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An Analytical Approach to the Generalized Poisson
Process in Case of Claim Distributions With
Infinite Skewness

By M.J. Goovaerts and L. D’'Hooge and P.Van Goethem

1. Introduction

The concept that a claim on an insurance company consists of two independent
events, the occurrence of the claim and its amount, is a well-known fact. Let
pa(t) denote the probability of n claims occurring in a given portfolio of con-
tracts within a specified period of length ¢. If Y, the size of the individual claim,
Is a positive random variable that is independent of the random variable
number-of-claims and its distribution function F(y) does not involve t, then,
PX <X)=F(x,0)= Y palt) Fr*(x). (L.1)
n=0
Seal [1] gives a review on some practical applications of (1.1). A distribution
thathas been used successfully on fire insurance [2] and automobile claims [3] is
the Pareto, namely
y =L
1—F(y)=(—) , Vo < Yy < oo. (1.2)
Yo
An awkward feature of this distribution is that the jt» moment about the origin
becomes infinite when j > «

’ jf & 4
E(Y)) = yo(—.),J < a. (1.3)
o—]

The aim of the present paper consists in treating the case where the moments
of F(y) are not all convergent. We want to present approximate formulae for
(1.1) in case the classical approximation formulae, such as the Edgeworth-, the
Esscher expansion, the normal power approximation, are not valid anymore
because of the divergencies of the moments E(Y7)from a certain order j on.

In what follows we will consider the case that both E(Y) and a2(Y) exist, but
E(Y?3) diverges.

In what follows we consider the asymptotic behaviour or the for large values
of y convergent series development of the distribution density fy-(y):

ap a as
S y) = -;+F+ya+—2+...vy >1a,€ER O0<o < 1. (1.4)
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Because E(l), E(Y) and E(Y?) are supposed to be convergent one necessarely
has:

ag = Ay = dg = 0.
Consequently we limit ourselves to the case where, for large real y

a a das
)= —+ —+ _+0(

ya+3 yc+4 y0'+ 5

1
WS), y> 1. (1.5)

In the sequel we’ll also use the relations:

E(X) =tE(Y), and
a?(X) = tE(Y?).

2. Extension of the Edgeworth Expansion

Let us consider the characteristic function of Y

¢, (s) = J esvf (y)dy. 2.1)
0
Successively the Fourier integral can be transformed as follows:

22 o 1 i2c241,2
(s)—1+1!E(Y)+—E(Y2)+J (eisy_l_li—}: ”2') )]’y )y (2.2)
. !

Next the remaining integral is manipulated as follows:

=/ isy (isy) = isy (isy)? as
JVO (elsy_ 1— _1‘!__ )fi ndy = J\O (ezsy_ 1— 1_!_ 21 f)'(."‘)_ yot3 dy

RO U () A W
vas | (-1 e @3

Because the integral in the 1. h.s. of (2.3) converges as well as the second term
in the r.h.s. of (2.3) the first term in the r.h.s. of (2.3) also converges.
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Next one has:

Jm (efsy—l isy _(isy)? )(
1!
0
1¢)3
(isy) )(Y g+3>dy+(“l3s_)1j (f( )—yﬁg) y.

Applying the same technique successively as the one giving raise to (2.3) and
(2.4) one finally obtains:

=/ isy (isy)?
etsy — 1 -
J, ety )fy

: TR

(2.4)

sy (lsy)2 d
1! 21 )yo+3

sy (isy)* (isyP\ dy
+ay (e”y y0+4

Jo 1 2! 3!
+ elsy — 1 — E_S_y_ lSy)z _ (isy)3 _(iSy)4 d_V
as ' 2 ! 3 ! 4! yo"l’b
(2.5)
(isp? [ "
+?40 y3 fY(y)b gt+3 Y

-
+(I~S)~4- y‘*(fy(y)— B a4)dy

4 | § yg+ 3 ya+4

o ; io1)2 is1)3 sv)4
N f (eisy_l_w_y_(tsy) _(isy) __(lsy))
12t 31 4
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i

yo’+3

1 .
Let I (—) have continuous differential coefficients of the first two orders
y

when 0 < y < oo, then the second member of (2.5) transforms as follows, using
two theorems of ref. [4]:

fm (eiSy —1- Bl_(lSY)Z)fy y)dy
0 1!

I(e)[(1=0) [(o)[(1=0)

ag(—1)3 m)_(—is)a+2+a4(— 14 m(_is)a+3+a5(— 1y
Fel(l-o) . . (sPI(1—=0) (s I'(1-0) -
W(_IS) o 3! F(2—o‘)y3Jr 41 F(3_O.))’4+0((—15))

|s|<1 (2.6)
where we have put

Y3 = L dy y”l( o )
(_) (2)
Ya = J': dy yo-1 (y"j;‘) (2.7)

where (1) and (2) denote the first and second derivative.

