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On the Computation of Stop-Loss Premiums

By Hans U.Gerber

1. Introduction and definitions

The purpose of this note is to carry on some of the arguments that were intro-
duced in [1], and, based on this, to improve the discretization algorithms that
are discussed in [2].

If X denotes a random variable with cdf F(x), —co< x <oo, let

1
P(F,t,a) =_zln E[ee(X-0+] (1)
C

for a>0, and
P(F,t,0)=E[(X—1)"], (2)

for a = 0.

where —oco <t <oo. For an arbitrary distribution F, P(F,t, a) is well defined
(possibly infinite). In both cases P should be interpreted as the stop-loss pre-
mium corresponding to a risk X and a deductible of ¢. In (2) it is the net

premium; in (1) it is the one obtained from the exponential premium calcula-
tion principle with parameter a>0. In terms of F, P(F, t, a) equals

—ln {F(t +Je“(“"” dF(x)} (3)

|
= -ln{1+a-fe“(x“) [1—F(x)]dx}
a
t

if a>0, and

oo

j(x—t) dF (x) =f[l —F(x)]dx 4)
t t
ifa=0.
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For a>=0 we define a partzal ordering among distributions as follows. If G, H
are cdf, we say that G<H if P(G,t,a)<P(H,t,a) for —co<t<oo. From
(3) and 14) we see that an equivalent condition is that

j\ et -0 1 — G(x)] dx gJ ed @t []— H(x)] dx (5)
¢ t

for all ¢.

It is instructive to consider P(F,t,o00) = lim P(F,t,a), a—oo. This limit
ex1sts and equals (rp—t)+, if rp = sup{x|F(x)<1} is finite. In this sense
G < H means that the right hand end point of the range of G is to the left of

(or equal to) the right hand end point of the range of H. Thus in the limit we
obtain a complete ordering.

Let K, denote the set of cdf F, for which P(F,t, a) is finite. For distributions
in K, we introduce the following metric. If G, H € K, let

oo

je“ @EODTG(x)— H(x)] dx|. (6)

t

da(G, H) = sup
I

From formulas (3) and (4) we see that
do(G,H) = sup | P(G,t,0)— P(H,t,0)| (7)
5
and that
1
du(G, H) = — sup |eaP(G.t.a) _gaP(H.t.a))| (8)
a t

for a>0. Thus the distance (6) is a useful tool for a comparison of stop-loss
premiums.

2. Characterization of stop-loss premiums

Let I, denote the collection of all stop-ldss premiums considered functions of
the deductible ¢ (—co <t <o0):

Io = {p|p(t)=P(F,t,a) for some FeK,}. 9)
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It 1s easy to see that different cdf in K, lead to different stop-loss premiums
in I,. In fact, given a function p € I, the corresponding cdf F is given by the
formula

F(x) = et?@® (14p'(x)), —co< X <oo, (10)

which has the character of an inversion formula. Note that at points of discon-
tinuity of F, p’ should be interpreted as the right-side derivative.
Formula (10) and formulas (3) and (4), respectively, enable us to characterize
I,: A function p(t), —oco <t <oo, belongs to I, if and only if the following four
conditions are satisfied.

(1) p 1s a continuous, non-increasing function.

(11) p(t)—0 for t > oo, p(t)—> oo for t— —oco.
(ii1) e«?® (14 p’ (1)) is a non-decreasing function.
{iv)exr® (1+4p'(t))—0 for t > — co.
The characterization of net stop-loss premiums is particularly simple: A func-
tion p belongs to Iy, if and only if it is continuous, non-increasing, concave
from above, such that p(t)—0 for t—co and p'(t)— — 1 for t—» —oco. For a>0,
these conditions are still necessary (but not sufficient): Conditions (iii) and (iv)
are the stronger, the larger a is; thus i,C I, wherever 0<b<a.
Using formula (10), we can translate properties of F into properties of p(t) =
P(F,t,a), and vice versa. For example, if F(x) is constant over an interval
(x1, x2), its derivative vanishes and therefore p satisfies the differential equation.

p'(t)+a-p'(t) (1+p'(t)) =0 (11)

for t €(xy, x2). In terms of the boundary values p(x;), p(x2), the solution of
this equation is

(12)

1
pt)=—"-In

{(e—‘“fl — g 8t) 8P (Ty) + (g0t — g2%y) e“p(xl)}
a

e~8%) — g=a%y

(x1<t<xy),ifa>0.If a = 0, p(t) is obtained by linear interpolation.

