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Combinatorial Summation

Fl. De Vylder, University of Louvain, Belgium

Abstract

An elementary but quite general combinatorial summation method is develop-
ed in this paper. It is based on the use of Kronecker’s delta and a straight-
forward generalisation of that function.

In one illustration of the method, we calculate

n
E( 2, az‘jrc...XinXk---), (0)
i, k,...=1
where X1, X2, X3, ... are 1.1.d. standardized normal variables.
With that result, we could give a simple demonstration of Craig’s theorem
(Craig, 1943) stating that two quadratic forms in i.i.d. normal standardized
random variables are independent if and only if the product of the matrices
of the forms is zero. In fact we proved the “only if” part only, but that is the
most difficult one. The demonstrations known hitherto (Hotelling, 1944 ; Car-
penter, 1950; Aitken, 1950; see also the demonstration of Lancaster published
in Kendall and Stuart, 1958) used rather high-level tools (multidimensional
transforms and advanced results in matrix theory). Hotelling (1944) found that
Craig’s original demonstration needed an improvement.
In another illustration, we calculate (p) in the case of 1.1.d. Poisson variables.
This illustration is based on a rather deep result proved previously in the
paper.
In a last section, we show how previous results extend to all distributions with
existing moment generating function. It appears, there, that a bridge between
the method developed in this paper and Fisher’s k-statistics is not excluded.

1. General case

1.1. Introduction to the method

Suppose we want to calculate

E(X1+Xz+...+Xn)3= (1)
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where X, X, ..., X, are i.1.d. random variables. We write this expression as

n n n

Y Y EMX:iX;Xk).
i=1j=1k=1
From our general result follows that for any i, j, k:

E(X:X;Xp) = Mo+ M, (55 + Ojk + Ors) + M2 bijdjk,

where Mo, My, M> are polynomials in the first moments of X;. Therefore (1)
equals Mon® +3 My n2+ Msyn.

To be convinced of the advantage of the combinatorial method, the reader
should calculate (1) by the usual algebraical method and observe how easy it
is then to make mathematical slips.

[.2. Partitions of a positive integer

Let p be a positive integer. A partition of p is a sequence 7 = (a, b, ¢c,...) of
positive integers with properties:

p=a+b+c+...; a>b>c>...
The partitions of 1, 2, 3,4, 5, 6 are given in table 1.

Table 1. Partitions of 1,2,3,4,5,6

1 2 3 4 5 6
1 11 111 1111 111 111111

2 21 211 2111 21111

3 31 311 3111
22 221 2211

4 41 411

32 321

5 222

51

42

33

6

As is done in table 1, we shall often omit the comma’s and brackets in the
notation of a partition.
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The set of partitions of p is partially ordered by the relation denoted “—7,
where (a,b,c,...)—(a’,b’,¢’,...) means that a’ is a sum of elements a, b, c, ...,
that b" is a sum of remaining elements, ... The partial order relation is illus-
trated in fig. 1, where arrows resulting from transitivity and reflexivity are
omitted.

111111
21111

>N

4112~ 321 239

Fig. 1. Partial order relation in the set of partitions of 6

1.3. The fundamental symmetrical functions of indices
1.3.1. Generalized Kronecker’s ¢

The function §;;. . 1s defined to take the value 1 if and only if all the indices
i,j.k,...are equal and the value O otherwise. If there is only one index i, then
0; = 1 for each value of i.

1.3.2. Definition of the fundamental symmetrical functions

Let p be the number of indices i, /, ... considered as integer variables (no values
are assigned to them for the moment). Consider a partition of p:

n=(a,b,...) (2)

Then we define the fundamental symmetrical function

1
Sn(i,j,---)222511..4“5/31...[)’,,--- 3)
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where (x1, ..., 0, f1, ... Bb, ...) runs through the p! permutations of (i,7,k,...).
The constant K is unessential and could be dispensed with. However, we shall
fix it in order to eliminate repetitions in the second member of (3).

The p! functions 4.2, 0p,...p, - split in classes of equal, but differently repre-
sented functions. On grounds of symmetry each of these classes contains the
same number of members. This number is K, by definition. It depends on the
partition r.

The defining sequence (a, b, ¢, ...) of n also splits in classes of equal numbers.
If these classes have respectively u, v, ... members, then it is clear from an ele-
mentary combinatorial argument (consider the permutations of the indices at
each ¢ and also the permutations of §’s with the same number of indices) that
K =al!b!c!...ulv!... Thus, exactly

p!
a'ble!...ulv!...