Next we consider the characteristic function of the generalized Poisson distri-
bution

and

Dy(s) = et

We get:

(s) €X | S_2 4+t a F(U) F(l —0’) —is\e+2 1 )
= — _ J
(pj;‘%& L2 > T(e+3) ( o )/t

(o) (1—o0) (—15)0*3 1 3 1-—0)( IS)"+4 1 A
“TTevdn o) 7 o - F(0+5 v
@Pri-o) 1 1 G ) Fi-o) 1 1 (2.8)

+3T r2-o) cr) aBlfs rG-o) oc4l/4+0( t5>}:|t>1

where o2 = E(Y?).
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Part of the exponential function is expanded, giving raise to

-2 A2et](—ag (T (1 -a)\» 1
(P.\LE(X)(S)ze 2{2[ J ( I'ec+3) ) onlo+2) x

|
n=0 n.

1
X |:(—is)"+2 17110
S _(_is)ng+2n+3 i no+1
3! T2—0) a3 Iﬂ
I'o)l'(1-0) 1
I(oc+4) oot

pal(1=0) 1
417 (3—0) ot

(_ l'S)(n+l)a+2n+3 i
l/{(n+l)g+]
(_ is)na+2n+4 I

Wi (2.9)

+% ()}3 Al _G))z i(__is)na+2n+6 L]

27— 1) +2
aﬁ lﬂﬂﬂ'

31T (2—0)
Fol(l—o) 1

(—is)(mtDo+2n+d L

_a5 F(U+5) a0'+4 l/E(n+l)U+2
e F@I0P 1
3! T(c+4)'(2—0) oot (=1s) I/E(n+l)a+2
1 (a4 r(a)r(l_a))z Lo L J
2 I'(c+4) o206 l/E(ﬂ+2)(f+2

+0(1/23)}

where [x] denotes the largest integer contained in x.

—EX
In order to obtain the distribution density of ——CX'(_)—)OHC has to consider:
o
i f= &
g st ¢ 2(—isy ds. (2.10) -

)
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(2.10) can be expressed by means of the well known integral representation of
the Parabolic cylinder function [6]

1 . L . i
D,(z) = —= 2" ea j XPe 2 dx (2.11)

[Rep > —1,for x < Qarg x? = pni]

where I ,(z) can be expressed by means of the degenerate hypergeometric
functions:

)

P e 2 VoIT _ 2
D=2 11T o(P 2 T) V(1P 2 )L ey
—-p 222 p 2 2 2
M\ =3

and where of course

1) z2 1 2) 7
blop) =142 2qrletD) 2 el Dot )2 (2.13)
Py (+ 120 v+ 1D +2) 3!
Consequently:
L _# 1 =
”J eTe 2 (—ispds =——=e ¢4 D,(—x) (2.14)
2n ) 2n

From(2.12)and (2.13)it follows that I, (— x)isreal for all x € R. Consequently
(2.9) can be cast into the form

f

_Z[S,H](—aa)"(r(a)m—a))n 1o

. (x) = 5
X-E(X
crlX() ) n=0 n! F(o’+3) g (a+2) i

tnO’

X [nn(a+2)(_x)

v3sl(1—a) 1 1

31 F(Z—O’) GEDHG+2H+3(_.X) an(frl

I'e)f(1—-o) 1 1
I'ic+4) aot3 (n+Do+an+a( =) ﬁ(nﬂ)aﬂ

ay



+Hr(1-0)1 (%) 1
4 1_.( ) 4 no+2n+4 X l/f[

+.l I'(l—o)\2 ID (—x) 1
2 3 Ir'2—a)/ of R lﬁnnﬂz

not+2

re)r(—o) 1
“ ['(c+5) oot -+ D+ 2n-+4( = I/(ml
_days [o)(IF(1—=0a))? 1 1
3T F(0+4)F(2—a) 16%6 (n+])6+2n+6(_x) lﬁ(rﬂr])m’-?

