se trouve dans 'état j apres avoir
effectué exactement n transitions et soit a(® (s, u) la matrice (a3 (s, u)).

Onaa™ (s,u) = [ E™ (s, t)daP(t) (2.3)

et en vertu de (1.30)
u
a®™ (s,u) = [ E® (s, 7) N(t) a®D (1, u) dt
S

u
= [ E@ D (s, 1) N(1)a® (r,u)dt pour n>1. (2.3
s

En écriture abrégée:
; 0 =1 & 0
i (S, Ll) = E((S,)f) oo a((?, u)) = E((?, r)) cod ((t,)u) (2,4)
et en particulier

1 0 0
a ((S, 1«) = E ((S,)T) cod ((t.)u)-



La relation -
a(s,u) = > a™ (s,u) (2.5)
n=0

est immédiate ainsi que

a(s,u)=a@O+E®coa =a®+Eocoa®,

5. Assurances de capitaux payables en cas de transition d'un état vers un autre

Soit une assurance de capital o;;(7), j-k € N (j # k) payable a tout instant ¢
de lintervalle (f, u) ou l'assuré transite de I’état j vers I’état k. La fonction
a;x (1) est supposée intégrable. Comme plus haut nous notons o (t) la matrice
(2jx(t)) dont la diagonale principale est nulle.

La valeur actuelle de cette assurance a l'instant s <t ou l’assuré se trouve

dans I’état v, s’écrit:

Evi(s, 7) syu(©) o2(0) d. (2.6)

H!——-—,g

Awvjr(s:t,u) =

Définissons encore & (t) pour j # k par:
t
Tik(t) = | wir(7) 2 (x) dx
0

et % =0 pour j=k;

1l vient:
u

Ayir(s:t,u) = j E;(s, T) dij (1) (2.7)

¢

et en posant

Ayjr(s, t) = Ayjr(s:s, t) on obtient

t
Ay (s, 1) = jEvj' (Sa 7) d&-jk(f)-

s

Introduison A4,,4(s, t) en posant

"\'
Apii(s,t) =Y Ayr(s, 1)
ek



86

et A. . .(s,t)la matrice (A, %(s,t)) v, k e N; on trouve
t
A. 4 .(s,t) = [E(s, 1) di(7) (2.8)
s
ou &(t) est la matrice des («jx(7))j, ke N.
On a aussi comme pour les rentes:
A. 4 .(sit,u) = E(s,t)A. + .(t,u) et
A L .(ssu)=A.; (s, t)+A. + .(s:t,u).

6. Equations différentielles des assurances de capitaux de transition

En derivant la relation

A+ .(su) = j E(s,t)dd(t) par rapport a s on obtient

0A4.+ .(s,u)

— —Mg(s)A. + .(s,u)—E(s, s) & (s)

= —Mg(s)A. + .(s, u)—&(s). (2.9)

7. Capitaux payables a la n+ 1-iéme transition

Soit A§,?,j1’(s, u)la valeur actuelle en s < u d’'une assurance de capital o;(f)
payable lors du passage de I’état j vers I’état k a condition que ce soit la
n+1-iéme transition dans l'intervalle [s,u], 'assuré se trouvant dans I'état v en s.
On a

AGED (s, u) = I E5} (s, 7) py (1) oy (1) dt

u
et AT (su) = Y [ EQ (s, 1) e (1) agr(r) dr -~ do
j#k s

AT (s,u) = [ E™ (s, 1) dil(7). (2.10)
8
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On a évidemment :

oo

Ay (su)= Y A% (s, u) (2.11)
n=0
et A = AV FE® oo 4., . = AV +Eoco AD (2.12)

8. Equation d’équivalence

Considérons un contrat d’assurance généralisé qui garantit dans un intervalle
de temps [0, u] a un assuré se trouvant a I’état v a l'origine le payement de
rentes et de capitaux définis par 4, et A, c.-a-d. définis par la matrice a(t).

En contre-partie de ces avantages 'assuré est appelé a payer des primes définies
par la matrice o™(t).

La relation d’équivalence s’écrit alors:

a™(o,u)e = ar(o,u)e+A.+.(o,u)e,

¢ 1
one=| " |,
1
ouar(o,u) = ar(o,u)+A...(o,u). (2.13)

Supposons que les «;x(t) sont des fonctions de v mais ne dépendent pas de j
nide k:
k(1) = 7(7).

11 vient
t
Ayir(s, t) = ijj(s, ) w(s, T) wir(t) y(r) dt et
Ayjs (s, 1) = _[ij(s, ) w(s, 1) kZ?,Ujk;(T) y(t)dt
s #J
t
= [ Pys(s, 1) w(s, 1) w() y(r) dr
d’ou ’

—A...(s,t)= [ P(s,7) D(z) w(s, ) y(z) dx.