)

different functions, each with coefficient 1, appear in the second member of (3).

1.3.3. Examples (d's with only one index are omitted):

1= 810) = 811(i,j) = S, j, k) = ...,

S2(i,)) = di,

So1(i, ], k) = 65 + 0jx + i,

S3(i=j= k) = (5ijk,

So11(i,J, k, 1) = 8i5 4+ dixc + dir + Sk + 051 + Sxus

Soa(i,j, k, 1) = 04y Ox1 + Sk 81 + Oxi 01, (cyclical permutations of three first
indices)

Sa1(i,j, k, 1) = 0k0 + Siks + Sij1 + Sijies
84(i3j5 k: l) = 5ijkl-
1.3.4. Construction of Sss5 . (i,/, k,...)
This function will be of the utmost importance in the following sections. We

show how to construct its development. Of course, similar devices can be found
for other fundamental functions.
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First, we show how to construct Ss02(i, j, k, [, m, n) from Sso(i, j, k, [).
Consider the array

Ij ko
2 2 1 1
21 2 1
2 1 1 2

To the lines 2211, 2121, 2112 correspond respectively the terms d;; oy,
Sik 0j1, On1 075 Of Saa(i, j, k, [). From any line grst, we construct the array

3

0 0 o W
S T S U

Lo W Lo W

L T o ™M
= WD Ur U Uy
L) ™ e

q

This construction being performed for each line we have the new array of
table 2 and, for each line, the corresponding indicated term of Ss02 (i, ], k, [,
m, n).

Table 2

i j k I mn

33 2 2 1 1 0ij Ok1 Omn
3 2 3 211 Oix Oj1 Omn
3 2 2 3 1 1 0i1 Ojx Omn
32 21 3 1 Oim Ojk Oin
3 2 Z2 1 1 3 Oin Ojk Oim
3 03 21 2 1 0ij Okm Otn
3 2 31 2 1 Oik Ojm Oln
321 3 2 1 0i1 Ojm Okn
3 21 2 3 1 Oim 0j1 Okn
321 2 1 3 Oin Oj1 Okm
3 3 21 1 2 0ij Ok n O1m
32 3 11 2 Oik Oin Olm
321 3 1 2 0i1 Oin Okm
3211 3 2 Oim Ojn Ok1
32 2 1 1 2 3 (Sin 5jm Ok
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From this array, we can construct, in a similar manner, Sag09(i,j...), and so
on.

To prove that the method is valid, it is sufficient to prove that all terms ob-
tained are different functions, since enough functions are constructed, as is seen

from (4). That the functions are different is easily seen by an inductive argu-
ment.

1.3.5. Properties of the fundamental symmetrical functions

Hitherto, the indices i, j, ... were considered as distinct variables. Of course,
they may have the same value. Suppose now that i, j, k, ... have each a fixed
integer positive value. Then the sequence (i, j, k, ...) splits in classes of equal
numbers. If the number of members in these classes is r, s, t, ..., where we
assume r >s >t..., then we have the partition (r, s, t,...) of p. This partition
is denoted by o(i, j, k, ...).

Examples: ¢(7,8,7,9.8) = (2,2, 1), 03,3,3,1) =3, 1).
The following properties are valid:

(1) S,(i,j,...)depends only on o(i,j,...).

() If n = o(i,j,...), then S_(i,j,...) = 1.

(i) If m— o(i,j,...), then S _(i,],...)%0.

(iv) If not (n— o(i,j,...)), then S_(i,j,...) = 0.

Property (i) is quite evident on grounds of symmetry. The reader can be con-
vinced of the validity of the other properties by examining some particular

cases based on developments in 1.3.3. Anyway, the validity results from the
general theorem in 1.4.2.

We shall write S¢for any S,(i,j,...) where o = o(i, /,...).
Example: 8331, = 8.5:3,(1:1,1,1,2, 2,2, 3).

If o is the particular partition ¢ = (p) of p, then S?equals the number of terms
in the general development of §_(i, j, ...), since, if i =j=k=...,then each term
in this development equals one. Thus S?is given by (4). Note that, in that
expression, (u,v,...) = o(a, b, ...).

1.4. Central result

1.4.1. Theorem

Let f'be a function of p integer positive variables i, j, k, ... such that the value
S, j, k, ...) depends only on the partition o(i, j, k, ...). Then f can uniquely
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be expressed as

JG,j..) =Y ex S0, ],...), (5)
where 7 must run through the partitions of p. The coefficients ¢, are obtained
recursively from a system of linear equations obtained by giving particular
values to i, /, ..., 1n (5).

