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Probabilité de ruine lorsque le paramètre de Poisson
est ajusté a posteriori

Par André Dubey, Zurich

Le concept de probabilité de ruine joue en tant que critère de stabilité un rôle
important dans la théorie du risque. Dans le modèle classique, on considère un

processus de risque dont la prime est de nature déterministe. Dans un article
publié en 1972 [4], Bühlmann étudie la probabilité de ruine pour un
processus dont la prime est ajustée en fonction du nombre des dommages
occasionnés par un risque et est donc de nature stochastique. Le développement

des idées contenues dans cet article allait aboutir à une thèse effectuée

sous la direction de M. le professeur Dr H. Bühlmann. Le présent article est

un résumé de cette thèse [9].

1. Définitions et hypothèses générales

1.1 Processus de risque

On considère un processus de risque de la forme:

t
r

u(t) c î(s) ds — ^ Yj, t > 0.
J j=0
o

u(t) représente les réserves réalisées par l'assureur jusqu'au moment t pour un
risque appartenant à un collectif hétérogène. Un tel risque peut être une police
unique ou un portefeuille supposé homogène à l'intérieur d'un plus grand
portefeuille hétérogène.
On fait les hypothèses suivantes:

a) N(t), le nombre de sinistres, est un processus de Poisson de paramètre in¬

connu À. Ce paramètre est une réalisation d'une variable aléatoire A, dont
la fonction de distribution sur le collectif (fonction de structure) est notée
S (A). On suppose que le deux premiers moments de A existent et on pose
a E2 (/1)/Var(/1) et b £(/l)/Var(/1). Pour un risque choisi aléatoirement
dans le portefeuille, N(t) est donc un processus de Poisson pondéré. Si, par
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exemple, on suppose que S est une distribution gamma, alors N(t) a une
distribution binomiale négative, modèle proposé à plusieurs reprises dans la
littérature [1, 7, 8].

b) Yi, Y2, les montants assurés des dommages, sont des variables aléatoires

positives, indépendantes, de même distribution et indépendantes de A.
On suppose de plus que le premier moment existe et que l'unité d'argent
est choisie de telle sorte que E(Yj) 1. La fonction de distribution des Yj

est notée F (y).
c) l{t), l'intensité de prime, est une estimation individuelle de A, basée sur les

informations {N(s), s < t} données par le déroulement des sinistres.

d) c 1 + ß > 1. ß est une surtaxe de sécurité correspondant au «contengency
loading». L'espérance et la variance d'un processus de Poisson étant

égales, on peut supposer que la prime est calculée soit suivant le principe
de l'espérance, soit suivant le principe de la variance [2], Il s'agit de la

prime nette, calculée sans tenir compte des frais d'exploitation de l'assureur.

1.2 Exposé du problème

Si on suppose que le paramètre de risque A est constant et égal à 1, on obtient
le processus de risque classique, ou la prime est c-f. On note W0(vv) la
probabilité de ruine dans ce cas, c'est-à-dire la probabilité que le processus
descende en dessous d'une réserve co donnée au départ :

A'U)

f0(w) 1-P w+ct Yj > 0, V t

i-o
Les résultats obtenus par la théorie sont multiples (p. ex. [6, 12]).
Dans ce travail, on se propose d'étudier la probabilité de ruine f(H>) du

processus défini en 1.1, pour les estimations suivantes:

a) 1(f) £[/t/N(f)], l'espérance conditionnelle de A. Cette estimation est

«optimale» [3], mais elle nécessite, pour la calculer, des informations
complètes sur la fonction de structure.

b) 1(f) N(t)/t, l'estimation purement individuelle, qui ne suppose aucune
connaissance du collectif.

a + N(t)
c) 2(t) l'estimation de «credibility». C'est du point de vue pratique

b + t
la plus intéressante. Elle consiste en une moyenne pondérée des informations

obtenues du collectif (E(A) a/b) et des informations individuelles
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(N(t)/t). Le facteur de pondération est choisi de telle sorte que l'estimation
soit optimale [2], C'est en particulier l'estimation qui a servi de base

théorique lors de l'élaboration du système Bonus/Malus du tarif responsabilité
civile UDK suisse pour voitures.

2. Probabilité de ruine lorsque l'estimation est E\_A/N(t)']

On note Wq, Wi, les temps d'arrêt correspondant aux sauts du processus de

Poisson pondéré et V(x) la transformée de Laplace de dS(x):

Wo — 0, Wn inf (f : N(t) > n), n > 1

V(x) E(e~Ax) | dS(x).

