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Probabilité de ruine lorsque le parametre de Poisson
est ajusté a posteriori

Par André Dubey, Zurich

Le concept de probabilité de ruine joue en tant que critére de stabilité un réle
important dans la théorie du risque. Dans le modele classique, on considére un
processus de risque dont la prime est de nature déterministe. Dans un article
publié en 1972 [4], Biihlmann étudie la probabilité de ruine pour un pro-
cessus dont la prime est ajustée en fonction du nombre des dommages oc-
casionnés par un risque et est donc de nature stochastique. Le développe-
ment des idées contenues dans cet article allait aboutir a une these effectuée
sous la direction de M. le professeur Dr H.Biihlmann. Le présent article est
un résumé de cette thése [9].

1. Définitions et hypothéses générales

1.1 Processus de risque

On considere un processus de risque de la forme:

¢

N ()
u(t) =c ji(s)ds—z Y, t 0.
0 /=0

u(t) représente les réserves réalisées par 'assureur jusqu’au moment ¢ pour un

risque appartenant a un collectif hétérogéne. Un tel risque peut étre une police

unique ou un portefeuille supposé homogeéne a I'intérieur d’'un plus grand
portefeuille hétérogene.

On fait les hypothéses suivantes:

a) N(t), le nombre de sinistres, est un processus de Poisson de paramétre in-
connu 4. Ce paramétre est une réalisation d’une variable aléatoire 4, dont
la fonction de distribution sur le collectif (fonction de structure) est notée
S(4). On suppose que le deux premiers moments de A existent et on pose
a = E2(A)/Var(A)et b = E(A)/Var(A). Pour un risque choisi aléatoirement
dans le portefeuille, N(t) est donc un processus de Poisson pondéré. Si, par
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exemple, on suppose que S est une distribution gamma, alors N(¢) a une
distribution binomiale négative, modele propose a plusieurs reprises dans la
littérature [1, 7, 8.

b) 11, Y5, ..., les montants assurés des dommages, sont des variables aléatoi-
res positives, indépendantes, de méme distribution et indépendantes de A.
On suppose de plus que le premier moment existe et que 'unité d’argent
est choisie de telle sorte que E(Y;) = 1. La fonction de distribution des ¥;
est notée F(y). -

c) A(t), I'intensité de prime, est une estimation individuelle de A, basée sur les
informations {N(s), s < t} données par le déroulement des sinistres.

d) ¢ = 1+ > 1. Best une surtaxe de sécurité correspondant au «contengency
loading». L’espérance et la variance d’un processus de Poisson étant
¢gales, on peut supposer que la prime est calculée soit suivant le principe
de I'espérance, soit suivant le principe de la variance [2]. Il s’agit de la
prime nette, calculée sans tenir compte des frais d’exploitation de I'assureur.

1.2 Exposé du probléme

Si on suppose que le paramétre de risque /A est constant et égal a 1, on obtient
le processus de risque classique, ou la prime est ¢-t. On note ¥o(w) la pro-
babilité de ruine dans ce cas, c’est-a-dire la probabilité que le processus des-
cende en dessous d’une réserve @ donnée au départ:

N (t)

Po(w) = l—P[w—H:t —Z Y, >0,V t].
i=0

Les résultats obtenus par la théorie sont multiples (p.ex. [6, 12]).

Dans ce travail, on se propose d¢tudier la probabilit¢é de ruine ¥(w) du

processus défini en 1.1, pour les estimations suivantes:

a) A(t) = E[A/N(t)], I'espérance conditionnelle de A. Cette estimation est
«optimale» [3], mais elle nécessite, pour la calculer, des informations com-
pletes sur la fonction de structure.

b) A(t) = N(t)/t,l’estimation purement individuelle, qui ne suppose aucune con-
naissance du collectif.

o i) = a+ N(t)

b+t
la plus intéressante. Elle consiste en une moyenne pondérée des informa-
tions obtenues du collectif (E(A) = a/b) et des informations individuelles

, 'estimation de «credibility». C’est du point de vue pratique
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(N(t)/t). Le facteur de pondération est choisi de telle sorte que I'estimation
soit optimale [2]. C’est en particulier I’estimation qui a servi de base théo-
rique lors de I’¢laboration du systéme Bonus/Malus du tarif responsabilité
civile UDK suisse pour voitures.

2. Probabilité de ruine lorsque I’estimation est E[1/N(t)]

On note Wy, W, ... les temps d’arrét correspondant aux sauts du processus de
Poisson pondéré et V(x) la transformée de Laplace de dS(x):

Wo=0 W, =inf(t:N(t)=n)n=>1
V(x) = E(e) = [ e dS(x).