Demonstration.

The case p =6 contains all the elements of a general demonstration. Then,
since each member of (5) depends only on ¢fi, J,...), it is necessary and suffi-
cient to verify this relation for the particular sequences (i, j, k, [, m, n):

(1,2,3,4,5,6),(1,1,2,3,4,5),(1,1,1,2,3,4),(1,1,2,2,3,4)... (6)
The partitions ¢(i, j, k, [, m, n) associated with the sequences are respectively
(1, 1,1,1,1,1),(2,1,1,1,1),(3, 1,1, 1), (2,2, 1, 1) ...,

i.e. those appearing, line after line, in the graph of figure 1. By the properties
(i) and (1v) of 1.3.5, (5) becomes for the sequences of (6):

f(1,2,3,4,5,6) = c111111,

f

(

(1,1,2,3,4,5) = ciiin1 S341; + 1111

Ji,1,1,2,3,4) = eparnn S8y + Coppay SETy T Carano
(

111111

o) - 2211 2211 . 2211
f1,1,2,2,3,4) = cunn 5111111 + ¢ 521111 + ¢ '53111 + Co911>

From these considerations, the theorem is clear.

1.4.2. Practical calculation of S?

For given g and n, S¢ can be evaluated by combinatorial arguments.
First of all, we shall reinterpret the terms in the general development of
S.(i,j,...). For n = (a,b,...), we call a n-partition of the set I = {i,j,...} of
indices, a decomposition

I=A+8B+..

of I in disjoint subsets A, B, ... of a, b, ... elements respectively. There is an
obvious one-to-one mapping between the terms in the development of
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S.(i,j,...) and the n-partitions of I. For example, the term J;x; d;p in ‘
Sa2(i, j, k, I, m)and the decomposition

{i,j,k,l,m} = {i,k, I} + {j, m}
correspond to each other.

Now, consider the case of §31 , for example. We consider the set of symbols

{12" ljalkallalmazn} (7)

for the following purpose. We shall have the value of S3}, on putting
i=j=k=I=m=1, n=21n the development of S32(i,...) and on counting
the non zero terms. But, as we have seen, a one-to-one mapping between the
terms in the development of S50, (i, ...) and the 321-partitions of {i,j, k,I,m,n}
exists. On the other side, an obvious one-to-one mapping exists between these
partitions and between the 321-partitions of (7). But, for the purpose of cal-

culation of S31 , partitions of (7) such as

{14, 13,20} + {1, i} + {1}

may be neglected, since the corresponding value is §112 611 61 = 0. So, it is easy
to see, from (7) what partitions must be kept and what partitions must be

dropped. One has 831, = (3) = 10.

To see how the method works in full generality, we consider S33, .. Then we
consider the set

l = {lz, 1,‘)3 1’6: 11: ~l~ma 271: 209 2p3 2(]}
and we keep two kinds of 32211-partitions of I. A sample of each is

{15, 15, L} + {1, L} + {20, 26} + {2} + {24}
{1, 15, L} + {1} + {1} + {20, 20} + {25, 24}

The first corresponds to a 32-partition of the set of 5 elements [, =
{1;,1;,1%,1;, 1} and to a 211-partition of the set of 4 clements I, =
{21,20,2p,24}. The second sample corresponds to a 311-partition of I; and
a 22-partition of I,. We have to sum up all partitions of the first kind and
all partitions of the second kind. Therefore 833, , = S3,- 83, +53,, -S4,
since, for each kind of partition, the possibilities combine multiplicatively.

From the preceding discussion, the following theorem should be clear:
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Theorem.

If o=(,s,t,...), n =(a,b,c,...), then S¢ is the sum of the terms
Sg oS58k ...

With =, =(a,,b,,...), (v=1,2,3,...), there corresponds exactly one term in
this sum to each permutation (ay, by,..., as,bs,..., as, bs,...) of (a,b,c,...)
satisfying ay +by+...=7r, as+bo+... =5, ag+bg+...=1t, ... (and, of
course, the usual condition for a partition ofa number:a, >b, >...;v = 1,2, ...
Finally, as an illustration of the correct application of the general rule given
by the theorem, we calculate §322,,,. Then all partitions to be considered are
in the table:

4 2 2
22 11 11
211 2 11
211 11 2
1111 2 2
Therefore
Syt = S5 5% 8%, +85,, 8583, + 55, 53, 85 + 51,1, 5555 = 16

An alternative method for the calculation of S £ shall be discussed in section 3.