88

Or
afés Y _ p(s,0) M(x) = Pls,7) D(x)+ P(s, 7) ().
1l Sensuit que
P D@ = L0 b NG et
ot
s s B = f apfj; D (s, o) p(e)de— j P(s, 1) N(@)wls, 1)p(x)dr.

On applique l'intégration par parties a la premiere intégrale a droite et 'on

trouve
¢t

—A. (s, 1) = P(s,1)w(s, 1)7(2) = [ P(s, 1) (w(s, )7 (1) = 8 () w(s, T)p(x) ) de

s S
t

—jE(S,r)N(r)y(r)dr.

On en déduit:

—A..(s,t) = E(s, t)y(t)—y(s)l—jE(s, ) (y'(t)=6(1)p(r))dt—A. .. (s t).

Cette derniére relation peut encore s’écrire

t

A (s 0)+76) = A (s, 1)+ E(s, 0)7()+ [ E(s, 1) (6(x)y(x) =7 (x)) dr.

En particulier: k)

t

A k(s D+7(8)0. 5 = A g5, D+ E k(s )70+ J E- o5, 1) (8(1) p (1) =" (1))dr

ou J;x est le symbole de Kronecker.

A. 1k(s, t)+7(s)d. , représente la valeur actuelle d’un capital y(s) payable en s
si en ce moment I’assuré se trouve en k, soit d’un capital y(t) payable si au
moment 7, s < t < t ’assuré entre dans I'état k. A.,.(s,t)+ E.k(s,t)y(t) repré-
sente la valeur actuelle d’un capital y(t) payable si au moment 7 'assuré quitte
I’état k, soit d’'un capital y(t) payable en ¢ si I'assuré est dans I’état k. Enfin

t
[ E. (s, 1) (8(z)y(r)—y (1)) dt représente la valeur actuelle d’une rente d’inten-
B

sit¢ 6(t)y(r)—v'(r) payable a tout moment 7 de l'intervalle [s, t] pourvu que
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I'assuré se trouve dans I'état k. Si I'on suppose en outre que y(t) = let (1) =

pour V te [s t] i1l vient:
t

A (s0+1 =A. (s, 0)+E(s,1)+06 [ E(s, 7) dr. (2.15)

Section 3. Des réserves mathématiques

Soit une assurance générale definie par les matrices o(t) et am(z) et soit u la
durée de cette assurance;ona 0 <t < u.

Supposons qu’a I'instant initial T = 0 'assuré se trouve dans I'état v. On cal-
cule la réserve mathématique a l'instant s en tenant compte de I’état initial v
et de I’état k en s. Notons Vi(s) cette réserve mathématique et V.(s) le vecteur
aux composantes Vy(s),k = 1,2, ..., N.

1. Formes prospective et retrospective de la R.M.

a) La forme prospective:

Vi(s) = Agra (s, u)+ap, (s, u)—a”, (s, u) (3.1)
ou

V.is)=A. s(s,u)+ar. . (s,u)—ar,(s,u) (3.19)
b) La forme rétrospective:
Notons V(s) cette forme. Il vient:

am,. (0,8) = Ayp++(0, s)+ay, (0, s)+ Z Eyi (0, 5) Vk(s)- (3.2)
k

Si 'on multiplie I'équation (3.1) par E,x (0, s) et que 'on somme sur k on a:
ZEvk 0,s) Vi(s) = ZEvk 0, k)(Alc++ (s, u)+ag (s, u)— aniﬁ-(svu));

en additionnant cette derniere relation a la relation (3.2) on trouve en tenant
compte de
Aypii(o,u) = Ay (0,5)+ Z Eyi(0,5) A+ (s,u) et de
k

Ay (0, u) = api(0, )+ ). Evr (0, 5) ar+ (s, u)
%
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que

2 Evk (0, 5) Vi(s) = Avss (0, u)+aj, (0, u)—ag, (0, u)+ ). Evi(0, ) Vi(s).
k k

Or en vertu de la relation d’équivalence on a:
Apii(0,u)+ay (0,u)—az . (o,u) = 0.

Il s’ensuit que

Z Evk 0, S) Vk S) ZEWC (0 Vk(S) (33)

2. Equations différentielles de Thiele

La réserve mathématique Vj(s) est une fonction derivable excepté aux points
t1, tg, . .., tx dates de payement des capitaux différés et aux points 11,79, ..., T,
dates de payement des primes.