A l'aide des dérivées de V, on peut exprimer les distributions conditionnelles
de A:

(At)"
dS (A)

dS(A/Af(r) n)
n ;

e->-< dS (2)
n

(—!)»
A" e~Xt dS(A)

- Ç{A/N(t) n) jAdS(A/lV(t) n) -—ln V^(t).

L'événement «ruine» ne peut se produire qu'au moment d'un sinistre. Il suffît
donc, pour déterminer 'P(w), d'étudier le processus u(t) aux temps d'arrêt Wn.

La prime encaissée entre deux sinistres est alors, en utilisant la formule
calculée ci-dessus :

w\

Pi J E{A/N(t) 0)dt ln {F(0)/V(WJ}

W

Pn+1= j E(A/N{t) n) dt ln {F<«> {Wn)IV(n) (Wn+i)}
On a donc: w„

W(w) 1 -P
m

W + E (cPn~ Yn) > 0, m 1, 2,
71 1

Théorème 1

Si P(A 0) 0, les variables aléatoires P„, n > 1, sont indépendantes et ont
toutes une distribution exponentielle avec densité erx.
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Démonstration

a) lim V(x) P(A 0) 0. Le domaine des valeurs de toutes les fonctions
x —» oo

positives (—1) F(n) (x) est donc un intervalle ouvert à gauche et commençant

en 0. Comme d'autre part — 1 )" F(n) (x) est strictement positif, toutes les

fonctions (— \)n V<?i) (x) sont strictement monotone décroissantes. Pour tout
y positif et z entre 0 et 1, il existe donc un et un seul x < y:

_ l)n Z (— 1) F(">(}/) OU X
1

(zV(">fy)).

b) P(Pn+1>x/Wn y)=P((-l)n ytn>(»;+1)<r-*(-l)» Wn)j Wn y)

p{Wn+y >K("rl (e-xV(n)(y))/Wn y)d'aprèsa)

j p{wn+1- Wn > F«")-1 (e-*V^{y))-ylWn y, A /.)dS(k/Wn y)

exp {_;.(]/(«) 1 (e-zy(n)(y))_y}} e->.y Xn ds (A) '
1

y(n) (y{n)~1(e-xy(n) (y)))
F<"> (y)

(_!)» y(n)(y)

er

Chaque sommant Pn+\, n > 0, a donc une distribution exponentielle et est

de plus indépendant de Wn.

c) Démonstration de l'indépendance:

exp - £ XjPjj E

71—1 \
exp( - £ XjPjJ E

r n-1

exP 3 - Z xipi
t 3-1

exp^-Z XjP^/Wo,..., Wn.x
3-1

E

(i +xnyi e

exp -xnPnj/Wn

d'après b).

(propriété de Markov)

Un raisonnement par induction permet de terminer la démonstration (q.e.d.).

Dans le cas ou P(A 0) 0, la probabilité de ruine du processus est, comme
dans le cas classique, égale à la probabilité de ruine d'un «Random Walk» dont
la queue positive est distribuée exponentiellement. On a donc immédiatement:

f(w) f0(w).
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Dans un article à paraître [14], de Vylder montre que cette égalité est vraie

pour des processus de type plus général.

Remarque: L'hypothèse P(A 0) 0 est nécessaire. Si P(A 0) p > 0, on
a p.ex.:

a) Si Y] ~ distribution exponentielle

P0(w) iexp^-^i wj T(w) (1 -p1+c) P0(w)

b) Si Yj — 1 p. s.

Pq(w) —-—e~k" f(w>) ~ (1 — pl +ck) %{w),w -* oo
1 + ck - c

où k est la solution positive de ex 1 + ex.

3. Probabilité de ruine lorsque l'estimation est N(t)/t

Lorsque l'estimation de A est N(t)/t, la situation est en fait plus simple, car la

probabilité de ruine est la même pour toutes les réalisations X # 0 de A.

Soient u(t, X) et f(w, X) le processus de risque et la probabilité de ruine sous
la condition [A A]. En utilisant l'homogénéité du processus de Poisson, on
montre que u(t, X) est équivalent à u(tX, 1) et que f(w, X) ne dépend pas de
X. En utilisant la même notation qu'au chapitre précédent, on obtient:

w
H + l

f W
Pi=0;JVi= J {?dt n\n~^,n > 1.

w
n

n

P(w) <E(w, X) 1 -p|vv+ £ (cP; - Y}) > 0,n> lj.