1.5. The case of E(X; X ...)
1.5.1. General considerations

For simplicity, we shall assume that X'y, X, ... arei.i.d. random variables, but,
in fact, only exchangeability properties are essential. Then the value of
E(X; X;...) depends only on that of ¢(i,j,...). Indeed, if we denote the r-th
moment of X; by m, and if o(i,j,...) = (r,s,...), then E(X; X;...) = mym;...
So (5) applies and it is seen that the ¢, are polynomials in my, ms, ...

1.5.2, Particular results

On particularisation of the general procedure, one has:

E(Xz X]) = m% +(m2— m%)&ij,



240

E(X; X; Xx) = m§ + (mymg —m3) (i + Op1 + Ox) +

(8)
+ (m3 + 2 m3 — 3 my ma) Sy,
E(Xi X; X X1) = mi + (mem —m{) G1; + Ok + Si0 + 0k + 050 + Oet)
+ (m3 + m} — 2mam3) (045 0k1 + 0% di1 + Ori d51) )

—+ (m3 mp + 2 m‘ll -3 m,, m%) (59';” + ik + 5»@_/;1 + 5-;5‘;;)

+ (mg — 6m3 + 12 mgm$ — 3m3 — 4 my m3) 64551

1.5.3. The symmetrical case

For a larger number of indices, the method becomes lengthy. But, if one has
to calculate

Z Aijk. .. E(Xz Xij...),
tik. ..
where a;; . is symmetrical in all its indices, then a great simplification occurs.

Indeed, then, because of the dummy character of the indices in a summation,

each S, (i, ], ...) may be replaced by just one term of its development, multiplied
by the number of terms in this development.

For example, for symmetrical ;5 mn:

Z Aijkimn S33(i,j,k,[,m,n) = 10 Z Qijkimn Oijk Otmn

ijkimn ijklmn
& 1) Zamm.
ij

This observation can be used, with advantage, in the calculation of expressions
like E((), X2) (3. X,)2). If we write it as

Y G EX:X; Xr X)),

ijkl
then the remark does not yet apply. But it does if we write it
1

6 Z (51_1-#—52';,;-1"5“ + ;1 + 041 +5kz)E(Xin Xk X7).

ijkl



241

2. The normal case and Craig’s theorem

2.1. General combinatorial theorem
2.1.1. Assumptions

In this section 2., we assume that X, X5, ... are i.i.d. normal standardized
variates. Then

E(X3)=(2r-1)(2r-3)... 3.1
(10)
E(X3m1) =0
Therefore, if the number of indices i, j, ..., is an odd number, we have

E(X; X;...) = 0. So we have only to consider the case of an even number
2 p of indices.

2.1.2. Theorem

E(X:X;...)= S0, (i,j,--.). (11)
Demonstration.
First we prove that
p E()(g1 Xiz Xi'zp) = Z 51'1_';2 E(Xja qu Xij)' (12)
Jje

In the second member of this formula, (j;, j») must run through the (7) couples

(il » iz)a ceey (i1>i2p)a (ig, i3)a seey (i25i2p)’ """ (i2p771 ) izp)

and, for each (j1,j2) fixed, js, ja,...,j2p must be such that (j1,...,j2p) is a per-
mutation of (i1, ..., i2p).

We may assume that o(iy, iz, ...,i2p) = (251, 282,...,25k), for if there is an
odd number in the sequence (i1, ..., i2p), each member of (12) is zero. Then
we may also assume that

(i1, izyying) = (L1, 1,2,2,00,2, ek Ky K)

where the number of r's (r = 1,2,...,k) is 2s,. Then, in the second member
of (12), j1, j» must be equal and, owing to the possible choices of j;,js in the
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sequence (r,r,...,r), it is seen that the second member of (12) equals
gl(zgf) E(X?%)... E(X}5) E(X252) E(X}5r1)... E(X3%). (13)
But from (10) follows that (25-) E(X25-2) = s, E(X2%r), and so, since
Y sy = p, (13)equals the first member of (12).
r

Applying (12) recursively, it follows, on grounds of symmetry, that
E(X’iln-x‘igp):CSZZ...(ils--'sizp)! (14)

where ¢ is some constant. On putting all indices equal to 1, it is seen from (4)
and (10) that ¢ = 1.