En dérivant la relation (3.1) aux points de dérivabilité par rapport a s et en
supposant u fixe il vient:

dVi(s) _ dAg++(s, u) i da (s, u) _ dag. (s, u)
ds ds ds ds

dA}C++(S, u) dak.}.(s, U)
ds ds

En vertu de (2.2) et de (2.9) on trouve I’équation différentielle de Thiele:

dv.(s)
ds

= —Mg(s)A. ++(s5,u)—& . +(s)— Mg(s)a.+ (s, u)—-a{);(s)

= —Mg(s)V.(s)= (& . +(s)+ aDi(s)). (3.4)

On peut exprimer I’équation différentielle de Thiele en termes de différentielles
et obtenir ainsi une expression qui est valable en tout point de I'intervalle [o, u]:

AV.(s) = — Mg (s)V.(s)ds—(d &. +(s)+ daP(s)) (3.4')

= — Mg (s)V.(s)ds—(da. +(s)+dar . ;(s)) +damy(s).
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3. Primes naturelles, primes de risque et primes d'épargne

Les primes sont définies par la matrice diagonale a7(t) qui vérifie ’équation
d’équivalence:

af (o, u) = aT+(o,u)+A. (o, u).

Les primes sont dites naturelles si quels que soient s et ¢

o<s<iIi<u

on a 'équivalence:
ar(s,t) =ary(s,t)+A.+4(s, t). (3.5)

Pour t = u cette relation entraine V.(s) = o pour tout 5,0 < s < u.
Par la relation V.(s) = o pour tout s les primes naturelles sont définies univo-
quement.

Notons nt™)(s) la prime naturelle et «*(¥) la matrice diagonale correspondante.
En vertu de (3.5) on a pour la prime naturelle:

da™N) (s) = dar(s)+ da(s).
Il s’ensuit que ’équation différentielle de Thiele (3.4’) peut encore s’écrire:
dV.(s) = —Mg(s) V.(s)ds+dar, —da ™).

Notons 7(®)(s) la prime de risque de I'instant s et a™(®)(s) la matrice diagonale
correspondante.
Si l'assuré et dans ’état k en s il vient:

dof ) (s) = day,(5)+des (5) + Y g () (Vils) = Vi (s)) (36)
I#k
N

Etant donné la relation ) pux; = 0 on peut encore écrire:
1=1
N
doff(s) = dajy(s)+dax+(s) + ) wri(s) Vi(s) ou sous forme matricielle:
l=1

doa™ ‘B (s) = dot 1 (s)+dE. ((s)+M(s) V.(s). (3.7)
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Enfin, notons n(#)(s) la prime d’épargne et «*(£)(s) la matrice diagonale cor-
respondante. La prime d’épargne est définie par la relation:

do™E)(s) = d V.(s)—d(s) V.(s) ds. (3.8)

En additionnant (3.7) et (3.8) et en tenant compte de (3.4") ainsi que de la
relation Mg(s) = M(s)—d(s)I

on obtient:

da” 4 (s) = do™B(s)+ da™E)(s). (3.9)
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Zusammenfassung

Die Mathematik der Personenversicherung wird mit Hilfe von Markoff-Prozessen behandelt. Dabei
wird ganz allgemein unter Personenversicherung eine Versicherung verstanden, bei der beim Uber-
gang von einem Zustand zum andern entweder ein einmaliger Betrag oder aber eine Rente ausbe-
zahlt wird (letztere so lange, als der Versicherte sich in einem gewissen Zustand befindet) gegen eine
Pramie, die ihrerseits vom Zustand des Versicherten abhingt.

Résume

Dans cette note on introduit la théorie des assurances de personnes en supposant qu'un assuré
peut se trouver dans un nombre fini d’états et que les probabilités de passage d’un état a un
autre peuvent étre décrites par un processus markovien.

On nomme assurance de personnes 'opération qui consiste & garantir soit le payement d’un
capital au moment du passage de I'assuré d’un état a un autre, soit le payement d’une rente aussi
longtemps que l'assuré se trouve dans un certain état, contre versement d’'une prime dont le
montant depend de I'état dans lequel se trouve I’assuré.

Riassunto

La matematica dell’assicurazione di persone viene trattata con l'aiuto della teoria dei processi di
Markov. Cio¢ un’assicurazione di persone ¢ generalmente definita come assicurazione che al cam-
biamento da uno stato all’altro paga o un capitale o un’annualita per un premio che dipende esso
stesso dallo stato dell’assicurazione.

Summary

The mathematics of the insurance of persons is treated by means of Markov processes. Thereby,
insurance of persons is generally defined as an insurance which — at the transition from one state to
another — pays either a fixed capital or a rent as long as the person remainsin a certain state, subject
to a premium which itself depends on the state of the person.
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