3. A sufficient condition for inequality

Let G, H be cdf’s in K, satisfying the following two conditions:

(A) J e [G(x)—H(x)] dx>0.
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(B) Thereisa B, —oo <P <oo, such that
—G(x)<H(x) for x<PB
—G(x)=H(x) for x>B.
Then G<H.
Proof: We want to verify that inequality (5) holds for all ¢. If t > B, (5) is satis-

fied because of condition (A) alone. If t <3, we first use (B) and then (A) to

show that the difference between the right side and the left side in (5) is non-
negative:

J e @ N[G(x)-H(x)] dx= Je“ @0O[G(x)—H(x)] dx=0. (13)
> =

g.e.d.

Note that condition (A) is satisfied if [e?* dG(x)<[e** dH(x) (in the case
a>0), and if [x dG(x)< [x dH (x) (in the case a = 0).

4. Examples

In all three examples we assume that F is a cdf that is concentrated on a finite
interval [xq, xo]. Let a>0.

Example 1. Let G denote the degenerate distribution whose mass is concen-
trated at the point x,,, where

1
—In Je”dF(x) if a>0
a

Xm =

(14)
{x dF(x) if a=0.

Then condition (A) is satisfied (Witgl equality holding), and condition (B) is
satisfied with B = x,,. Therefore G<F.

Example 2. The idea of the previous example was to concentrate the mass of
F at the point x,,. Now we look at the other extreme, which is to disperse the
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mass of F' to the endpoints. Let H denote the two-point distribution that is
concentrated at x; and x; such that

j(e”—e”x)dF(x)

— — if a>0
| —H(x—0) = errmen (15)
—x;)dF
_[(X X1) (x) i 6 = 0
X2 —X1

and H(x;) = H(x2—0). Then FzH, since again conditions (A) (with equality
holding) and (B) are satisfied.

Example 3. Let H denote the mixture between the uniform distribution over
(x1, x2) and the degenerate distribution with mass concentrated at either x; or
X9, for which

[evs[F(x)—H(x)]dx = 0. (16)

Thus condition (A) is satisfied. If we make the ac}lditional assumption that F
is unimodal, condition (B) is also satisfied and F < H. This example is due to
Verbeek (see [3] for a = 0).

5. Properties

The following result shows that the larger the parameter a is, the more distri-
butions are comparable.

b
Proposition 1. If 0<a<b, G<H implies that G< H.

Proof. Suppose that H € K, (otherwise the statement is trivial). Then we inte-
grate by parts to rewrite

=
et @1 —H(x)]dx =
: (17)

d oo
— | etv-a)(@-t) f e [1—H(y)]dydx
dx

o~

as

{eﬂ(v-t)[l_H(y)] dy+ (18)

oo

(b—a)- Te(ma) (z—t) J‘ et [1—H(y)]dydx.
t

t
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Suppose now that GéH, i.e., that inequality (5) holds for all ¢t. Thus if we

replace H by G in expression (18) we obtain a lower bound for any ¢, which

in turn means that G < H .
g.e.d.

As an illustration let us consider G, the degenerate distribution with mass con-

centrated at 2, and H, the exponential distribution with parameter 1. Then
P(G,t.a) = (2—t)+ and

—t if t<0

|
—
S

P(H,t, a) = (19)

-ln{1+ et}‘ if (>0

l1—a

Q|

if 0<a<1and infinite if a> 1.

Thus G <H whenever P(G,0,a)<P(H,0,a), 1.e., whenever (1 —a)e2e<1, or
a>.7968....

Proposition 2. If GiiHi(i =1,2,...) and {p;} is a sequence of probability
weights, then

a) > p:G; < Y piH;
)

?

b)Gi*...* G, < Hi *...*H, forall n.
The proof is similar to the one given in [1] (for @ = 0) and is omitted. The

following result shows how mixing and convoluting affects the metric.

Proposition 3. Let F, G, H, G;, H; be cdf’s in K., and let {p;} be a sequence
of probability weights. Then

a) da(z piGs, ZPin) = Zpi da(Gi, Hy)

b) du(F * G, F * H) < do (G, H)

¢) do(G*n, H*) <n - dy (G, H).
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Proof. a) Easy. b)for all ¢

| Te“‘x-" [F*G(x)— F*H(x)] dx|

t
= | fTe“‘x“‘” [G(x—z)— H(x—2z)] dx dF(z)| (20)
< |Tef‘(z—” [G(x—z)— H(x—z)dx|dF(z)

t
<d.(G, H).

Thus, taking the supremum of the left side, we obtain the desired inequality.
c) First we use the triangle inequality and then b) to get the estimate

da(G*n, H*n)

(21)
n—1
< ). da(G* G*n-1-k * H*k H* G*n-1-k * [*k)
k=0
< n-do(G, H).
g.e.d.