2.2. Mean value of a multiform
2.2.1. Examples

Let a;;x; be defined for i, j, k,1 = 1,2, ..., n and consider the 4-form
n

Y, i Xi X; Xe Xy, (15)
ijkl=1

where no assumption of symmetry is made. Then, by the preceding theorem,
using the expression of Se2 (i, j, k, ) in 1.3.3:
EQ aijur X X; X X0) = Y @ijicr (84501 + S5k 051 + O1i 671)

=Y aju +) Ak + ), i
il Kkl il

Thus n
EQ ayu XiX; Xe X0) = Y (aij; + aijji + aizij) (16)

i!j=1
For a 6-form we have, similarly, from table 2:
E(Y aijkimn Xi X; X X1 X Xn) =

Z (@iijjer + Qijijer + Qijjikk + Qijirir + Aijjnki
ik
+ Qiijejr + Qijicje + Qigrijre + Aijkjic + Qijriki

+ Qiijrri + Qijicki + Qijrici + Qijkki; + Aijrkii)- 17)

From these examples, the following theorem is clear.
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2.2.2. Theorem

For an arbitrary 2 p-form, we have

E( Y ailiz...ingilXig---Xigp)= Y. Ghis.. (18)
i]...ip

i1i2...12p

where (j1,Jj2,...,Jj2p) 18 a permutation of (i, is,... ip, i1, i2,...,ip). TO each
term in the development of Ss2 . (i1, i2,...,i2p) corresponds one term in the
second member of (18), in the following manner. Consider the term

5161162 5k3 kq--- 5k2p_1 kap-

In
a...

where there should be 2 p dots, replace the k;-th and ke-th dot by i;, the ks-th
and k4-th by is, ...

2.3. Mean value of a product of quadratic forms
2.3.1. Remark
The expressions that we shall find now could perhaps be obtained more simply
by general methods based on multidimensional cumulant generating functions

(See Kendall and Stuart, 1958, formula 15.51) or similar tools. However, this
seems not to be the case for the general relations of 2.2.

2.3.2. General result

Here a, b, c, ... are symmetrical n x n matrices of elements a;;, b;;, cij, ...
We consider the associated quadratic forms

X'aX = Za,—,-X,-X,-,X’bX = Zbinin,...
i3 i,7
and we want to evaluate

E(X'aXX'bXX'cX..)=Y aibricmn... E(Xi X; X5 X; Xm Xp...). (19)

ijkimn. ..
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To be precise, let there be exactly four quadratic forms. Then by (18) we have
that (19) is a sum of terms of which samples are

Z aikbk,-c“d,-l = Z aikbk,-dﬂc” = trabdc,

ikl iikl

Z aﬂbik Cri djz = Za,-ldzjz bq,k Crpi = tradtr bC,
ijkl il ik

Zaikb”ckjd;,- = Zamckjdﬁz,b”:tracdtrb.
ikl ijk 4

Thus, the following theorem is clear.
Theorem.
EX'aXX'bXX'cX..) (20)
is a sum of terms
trAB...trCD...trE...... (21)

multiplied by positive integer coefficients, where (4, B,...,C,D,...,E,...)is a
permutation of (a, b, c,...).

2.3.3. A unicity result

The preceding theorem could be made more precise. However, the combina-
torics become rather complicated. It is preferable to use methods similar to
that employed in the demonstration of (25). That result uses the following fact,
that could be stated for other powers than the fourth.

An expression for E(X 'd X)?* such as
crtrid+cotr2dtrd®+catr2d?2 +catrdtrd3 +cstrd?

supposed to be valid for any diagonal matrix d, is unique.

Indeed, if two such expressions exist and are valid for each diagonal d, then,
by difference, we have a homogeneous linear relation in trdd, tr2dtrdz?, ...
Then, if we take for d the particular matrices with diagonal

(1), (1. 1), (L1 1)1, 1505 1)1, =1,

we obtain a system of five equations with non-zero determinant. Therefore the
homogeneous relation must be identically zero.
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2.3.4. Properties of the trace of a product of matrices

The cyclical property is well known and easily proved. It states that
tr(ab...cd) =tr(dab...c).
If the matrices are symmetrical, the following property is also valid.
tr(abc...de) =tr(aed...ch).