A l'aide des dérivées de V, on peut exprimer les distributions conditionnelles
de A:

(hey"
e dS(4)
! e elf
SN =n) = =(_1)Mev%ds@
Je_;_,(r:)' as () (t)

— E(A/N(t)=n)=[AdS(4N(@) =n) = —(—gln V@ (t).

L’événement «ruine» ne peut se produire qu’au moment d’un sinistre. Il suffit
donc, pour déterminer ¥(w), d’étudier le processus u(t) aux temps d’arrét W,
La prime encaissée entre deux sinistres est alors, en utilisant la formule
calculée ci-dessus: W

P, = [ E(A/N(t) = 0)dt = In {V(O)/V(W)}
0

W,

Pusi= | E(A/N(t) = n)dt = In {V® (W) V) (Wyer)}

W,
On a donc: '

¥(w) = l—P[W + g (cP—Yy) =20, m=1, 2,...:'

n=1

Théoreme 1

Si P(A = 0) = 0, les variables aléatoires P,, n > 1, sont indépendantes et ont
toutes une distribution exponentielle avec densité e =,
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Démonstration

a)lim V(x) = P(A =0)=0. Le domaine des valeurs de toutes les fonctions

X > 00
positives (—1)» V™ (x) est donc un intervalle ouvert a gauche et commen-
canten 0. Comme d’autre part (— 1)» V(™ (x) est strictement positif, toutes les
fonctions (—1)» V'™ (x) sont strictement monotone décroissantes. Pour tout
y positif et z entre 0 et 1, il existe donc un et un seul x < y:

(=1 Vi (x) = z (= 1)» VO (y)oux = V! (zVim(y)),
b)  P(Ppi1=x/W, = y) = P((— 1) Vi) (Wyy) Se @ (— 1) Vo (W) W, = )
= P(Wys1 2V ! (o210 ())/ W, = y) daprés a)
= [ P(Wypir— Wy = Vit (e=sVm (y)) = y/ Wy, = y, A = 1) dS(}/ Wy, = y)

B J exp { =2 (V™ (eVim () —y) e inds () (—1¢ 1V(n) ()
v (Vo™ ez v (y)))

= =e7.

Vin (y) o

Chaque sommant P, ., n > 0, a donc une distribution exponentielle et est
de plus indépendant de W,,. .
¢) Démonstration de I'indépendance:

E [exp (—z xjpjﬂ . E[ E[ exp {_z S} W:H

n—1
= E [exp (—m Y ijj) E l:exp (—»ann)/ %__1]—‘ (propriété de Markov)

i=1

n—1
=(1+x,1E [exp {— Y ijj}:| d’apres b).

i=1

Un raisonnement par induction permet de terminer la démonstration (q.e.d.).

Dans le cas ou P(A = 0) = 0, la probabilite de ruine du processus est, comme
dans le cas classique, égale a la probabilité de ruine d'un «Random Walk» dont
la queue positive est distribuée exponentiellement. On a donc immédiatement:

P(w) = Yo(w).
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Dans un article a paraitre [14], de Vylder montre que cette égalité est vraie
pour des processus de type plus général.

Remarque: L’hypothese P(A = 0) = 0 est nécessaire. Si P(1 = 0) =p > 0, on
a p.ex.:

a) S1 Y; ~ distribution exponentielle

1 _
Wy (w) =Eexp(—‘% ) W(w) = (1 —pi+e) Po(w)
b)SiY; =1p.s
o(w) ~ m}};eﬂ P(w) ~ (1—p! k) B (w),w — oo

ou k est la solution positive de e = 1 + cx.

3. Probabilité de ruine lorsque I’estimation est N(t)/t

Lorsque I'estimation de A est N(t)/t, la situation est en fait plus simple, car la
probabilité de ruine est la méme pour toutes les réalisations 4 # 0 de A.
Soient u(t, 4) et ¥(w, 4) le processus de risque et la probabilité de ruine sous
la condition [4 = A]. En utilisant 'homogénéité du processus de Poisson, on
montre que u(t, A) est équivalent a u(t4, 1) et que ¥(w, 4) ne dépend pas de
Z. En utilisant la méme notation qu’au chapitre précédent, on obtient:

P1=0;Ppy = f;—th=nln

W

n

Wn+l
W 5

n

i .
n

Y(w)= ¥(w,A) = 1—P{w+z (cP;—Y) =0,n > l}.
j=1

Théoréme 2

Pour toute réalisation 4 # 0de A et donc €également pour le processus pondéreé,

ona:

1. Lesvariables P,,n > 2 sont indépendantes et distribuées exponentiellement
avec densité e 7.

2. Py, Py, ..., P, et W, sont indépendantes pour tout .
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Démonstration

a) Sousla condition [ W, = y], W,_; a la méme distribution que le plus grand
de n— 1 points distribués uniformément entre 0 et y. Donc

n-1
P(P, = x/ Wy =y) = P(W_y < e 2/ 1y/ W, =y)=(%e”’:/"*1y) =e7,

ce quidémontre que P, et ¥, sont indépendants et que les P, ont une distri-
bution exponentielle.

b) Le point (2) du théoréme se démontre par induction. Soient B; et D; des
ensembles de Borel.

— n = 2: Py et Wy sont indépendants d’apres a).
- n: P(P; €B;,j < n, W, €Dy)
= [ [P(P;€By j< n—1/Wpy =x, Wy =)

yeDb,

 P(Py€Bn/ Way = x, Wo = y) AP(Wiy = x, Wy = )

Dans cette expression on a:

P(P;€By, j< n—1/Wp1 =x Wy = y)

= P(P;€Bj, j< n—1/Wy_1 = x)

(car les accroissements W, — W,_; sont indépendants)
= [II P(P;€B;))

j<n-1

(hypothése d’induction)

On obtient donc:

P(P;€B;, j<nW,€D,)= 11 | P(P;€B;)P(P,€B,, W,€ D,)
J < n-

= l‘[n P(P;€ B;) P(W, € D) (d’apres a)) (q.e.d.)

Ce théoréme montre que la probabilité de ruine du processus u(t) est identique
a la probabilité de ruine d’'un «Random Walk» dont la queue positive est
distribuée exponentiellement. La seule différence avec 'estimation précédente
est que la premiére prime P, est nulle. On a donc:

Y(w,A) = 1—F(w)+}y'1’o(w—y) dF(y) pour 4 > 0
0

¥(w) = [1-P(4 = 0)] (1-F(w)+ [ ¥ (w—y) dF(y)).
0
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On peut en particulier, a 'aide des transformées de Laplace, donner le com-
portement asymptotique de ¥':

Po(w) ~ (c—1) (~c~f"(-k)) ek, wo oo
Y(w,A) ~ (1+ck) Po(w), A >0, w- oo
Y(w) ~ [L—P(A = 0)] ¥(w,4), w- oo
ouf(x) = [ e*¥ dF(y) et k est la solution positive de fi-x) = 1 +cx.

Dans un article a paraitre [5], Biihlmann et Gerber montrent comment on peut
démontrer les théorémes 1 et 2 a I'aide d’une transformation stochastique du

temps.

Remargue: Dans la suite de cet article, on se permettra d’esquisser seulement
les démonstrations. On peut en trouver les détails dans [9].

4. Moments de la ruine lorsque A(t) = N( t)/t

La deuxieme propriété du théoréme 2 permet de donner le comportement
asymptotique des moments de la ruine sous la condition que la ruine se pro-
duise. Soit T = inf {t:w+u (t) < 0} I'instant de la ruine. Comme W, et u(¥,)
sont indépendants, d P(T'= W, = t) = dP (W, =t) P (ruine au n-iéme sinistre).
On peut alors ramener le probléme des moments de T'a un probléme de «Ran-
dom Walk» et en utilisant des résultats de Siegmund [13], on obtient:

Théoréme 3
E(T/T < co) ~ E(A7Y)-w/m (W = oo)
Var (T/T < oo) ~ Var(A-1)- (w/m)? (w — o0)
avec m = (1 +ck)! [[yerv dF(y)—c]

Remarque: Dans le cas du processus de risque classique, I'espérance et la
variance de I'instant de la ruine sont toutes deux asymptotiquement linéaires
enw [12].
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5. Approximation de la probabilité de ruine lorsque A(t)
est ’estimation de «credibility»

n + N(t
Lorsque A(t) = 2 b+:

de structure est une fonction gamma, c’est-a-dire ou N(t) est distribué suivant

a+ N(t)
b+t

, un cas particulier important est celui ou la fonction

une loi binomiale négative. On a alors
réme 1, P(w) = ¥ (w).