Théorème 2

Pour toute réalisation X ^ 0 de A et donc également pour le processus pondéré,
on a:
1. Les variables Pn,n> 2 sont indépendantes et distribuées exponentiellement

avec densité e~x.

2. Pu P2,..., Pn et Wn sont indépendantes pour tout n.
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Démonstration

a) Sous la condition [ >], Wn_i a la même distribution que le plus grand
de n — 1 points distribués uniformément entre 0 et y. Donc

P(Pn>x/W„ y) P( Wn^i < e~x/n~l y/ Wn y) ^eyj e~x,

ce qui démontre que Pn et Wn sont indépendants et que les Pn ont une
distribution exponentielle.

b) Le point (2) du théorème se démontre par induction. Soient B3 et Dj des

ensembles de Borel.

- n 2 : P2 et W2 sont indépendants d'après a).

- n: P(Pj £ Bj,j < n, Wn£ Dn)

J ]PiP)Ç.Bi,j<,n-\IWn-1=x,Wn=y)

P(Pn£Bn/ Wn_! x, Wn y) dP( Wn_x x, Wn y)

Dans cette expression on a:

P(Pj Bj, j<n- 1/ Wn-i x,Wn y)

P(Pj £ Bj, j< n-\IWn-i=x)
(car les accroissements Wn—Wn_x sont indépendants)

n P(P}£Bj)
J <n-1

(hypothèse d'induction)

On obtient donc:

P(P} 6 Bj, j <n,WnG Dn) n P(P} £ B}) P(Pn £ Bn, Wn£Dn)
J < n-1

n P(Pj£ Bj) P(Wn£ Dn) (d'après a)) (q.e.d.)

Ce théorème montre que la probabilité de ruine du processus u(t) est identique
à la probabilité de ruine d'un «Random Walk» dont la queue positive est

distribuée exponentiellement. La seule différence avec l'estimation précédente
est que la première prime Pi est nulle. On a donc:

w

f(w, X) 1 —F(w)+J fo(w — y) dF(y) pour X > 0
o

W

f(w) [l-P{A 0)](1-F(w) + J %(w-y)dF(y)).
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On peut en particulier, à l'aide des transformées de Laplace, donner le

comportement asymptotique de f :

f0(w) ~ (c— 1) (-c-/'(~k))_1 e~kw, w-* oo

f(w', A) ~ (1 +ck) foM, A > 0, w — oo
<F(w) ~ [1 - P(A 0)] f (w, A), w — oo

ou f(x) j e~xv dF(y) et k est la solution positive de f(-x) 1 +cx.

Dans un article à paraitre [5], Bühlmann et Gerber montrent comment on peut
démontrer les théorèmes 1 et 2 à l'aide d'une transformation stochastique du

temps.

Remarque: Dans la suite de cet article, on se permettra d'esquisser seulement
les démonstrations. On peut en trouver les détails dans [9].

4. Moments de la ruine lorsque 1(f) N(t)/t

La deuxième propriété du théorème 2 permet de donner le comportement
asymptotique des moments de la ruine sous la condition que la ruine se

produise. Soit T inf {f : w + u (f) < 0} l'instant de la ruine. Comme Wn et u(Wn)

sont indépendants, d P(T Wn f) dP{Wn t)P (ruine au n-ième sinistre).
On peut alors ramener le problème des moments de T à un problème de «Random

Walk» et en utilisant des résultats de Siegmund [13], on obtient:

Théorème 3

E(T/T < oo) ~ E(A-1) -w/m (w -> oo)

Var(77T < oo) ~ Var(A-1)-(w/m)2 (w — oo)

avec m (1 -l-ck)-1 \jyekv dF(y) —c]

Remarque: Dans le cas du processus de risque classique, l'espérance et la
variance de l'instant de la ruine sont toutes deux asymptotiquement linéaires

en w [12],
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5. Approximation de la probabilité de ruine lorsque Â(f)

est l'estimation de «credibility»