Thus the matrices, the first excepted, may be written in reversed order. For
example, in the case of five symmetrical matrices, the proof is:

trabcde) = > aibjkcridim emi
ijklm

= Z a,-z-eimdmlcmbk,-=tr(aedcb).
jimlk

Thus, in the case of three symmetrical matrices a, b, c, the only trace to be

considered is tr abc. In the case of four symmetrical matrices a, b, ¢, d, only
the following traces may differ from each other:

trabced, trachd, trabdc.

2.3.5. Explicit formulas

E(X'aX)=tra, (22)
E(X'aXX'bX)=tratrb+2trab, (23)
EX'aXX'bXX'cX)=tratrbtrc

+2(tratrbc+trbtrca+trctrab)+8trabec, (24)
EX'aXX'bXX'cXX'dX)=tratrbtrctrd
+2(trabtrctrd+tractrbtrd+tradtrbtrc
+trbctratrd+trbdtratrc+trcdtratrb) (25)
+8(trbcdtra+tracdtrb+trabdtrc+trabctrd)
+4(trabtrcd+tractrbd+tradtrbc)
+ 16(trabcd +trachd + trabdc)
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Relation (22) is immediate. Relations (23), (24) are particular cases of (16), (17)
but can of course be obtained by the method that we shall use for (25). This
formula can be found from the general formula (18). This takes a couple of
hours since the 105 terms in the development of Ssa2s(i, j,...) (or better: the

lines in the associated array) must be considered. The following method is
more rapid.

Formula (9), used for the squares of the variables, gives
E(X% X? X% Xlz) =1+ 2(51:j + ix + Oy + djr + 0j1+ Ox1)
+ 4(5” Ox1 + Ok Oil + Ok 0;1) + 8(5jkz + Oix1 + Oij1 + 5ij;c) + 48 Oijki
Therefore, if d is diagonal:
E(X'dX) = 'Zk:ldz'idﬁdkkdllE(X%X? X2 X?) =
(%)
Z d;; djj derdy(1+12 oi; + 12 0ij 01 + 32 Oijr +48 Siikl) =
ikl
Z di; djjdkk dy+12 Z d?:‘ dgr dy + lzzd?]dlzl + 322d1‘3k d” + 48 Ed?l .
ikl jk 1 jl kl !
EX'dX) =tridd+12tr2dtrd2+ 12tr2d2 + 32trd tr d3 + 48trd4. (26)

Now, on grounds of symmetry and because of the general theorem of 2.3.2,
there is only the problem of the coefficients 1,2, 8,4, 16 in the second mem-
ber of (25). But since we have (26), the coefficients must be those indicated,
for otherwise, by putting a = b = ¢ = d (diagonal) in (25), we should contradict
aresult in 2.3.3.

2.4. Craig’s theorem

Craig’s theorem (Craig, 1943) states that X 'a X, X'b X are independently dis-
tributed if and only if ab = o (under the assumptions of 2.1.1). In the case of
general symmetrical matrices a, b (not necessarily semidefinite positive), it is
the «only if» part that was most difficult to provel. Here follows an elemen-
tary demonstration based on the explicit expressions of 2.3.5. They give

Cov(X'aX,X'bX)=2trab, (27)

! Hotelling (1944) notes about Craig’s original proof: «The proof given that the condition is suf-
ficient is adequate, but Craig’s treatment of its necessity consists essentially in its assertion».
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Cov(X'aX,X'bXX'bX)=4trbtrab+8trab2, (28)

Cov(X'aXX'aX,X'bX)=4tratrab+38 tr a2b, (29)
Cov(X'aXX'aX,X'bXX'bX)=8trabtratrb + 8trzab

+16tra2btr b+ 16 tr b2atr a+ 32 tr a2b2+ 16 tr abab. (30)

Now suppose that X'aX, X’'bX are independent. Then the covariances (27)
to (30) are zero and we have successively,

trab=o,trab?2=o0,tra2b = o,
4 tra2b2+2 trabab = o. (31)
Considering the matrix ab = ¢, we have, since a, b are symmetrical

tr a?b? = tr baab =tr (ab)'ab=trc'c=} ¢}, =} c%,.
Also: ¥, i

trabab =trcc =) cijcj

and therefore, by (31): o

0=2) ¢+ (c3,+c +2ci;¢5)
jrd jrd

= 2 Z C%j + Z (Cij + Cjz')z.
i i

This implies that for each i, j:c;; = 0. Thus ab = o.
For a simple demonstration of sufficiency, see Graybill (1961), Theorem 4.10.
In fact, Graybill states the theorem for positive semidefinite quadratic forms,
but his proof is general.
Finally, we note that Craig’s theorem has been extended to non-central variates
(Carpenter, 1950).