6. Application: Discretization

[n this section we discuss numerical procedures for evaluating P(F,t, a) for
some a >0, if F (the distribution of aggregate claims) is of the form

F(x)= Y piBi(x). 22)
i=0

Here p; = prob(N = i), where N denotes the number of claims, and B denotes
‘he cdf of individual claim amounts. It is assumed that both B and F are in
K, (in the special case where the claim number distribution is Poisson,
B € K, implies that F € K,).

For a given d >0, let K,4 denote the distributions in K, that are arithmetic
with span d, i.e., whose probability mass is concentrated at the points 0, +d,
+2d, ..., and let 1,4 denote the corresponding subset of I,,.
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The gereral idea is to replace the original claim amount distribution by a dis-
tributiod By K, 4, to do the calculations for

Fyu(x) =

8

i=0
and tham to get information about P(F,t,a) from P(Fu,t,a). Specifically,
three nethods are suggested:

I. Estimation of the difference

For anarbitrary B+ € K,4 we can use the inequality
da(F, F4)<E[N]-dqa(B, By), (24)

which bllows from Proposition 3 (Parts a) and c)), to estimate the difference
betweer P(F, t,a) and P(Fs,t,a).

I1. Upper bounds (method of dispersal)

If we stlect a Bu e K44 for which BZB%, Proposition 2 tells us that FiF,g.
This rases the question whether among the diastributions in K, 4 that dominate
B thert 1s a smallest one (in the sense of <). The answer is yes; we shall
constrict a B, € K44 and then verify that it satisfies these properties.

First le us write B as a mixture of conditional distributions:

B= ) qB, (25)

qi#0

where ; = B((i+1)d)— B(id) and

0 if x<id
Bi(x) = | [B(x)=B(id)]/q: if id<x <(i+1)d (26)
1 if x>(i+1)d

Followng Example 2, we replace each of these B;’s by the corresponding two-
point dstribution that is concentrated at the adjacent points id and (i+1)d.
The mxture of these two-point distributions is a distribution B, € K,q for
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which BiBu (reason: Part a) of Proposition 2). Observe that the atoms
b; = B, (id)— By (id—0) of B, are given by the following formula:

id @+ d
(e@% —ea(i-1)d) d B(x) j(ea(”l’d—eax)dB(x)
By S ol . @7)
eald_ea(z 1)d ea(z+1)d_eazd,

if a>0. The expression for a = 0 can be obtained as an obvious limit and has
already appeared elsewhere (formula (22) in [2]).

A short calculation shows that P(B, t,a) = P(B,,t,a)whenever tis a rnu}ztiple
of the span d. Let us now consider an arbitrary By € K,4 for which B<B,.
Thus P(By,t,a)<P(B4,t,a) whenever t is a multiple of d. But, since the
interpolation formula (12) is monotone in the boundary conditions, this means
that this inequality holds for all ¢, i.e., that B, <Bu So B, is indeed the least
element of K, 4 that dominates B.

It is instructive to visualize this result graphically. For simplicity let us con-
sider the case @ = 0. A function ps € I is in Ioq, if and only if it is piecewise
linear, the discontinuities of the first derivative being at the multiples of d.
Given a p e I, we find the smallest element in Ip4 that dominates p by con-
necting successive points (id, p(id)) with linear line segments (reason: the
graph of p is concave from above). Formula (10) with @ = O tells us that the
weights of p, are obtained as the differences of successive slopes:

b; = pu(id+0)—py (id—0). (28)
In terms of p, this means that

b= P+ DD -390+ 29)

or, since p(t) = T [1—B(x)]dx,
t

{ | [1~B(x)]dx—(Hjl)d[l—B(x)]dx}/d (30)

(i-1)d id

Integrating by parts we see that this expression is consistent with formula (27).
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I11. Lower bounds

The idea is to chose a By e K4 for which By <B. Then, because of Propo-
sition 2, Fy <F. In general, there is no biggest lower bound for B in K,4; so
it is not obvious which B should be chosen. We shall discuss two methods
for this. In each case we first write B as a mixture of distributions, such that
the equivalent point masses, according to formula (14), are located at multiples
of the span d. Then, following Example 1, we replace these distributions by
the corresponding degenerate distributions. By virtue of Part a) of Proposition 2
we obtain a lower bound for B.

In both cases we assume that B(x) = 0 for x <0, and that the probability for
a claim of size zero is “sufficiently large”. The latter condition is less artificial
than it appears at first sight (see the remark below).