î a -1~

Lorsque A(f) — un cas particulier important est celui où la fonction
b + t

de structure est une fonction gamma, c'est-à-dire où N(t) est distribué suivant

une loi binomiale négative. On a alors ^—— E [/4/lV(r)] et, d'après le théorème

1, W(w) %(w).
Dans le cas général, il semble très difficile de donner une expression exacte

pour la probabilité de ruine. Dans son article [4], Bühlmann propose d'appro-
ximer, pour chaque réalisation A de A, le processus u(t, A) par un processus
à accroissements indépendants:

b + t Nit)
u*(t, A) c(a -Xb) ln 1- Y (cVj— Yj)

u j-o

où les Vj sont des variables aléatoires indépendantes, indépendantes des Y}

et de N(t) et distribuées exponentiellement. L'argumentation repose sur le fait

que:
a) u*(t, A) et u(t, A) sont asymptotiquement équivalents pour t -* oo;
b) E[u*(t, A)] E[u(t, A)];
c) Var(u*(t, A)) < Var(«(r, A)).
Pour calculer la probabilité de ruine 'P*(w, A) de ce nouveau processus, il est

possible de développer une méthode numérique basée sur une technique due
à Gerber [11]:

On pose pour x > 0:

v(t, A) exp | — x u*(t, A) — cx(Xb — a) ln + Xtx • Z(x) j-

avec Z(x) x-1 {1 — £[exp(x(K —cK))] } x-111———^1.
v [ 1+cxJ

On peut alors montrer:

1. v(t, A), t > 0, est une martingale;

2. f*(w, A) < min max e~H'x exp < ex (Xb — a) ln — Xtx Z(x)j.
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Exemple: On choisit Y} 1 p.s., a 1, b 6.46, c 1.1, a/b E[/1] 0.155

(pour a et b, on a choisi les valeurs obtenues par Bichsei [1]).
On a alors pour w > 50:

%(w) < e-0 188>v

T*(w, A) < e~° mw si A < 0.155 f*(w, A) < 2.1 e-0 187m si A < 0.249

f*(w, A) < 1.2 e~Q187»' si A < 0.182 T*(w, A) < 5.7 ét»18714 si A < 0.356

6. Un modèle discret lorsque X(t) est l'estimation de «credibility»

On suppose dans ce chapitre que la fonction de structure S est une fonction
de distribution gamma. On sait alors que f(w) foM- Dans le modèle
considéré jusqu'à présent, on supposait que chaque dommage entrainait une
correction immédiate de la prime. Dans ce chapitre, le paramètre de risque est

ajusté suivant la formule de «credibility», mais une correction de cette
estimation n'intervient qu'à des temps fixes nh,n 1, 2,...
Le processus de risque aux temps nh est alors

n

un £ {cZj-Xj), n> 1

i-i
a + N((j— l)/i)

avec Zj c -hetX} 2, **•
b + (j-l)h iv(o-i)A)

Soit *PA(w) la probabilité de ruine de un, n > 1.

Théorème 6

Soit ko la solution positive de/(-x) 1 +- (1 — ercxhlb) avec j{x) f e~xy dF(y).
h

On a alors: Yti(w) < e ^14.

La démonstration s'effectue en montrant que le processus v" exp(-fc0un),

n > 1, est une super-martingale et en utilisant les propriétés de celles-ci.

Exemple: Si Yj 1 p.s., a 1, b 6.46

h 0 h Vi année h 1 année

fo(w)<e-°188,v fo(w)<e-°17311 f0(w) < e~°161,1
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7. Probabilité de ruine d'un portefeuille composé d'un grand nombre
de risques

On considère un portefeuille composé de M risques indépendants A1, AM,
distribués chacun suivant la fonction de structure S. Chaque risque est estimé
individuellement suivant la méthode de «credibility».
Soit fjv/fw) la probabilité de ruine du portefeuille.
On peut alors montrer que le processus de risque du portefeuille, après une
contraction du temps, converge en probabilité vers le processus de risque classique

et on obtient:

Théorème 7

m lim "/V(w) fo(w).
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Zusammenfassung

Es wird m diesem Artikel ein Risiko-Prozess betrachtet, fur welchen der Poisson-Parameter eine
Zufallsvariabel ist Die Ruinwahrscheinlichkeit eines solchen Prozesses wird untersucht, wenn die
Prämie auf Grund der Erfahrung angepasst wird

Résumé

On suppose que le paramètre de Poisson d'un processus de risque est une variable aléatoire On
étudie dans cet article la probabilité de ruine d'un tel processus lorsque la prime est ajustée en
fonction du déroulement des sinistres

Riassunto

L'autore esamina un processo di rischio nel quale anche il parametro di Poisson è considerato corne
una variabile aleatoria Poi, la probabilité délia rovina è calcolata nel caso di premi variabili

Abstract

The author considers a risk process with a Poisson parameter which itself is a stochastic variable
The ruin probability is examined in cases where the premium is calculated according to an experience

rating formula
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