3. The Poisson case and an alternative method for calculating S”

3.1. General combinatorial theorem
3.1.1. Assumptions

Here Y7, Yo, ... arei.1.d. Poisson variables with mean value A. The r-th moment
of Y7 is denoted by m,.

me=E(Y]) = Y n7 e~ Awl.

n=0
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The m, are polynomials m, (1) in A:
mo=1,m =21,mg=2241mg=23+3)2+4,
mg=0+6A34+T224+A,ms =15+10A4425,3+1542+ 1, ..
They may be found recursively from the relation
Mmes1(A) = Ame(A)+Ami(A), (r =0, 1,2,...).

The following theorem is a deeper result than might be thought at first sight.

3.1.2. Theorem

Let the number of indices i, j, ... be p. Then
E(YY).w) = B8, (i.j...), (32)

where 7 runs through the partitions of p and where n(rn) is the number of
terms in the sequence 7.

Demonstration.

A complete proof of this result is rather lenghty. We shall only sketch the main
lines. However, we shall give enough considerations to make it possible for the
reader to complete the proof.

Ifo = 0(,j,..) = (r,s,...), (32) states that for each 0,
myms... =) At Se. (33)
For the particular ¢ = (p), (33) reads: '
mp =) An@ SP. (34)
It is this relation that we prove first. i

To theinfinite sequence (mg, my,ms, ...) of moments, we associate the generating
function

oo xP oo
g(x) = Z Mp— = Z
p=0 P> poo

n

= e~ Z ~—e” = et ele* = exp (4 (e* — 1)),
n=0 n!

oo e ;‘n oo
Z e+ np— = g4 Z Z
= = D=

xP
op!

where the transformations are permitted by known arguments.
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Now we shall develop g(x) in a power series, in a different way. Then an iden-
tification of coefficients will furnish the needed result. All transformations being
valid by well known arguments, we have

g(x) =exp(i(ez—1)) = exp(l i x_i) _

e ¥
o AB [ = xx\B (35)
sa(E5)

[)’=018' a=10":

The coefficient of A8/! in (35) is

% HE 8 x  x2 x3 x x2 x3
—+ =+ —+ .. )+ =+ =+ ... .. —+—+—=+..] (36)

where there are f factors. In this expression, we look for the term in x?. Such
a term will only exist if § <p. To each partition = = (a, b,...) of p in § parts
will correspond a term
x# xb p!
al b! ulv!
obtained by picking x24! in the first factor of (36), x%%! in the second factor,
..., and then varying the choices in the different factors, taking into account

,(w,v,...)=o0f(a,b,..), (37)

the repetitions in rn.(For example, if a = b = ..., there is only one possible
choice.) This shows that the coefficient of x? in (36) is, using (4),
1 B!
! i p
'B'(a,bz,:__,)a!b!...u!v!... p!§Sn

where 7 = (a, b, ...) runs through the partitions of p in § parts. Indeed, then
no term can be forgotten.

From this discussion results that the coefficient of x2/4! in (35) is the second
member of (34) and so this relation is proved, since by definition of g(x), this
coeflicient is m.

The case where the sequence ¢ has more than one term can be treated similarly.
Forexample, in the case of two terms, we consider the 2-dimensional generating
function

oo xT oo xS
g(x,y) = Z mr—'z ms— =exp(Ae*—1+e¥—1)) =
r=0 r's=0 s!

i }Lﬁ( i xo + ym)ﬁ (38)

F=o B!\ =1 a!
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and we proof by a combinatorial argument using the theorem in 1.4.2, that
the coefficient of x7ys in (38), (r > s), is

11
where ¢ = (r, s) and where n runs through the partitions of p = r +s.

3.2. Mean value of a multiform

Using (32), the mean value of a general multiform in Y3, Yz, ... can easily been
calculated. For example:

E(Y ayx Y1 Y; Yy)
4,3,k
o Z aijx (A3 + A2 (0ij + Ojk + Oxs) + A Sijk)
i7,k
= A9 Z Aijx + A2 Z (aiij + ajii + az’ji) + A Z aiii.
0,7,k i,j i
Then covariances of couples of forms can be calculated and implications of
indepence examined. We shall not dwell on the subject here.