Dans le cas général, il semble trés difficile de donner une expression exacte
pour la probabilité de ruine. Dans son article [4], Biihlmann propose d’appro-

ximer, pour chaque réalisation A de A, le processus u(t, A) par un processus
a accroissements indépendants:

= E[A/N(t)] et, d’apreés le théo-

N(¢t)
w2, 2) = c(a—,w)lnb_“L_tJr Z (V—Y)

ou les V; sont des variables aleéatoires indépendantes, indépendantes des Y;
et de N(t) et distribuées exponentiellement. L’argumentation repose sur le fait
que:

a) u*(t, A) et u(t, 4) sont asymptotiquement équivalents pour t — co;

b) E[u*(t, 4)] = E[u(t, 1)];

c) Var(u*(t, A)) < Var(u(t, 1)).

Pour calculer la probabilité de ruine ¥*(w, 4) de ce nouveau processus, il est

possible de développer une méthode numérique basée sur une technique due
a Gerber [11]:

On pose pour x > 0:

v(t, £) = exp {—x u*(t, A)—cx(Ab—a)ln b_;t + Atx-Z(x )}

avec Z(x) = x1 {1 —E[exp(x(Y;—cV})) ] } = {1— ];(;2}

On peut alors montrer:
1. v(t,A),t > 0, est une martingale;

X

2. ¥*w, 1) < min max ewXexp {cx (Ab—a)ln b'l';t Atx Z(x)}.
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Exemple: Onchoisit ¥; = 1 p.s,a =1, b = 6.46,c = 1.1, a/b = E[A] = 0.155
(pour a et b, on a choisi les valeurs obtenues par Bichsel [1]).
On a alors pour w > 50:

WO(W) g e—O.lSSW
P, A) < eCI8wsil < 0.155  PHw,A) < 2.1e018Twsi 1 < 0.249
P¥*w,A) < 1.2 018Twsi | < (0.182 Y¥w, ) < 5.7 0187w si 1 < 0.356

6. Un modéle discret lorsque 1 (f) est Pestimation de «credibility»

On suppose dans ce chapitre que la fonction de structure S est une fonction
de distribution gamma. On sait alors que ¥(w) = ¥ (w). Dans le modéle con-
sidéré jusqu’a présent, on supposait que chaque dommage entrainait une cor-
rection immédiate de la prime. Dans ce chapitre, le paramétre de risque est
ajusté suivant la formule de «credibility», mais une correction de cette esti-
mation n’intervient qu’a des temps fixes nh,n = 1, 2, ...

Le processus de risque aux temps nh est alors

n

up = ). (cZ;—X;), n=1

j=1
+N((G—1h ray

avecZ,:c-a ((] ))~heth= Z Y.
b+(ji—1)h N (G-1oh)

Soit ¥»(w) la probabilité de ruine de u,, n > 1.

Théoreme 6

Soit ko la solution positive de f{—x) = 1 +£ (1—e-can/%) avec fix) = [ =¥ dF(y).
On a alors: ¥,(w) < ekow,

La démonstration s’effectue en montrant que le processus vo = exp(-koun),
n > 1, est une super-martingale et en utilisant les propriétés de celles-ci.

Exemple: S1Y; =1p.s,a=1,b=0646

h=0 h = Y2 année h = 1 année
TO(W)SE_OJSBW YJO(W)SQ—O.”SW (PO(W) < 0161w
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7. Probabilité de ruine d’un portefeuille composé d’un grand nombre
de risques

On considére un portefeuille composé de M risques indépendants Ay, ..., Ay,
distribués chacun suivant la fonction de structure S. Chaque risque est estimé
individuellement suivant la méthode de «credibility».

Soit ¥y (w) la probabilité de ruine du portefeuille.

On peut alors montrer que le processus de risque du portefeuille, aprés une

contraction du temps, converge en probabilité vers le processus de risque classi-
que et on obtient:

Théoreme 7

M lim ':P,'v[(W) = lP()(W).
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Zusammenfassung

Es wird in diesem Artikel ein Risiko-Prozess betrachtet, fiir welchen der Poisson-Parameter eine
Zufallsvariabel ist. Die Ruinwahrscheinlichkeit eines solchen Prozesses wird untersucht, wenn die
Primie auf Grund der Erfahrung angepasst wird.

Résumé

On suppose que le paramétre de Poisson d’un processus de risque est une variable aléatoire. On
étudie dans cet article la probabilité de ruine d’'un tel processus lorsque la prime est ajustée en
fonction du déroulement des sinistres.

Riassunto

L’autore esamina un processo di rischio nel quale anche il parametro di Poisson ¢ considerato come
una variabile aleatoria. Poi, la probabilita della rovina € calcolata nel caso di premi variabili.

Abstract

The author considers a risk process with a Poisson parameter which itself is a stochastic variable.
The ruin probability is examined in cases where the premium is calculated according to an experi-
ence rating formula.
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