N T@ra-oy 1o - I 5
~ { n+2)o+2n —X) —F=
2 4 I'(o+4) 2ot N TATHIEE ! l/;(n?-‘_.’)rr—FZJ

1
Of — ). 215
() -

In order to be able to deduce the for large values of ¢ leading terms in the
expansion of the cumulative distribution function one has to consider

& XF

A
J e 4 I,(—x)dx.
Making use of the well-known recursion formula

d 1
— D y(z)— 5 2D p(z)+ D pia(2) = 0 (2.16)

dz

one easily deduces:

~ x2 x2

J e 4D, (—x)dx=e + D,(—x). (2.17)
Consequently one obtains:

er|(—as) (T(@)L(1-0)\" 1
FX E(X) (X)ZZ[ ] n! ( I'(o+3) ) an6+2) | A n

T n=0

X [Dn(a+7)+l 7
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ys I(1—0) 1 1
_?T! m ;3 na+2n+4(_x) l/;mﬁ_l
L @ri-o 1 N
tq I(c+4) aote ln+l}a+2n+4(_)“) %(71+)6+1

val(l1—0) 1
41T (3—0)al

1fvs F'(1—0)\2 1
g i D s
+2(3! F(Z—O’) ae HU+2H+7(

tno+2

1
Dno’+2n+5(_x) V

1
%) inoss

(2.18)
I'(o)[(1—0a) 1 » 1
a5 F(U+5) aa+4 (n+l)rr+2n+5(_x) lﬁ(n+l)ﬂ+2

asys T(o)I'(1—a))2 1 1
3! F(g+4)[‘(2_a) qot6 (n+l)a+2n+7(—x) W(n-kl)a—ﬁz

1 I'(o)I'(1—0)\> 1 D 1
+5 “ I'(o+4) y20+6 n*2)a +2n+7(—X) ﬁ(mz;ﬁz

5

3. Application to Some Actual Distributions of Claims Arising in Insurance
Applications

Let us first consider the case of a Pareto density

1
Ay) = ayi
f} (,) Yo (_V+_V0)l+x

where o = 2+owith0O <o < 1.
In the present case one obtains the following expansion for (1.5)

1y [B+a 8 [@+a) e T(S+0) yie
y  IT'(240)y3*tc T'(2Q40)y*te T'(2+40)yste

rG+0) o, T@+o) o T6+0) 4.,
_ o

h = H = ] s
where ag F(2+J)YO 4 F(2+cr)y0 5 F2+0)
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For the Pareto case it is well known that for the compound variable holds:

) gl 1
J(X)=t2yog-1+a.

One easily calculates y3 and y4 from (2.7) to give:

I'(o)
9 = —3 Iyt
’3 Yor2+0)
I'(0)
9 =5 4Pyl .
M= L)

Hence inserting these results for as, ay4, as, y3 and y,4 into the r.h.s of (2.15) and
(2.18) gives an approximation for the compound Poisson process for a Pareto

claim distribution.
Another distribution arising in insurance applications is given by [7]:

fy(jf) =ky2(y+a)™ q > q2+1.

This distribution falls between types I1I and V into the region of the type VI

distributions.

In case q; = g2+ 3 + o the following expansion for f.(y) valid for large y (y > a)

is obtained

_ 1 +(Q2+3+O') a +(q2+3+a)(qz+2+o') a?® N
[, () =k. T T i 5} et
I'(gz+0+3)

where k = q2*o )
T @+ ) (e+2)

Hence:

ag =k, ay=ka(qga+3+0), as=ka%(gz+3+0)(q2+2+0).



68

In the present case one still has the following well known result

k I'(qa+2)I'(140)

E(X)=t.
) altte  I'(qa+0+3)

k I'(ga+3)I (o)
ar I'(ga+o+3)

One also easily calculates 73 and y, to give:

I'(o+ 1) I(g2+3)

Yo = —ighp
I'e+qg2+3)
o+ 1)I'(g2+4)
Ya=ac k.
I'c+q2+3)
Conclusion

The results obtained above suggest to continue the search for results according
to Esscher’s approximation and in the case where the variance resp. the mean
of the variable Y isn’t finite.
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Zusammenfassung

Im vorliegenden Beitrag wird die Edgeworth-Reihenentwicklung fiir den Fall, dass das dritte
Moment der Schadenverteilungsfunktion divergiert, hergeleitet und auf zwei in der Versicherung
auftretende Verteilungen angewandt.

Résume

Le développement en série de Edgeworth est étendu au cas ot le moment du 3¢ ordre de la fonction
de répartition des sinistres diverge et est ensuite appliqué a deux répartitions se rencontrant dans
I’assurance.

Riassunto

Nel presente articolo si deriva la serie di Edgeworth nel caso che il terzo momento della funzione di
distribuzione dei sinistri sia divergente ¢ la si applica a due distribuzioni che si incontrano nell’assi-
curazione.

Summary

In the present contribution the extension of the Edgeworth series is expanded to the case where the
third moment of the claim distribution diverges and applied to two actual distributions of claims
that arise in insurance applications.
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