3.3. Alternative method for the calculation of S°

We illustrate the method in the case of all possible partitions of 5 for ¢ and =.
Here we use the abbreviated notation 5', 4, ..., 2", 2’ for the partitions of 5,
as is indicated in the table:
General notation 11111 2111 311 22141 325
Abbreviated not. 5’ 4 3 3" 27271

We write down relation (33) for ¢ running through the sequence of partitions
(39). This gives, for the dummy partition z running trough the same sequence:

(39)

m3 = }° =13
m,m3 = J5+ )4 = A5+ 24
momé = A5+3344 3 = A5+ 1483/ + 13

mgm, =5 +2)4+ )3 = 15+ A4 83/ + 13 83/ + 13



251

mym, =5+63+ T3+ J2 = 15+ 1482/ + 1382/ + A3 8, + A2

mgm, =5 +4)4+ 4134+ )2 =154+ 1982" + A35% + A3 52, +
+ A2 82 + 22

mg, =25+1014+2513+1512+21 =154+148L,+A38L/+ 438, +

+ 28+ A2SL 4 .

N

where the not appearing S¢ are equal to 1 (those, not indicated, on the diago-
nal and the coefficients of 15) or O (upper triangle). Since these relations are
true for each A, an identification of coefficients gives the value of most of the
S¢in this case. In the exceptional cases we find that

7=2S8%+S2,,4=25%+82,25=SL+8L, 15 = SL,+ S1..

Here the theorem of 1.4.2 must be used. In such cases, the savest way is to
calculate all not yet known S¢ by that theorem and to use then the previously
obtained relations as a check. Actually, one has

3 =4,52,=3,8 =1,82 =3,8 =10, 8L, = 15, S, = 5, S, = 10.

For a greater number of indices, the number of exceptional cases grows fastly.
Of course, other distributions than the poissonnian might furnish supplement-
ary relations.

4. Further developments

By the argument used in the demonstration of 3.1.2, we have the following
theorem:

Theorem.

Let X;, X2, ... be i.i.d. random variables with moment generating function
g(t) = E(e!X1) supposed to exist for t€(— g, + ¢), e>o0.

Iflogg(t) = c1t + c2t2 + ¢33 + ..., then

E(XzX]) = ZC,;,, a! Cp b'Sn(l,j,)

where n = (a, b,...) runs through the partitions of p, the number of indices
-

With the aid of this general theorem, the expression for E(X; X;...) can be
written down for a lot of common distributions. The normal and poissonnian
cases considered previously are particular ¢ ses of this general result.
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Since the theorem introduces cumulants, a bridge between the method devel-
oped in this paper and Fisher’s k-statistics certainly exists.

Finally, we mention that, under a quite general condition on the ¢, in the
expression

E(XiX;..) =Y ¢ S, (irj,...)

(where, as usual, = runs through the partitions of p, the number of indices), it
can be proved that if this expression is valid for all p and equal indices i, j, ...,
then it is valid in full generality. We shall not dwell on this result, that simplifies
drastically the demonstration of the theorem in 3.1.2 and that of its just mention-
ed generalisation.

Floriaen De Vijlder
Chargé de Cours

a I’Université de Louvain
470, Steenweg op Aalst
B-9400 Ninove
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Zusammenfassung

Es werden elementarsymmetrische Funktionen mehrerer Indizes definiert, die als verallgemeinerte
Kroneckersymbole aufgefasst und fiir den Beweis eines Hauptsatzes liber allgemein symmetrische
Funktionen benutzt werden. Ein Satz von Craig iiber quadratische Formen normalverteilter
Variablen ergibt sich als Folgerung aus diesem Hauptsatz.

Résume

Des fonctions élémentaires symétriques de plusieurs indices sont définies et peuvent étre interprétées
comme des symboles de Kronecker généralisés. A I’aide de ces fonctions un théoréme fondamental
sur les fonctions symétriques est démontré qui, appliqué sur des formes quadratiques de variables
normales donne un théoréme de Craig.

Riassunto

Dapprima vengono definite delle funzioni elementari e simmetriche come simboli, generalizzati, di
Kronecker. Poi con I'aiuto di queste funzioni viene dimostrato un teorema fondamentale sulle
funzioni simmetriche generali del quale, applicato su forme quadrate di variabili normali, risulta un
teorema di Craig.

Summary

The author proves a main theorem on symmetric functions on the basis of a generalization of the
Kronecker symbol. Craigs theorem on quadratic forms of normal variables results asan application
of the above main theorem.
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