Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 77 (1977)

Rubrik: Kurzmitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

D. Kurzmitteilungen

Gleichzeitiges Leistungs- und Beitragsprimat

Bei starker Lohnentwicklung hat das reine Leistungsprimat bekanntlich den Nachteil hoher, nicht zum voraus bekannter Kosten. Anderseits ergeben sich beim Beitragsprimat mit zunehmender Lohndynamik sinkende Rentensätze. Attraktiv wäre daher die Möglichkeit eines Leistungsprimates mit Vorfinanzierung der durch die Lohnentwicklung voraussichtlich bedingten Nachversicherungen, um so die Kosten gleichmässiger auf die ganze Versicherungsdauer verteilen zu können.

Eine mögliche Lösung könnte darin bestehen, den technischen Zinssatz für die Tarifierung zu reduzieren, z.B. auf 0%. Dies würde gestatten, jährlich im Ausmass des auf den Kapitalanlagen erzielten Zinssatzes die Leistungen an die Lohnentwicklung anzupassen, ohne dass dafür Zusatzbeiträge erforderlich wären. Dieses Vorgehen hat jedoch den Nachteil geringer Flexibilität, da es nur dann zufriedenstellend funktioniert, wenn die über die künftige Lohnentwicklung getroffenen Annahmen zutreffen. Bei einer unregelmässigen Lohnentwicklung kann dieses Konzept nicht mehr genügen. Nachteilig wäre auch der Zwang zur Anwendung neuer Rechnungsgrundlagen.

Eine andere Lösung dieses Problems, die sich bei der heute verbreiteten Anwendung der EDV auch bei autonomen Pensionskassen realisieren liesse, sei im folgenden kurz skizziert. Ein Leistungsprimat soll mit «dynamischen» Beiträgen finanziert werden, die gegenüber den statischen Beiträgen eine gewisse – nicht zum voraus festgelegte – Vorfinanzierung von Lohnerhöhungen erlauben. Wir bezeichnen mit $P_{x:\overline{n}|}$ den statischen individuellen Prämiensatz und mit $E_{x:\overline{n}|}$ den entsprechenden Einmaleinlagensatz für eine Rente der Höhe 1. ϱ_x und B_x seien Rentensatz bzw. Beitragssatz in Prozenten des versicherten Lohnes. Leistungs- und Beitragsprimat lassen sich nun innerhalb gewisser Grenzen wie folgt gleichzeitig erfüllen:

Der Beitrag B_x wird aufgeteilt in einen Teil $\alpha_x B_x$, der als Jahresprämie verwendet wird, und einen Teil $(1-\alpha_x)B_x$, der als Einmaleinlage dient. Die Aufteilung von B_x erfolgt nach der Formel

$$\alpha_x = \frac{P_{x:\overline{n}}(\varrho_x E_{x:\overline{n}} - B_x)}{B_x (E_{x:\overline{n}} - P_{x:\overline{n}})} = \frac{\varrho_x E_{x:\overline{n}} - B_x}{B_x (\ddot{a}_{x:\overline{n}} - 1)}.$$

Der Aufteilungsfaktor α_x ist jährlich neu zu bestimmen, ebenso der Rentensatz ϱ_x der noch nicht finanzierten Rente. Je grösser die Lohndynamik, desto kleiner ist der Rentensatz, der durch das vorhandene Deckungskapital bereits finanziert ist.

Ein numerisches Beispiel soll dies veranschaulichen. Für einen 25jährigen Mann soll der Sparteil der zweiten Säule, also eine Altersrente in Höhe von 40% des Koordinationslohnes L_x^k , verbunden mit einer Witwenrentenanwartschaft ab Alter 65 in Höhe von 60% der Altersrente, versichert werden. Wir verwenden die Grundlagen GRM/GRF 1970 4% netto.

Der statische Prämiensatz beträgt $P^{x:\overline{n}} = 0,1115$ für die Altersrente der Höhe 1, verbunden mit Witwenrenten-Anwartschaft, bzw. 0,0446 L_x^k . Der dynamische Beitrag werde mit $B_x = 0,09$ L_x^k festgesetzt. Nach der obigen Formel erhalten wir

$$\alpha_x = \frac{0.4 \cdot 2.222 - 0.09}{0.09 \cdot 18.924} = 0.4690.$$

Der Beitrag $B_x = 0.09$ ist also aufzuspalten in eine Jahresprämie $\alpha_x B_x = 0.0422$ und eine Einmaleinlage $(1-\alpha_x)B_x = 0.0478$, um den Rentensatz $\varrho_x = 0.4$ zu erhalten. Das am Ende des Jahres vorhandene Deckungskapital erlaubt zu Beginn des nächsten Jahres – je nach inzwischen eingetretener Lohnerhöhung – die Finanzierung eines mehr oder weniger grossen Rentensatzes in Prozenten des gestiegenen Lohnes L_{x+1}^k . Der noch nicht finanzierte Rentensatz ϱ_{x+1} kann somit bestimmt werden und führt zu dem für das nächste Jahr gültigen Aufteilungsfaktor α_{x+1} . Bei der den Modellrechnungen für das BVG zugrunde liegenden Lohnentwicklung (Reallohnverdoppelung zwischen 25 und 45, überlagert von einer allgemeinen Lohnentwicklung von 4% p.a.) ergeben sich in den ersten Jahren die folgenden Werte:

X	L_x^k	Q_X	α_x	$\alpha_x B_x$	$(1-\alpha_x)B_x$
25	10 000	0,4000	0,4690	0,0422	0,0478
26	10 920	0,3629	0,4453	0,0401	0,0499
27	11 898	0,3302	0,4243	0,0382	0,0518
28	12 936	0,3015	0,4058	0,0365	0,0535
29	14 038	0,2761	0,3898	0,0351	0,0549
30	15 208	0,2538	0,3762	0,0339	0,0561
35	22 204	0,1778	0,3426	0,0308	0,0592
40	31 517	0,1423	0,3755	0,0338	0,0562
45	43 823	0,1314	0,5091	0,0458	0,0442
50	53 317	0,1065	0,6371	0,0573	0,0327
54	62 373	0,1003	0,9489	0,0854	0,0046
55	64 868	0,1003	1,0887	0,0980	_

Die Werte für α_x sinken zunächst bis zum Alter 35, steigen aber später wieder an. Wird der Beitrag B_x in fester Höhe beibehalten, so kommt der Zeitpunkt, wo $\alpha_x \ge 1$ wird, der Beitrag B_x also nicht mehr ausreicht, um die Leistungserhöhungen zu finanzieren; in unserem Beispiel ist dies im Alter 55 der Fall. Soll das Leistungsprimat beibehalten werden, so muss B_x für höhere Alter angehoben werden. Wird B_x von Anfang an sehr hoch festgesetzt, so ist es möglich, dass nach einigen Jahren $\alpha_x \le 0$ wird, das System also nicht mehr funktioniert. Am zweckmässigsten erscheint daher ein nach dem erreichten Alter x geeignet gestaffelter Beitrag B_x . Eine andere Möglichkeit besteht darin, das Leistungs-/Beitragsprimat von einem bestimmten Alter an in ein normales Beitragsprimat ausmünden zu lassen.

Walter Letsch VITA Lebensversicherungs-AG Mythenquai 10 8022 Zürich