For the truncation method we write

oo

B= Y (q+r)Bi+(1-3 (q:+7))C, (31)
i=1
Qi¢0
where q; = B((i+1)d—0) — B(id —0); r; >0 is defined by the equation

(i+1)d

(qi+r)eri® =ri+ | e*wdB(x) (32)
ia
(if a>0) and B; from
0 if x<0
B _ ri if 0<x<id 33
ri+q0) Bil) = 3 L |\ Bx)—B(id—0) if id<x <@+1)d O
ri+q; if x>(i+1)d

Finally, the remainder C is a distribution that is concentrated on [0, d). In
the expression (31) we replace B; by the degenerate distribution with mass con-
centrated at id, and C by the one with mass concentrated at 0, to get a lower
bound B, for B. (“Sufficiently large” means here that ) (g; +r;)<1).)

The basis of the truncation method was to combine the probability mass of
an interval [id, (i+ 1)d) with a point mass at zero of a suitable size. Alter-
natively, we may want to combine only masses of single intervals. This is ac-
complished by the partition method. We assume that B has a finite range; let
Xo denote its right hand end point. For simplicity let us assume that B(x) is
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continuous for x#0. Then we determine sequentially xo>yo>x;>y;> ... as
follows: Let y; be the largest multiple of d less than x;. Then let x;;+; be the
smallest solution of

gieavi = | eav dB(x) (34)

Tit)

(if a>0), where ¢q; = B(x;)— B(x;+1). This construction stops when x,, € (0, d)
or when x, = 0 (in the latter case we have to use part of the point mass at
zero). Thus B can be written as the following mixture:

n—1
i=0
where
0 fx <0
qui(x) = qi—B(xi)-!-B(X) ifxi01 < x < x5 (36)
L qi if x > x;

and the remainder C is a distribution that is concentrated on (0, d). Now we
replace B; by the degenerate distribution with mass concentrated at y;, and
C by the degenerate distribution with mass concentrated at zero, to get a lower
bound B; € K, , for B.

The partition method has an interesting geometric interpretation. For simplic-
ity let us look at in the case @ = 0. Given p(t) = P(B, t, 0), one can copn-
struct p;(t) = P(By,t,0) as follows: First p;(t) = 0 for t > y,. Then we draw
the tangent line from the point (yy, 0) to the graph of p. The point of contact
is (x1, p(x1)). Then we extend this tangent line to get to the point (yq, p;(y1)).
From this point we draw again the tangent line to the graph of p. The point
of contact is now (x2, p(xz)), etc.

Remark. If the claim number distribution is mixed Poisson,

oo

n
Pn = J e® —dU(0), (37)
0
we can always generate claims of size zero (of a probability arbitrarily close

to one) by a transformation of the structure function. If the new claim amount
distribution should be B = (1—w) I+ wB for some 0<w<1 (where I(x) =0
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for x <0 and 1 for x>0), the transformed structure function U is given by the
equation U(0) = U(w0), 6>0. The distribution F remains invariant under
these transformations. Examples: 1) If the claim number distribution is Pois-
son with parameter A >0, the transformed claim number distribution is again
Poisson, namely with parameter £ = A/w. 2) If the claim number distribution
is negative binomial (i.e., if U is Gamma), say with parameters a>0 and
0<p<1, the transformed claim number distribution is again negative bino-
mial, namely, with parameters & = «, and

" p
_ . 38
P q—w) (%)
where g = 1 —p.
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Zusammenfassung

Eine Familie von Abstidnden und Halbordnungen unter Verteilungen wird eingefiihrt, und ihr
Eigenschaften unter Mischung und Faltung werden untersucht. Diese Begriffe werden sodani
angewendet zur Abschitzung des Fehlers, der entsteht, wenn die Schadenhdhenverteilung diskre
tisiert wird bei der Berechnung einer Stop-Loss-Primie.

Reésume

L’auteur introduit une famille d’écarts et d’ordres partiaux parmi plusieurs distributions et étudi
leurs propriétés sous mixtures et convolutions. Certaines sont employées ensuite pour évaluer I’er
reur qui se produit quand la distribution des sommes de sinistre est discrétisée pour le calcul numé
rique.

Riassunto
Siintroduce una famiglia di distanze e ordini parziali fra distribuzioni e siesaminano le loro qualit

sotto mescolanza e convoluzione. Questi concetti si applicano poi per valutare I’errore che risult
discretizzando la distribuzione dell’ammontare dei sinistri nel calcolo del premio stop loss.

Summary

A family of distances and partial orderings among distributions is introduced, and their propertie
under mixing and convolution are discussed. These concepts are then applied to estimate the errc
that results when the claim amount distribution is discretizised for calculating a stop-loss premium.
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