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Minimax Credibility

By A.Marazzi, Swiss Federal Institute of Technology, Ziirich

This paper is a summary of the last three chapters of my doctoral dissertation
[1]. In the first two chapters explicit formulae are derived (using multidimen-
sional techniques as in [2]) for the coefficients of a credibility estimator of the
form

a x (total claims) + b x (number of claims) + ¢ x (average claim size) + d.

This estimator is used to forecast total losses in the future and is based upon
past observations. The asymptotic behaviour (when the number of years tends
to infinity) is also examined. Numerical computations show that there is no
appreciable difference in the Bayes risk when the simpler formulae with ¢ =0
or ¢ =0 and b = 0 are used. Only these simpler formulae are therefore con-
sidered in the rest of the dissertation. A method is suggested here to compute
optimal (minimax) credibility estimates when the structure function is not
exactly known: one merely assumes that it belongs to a given set of distribu-
tions. An introductory report on these ideas has alrady been given by Prof.
H.Biihlmann in [37]. We develop here a more general theory and we describe a
numerical method to compute the minimax solution.

1. Model, Notations and Credibility Formulae

First we give a short summary of the assumptions and formulae presented in
[2] and we introduce some notations. We consider the risk performance of a
risk associated with a parameter (#, 0) during one year. The generalization to
n years is straightforward.

Random variables Distributions given (n, 0)
Number of claims K P(k|n = Prob(K =k|n)
Claim sizes Y1... YX S(y|) =Prob(Y2<y|0) h=1..K
K
Total claims X = » Y~ G(x|n 0 =Prob(X <x|n 0
h=1

Mitteilungen der Vereinigung schweiz. Versicherungsmathematiker, Heft 2, 1976
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Hypotheses
1) n, Bare independent random variables with distribution U (1, 0) = T (n) Q (0).
2) Given (#, 0) the random variables {K, Y, Y2...} are independent.

Given 0 the random variables {Y1, Y2...} are independent.

3) All the random variables and parameters associated with different risks are
independent.

Expectations

We consider a function f (for ex. an estimator of E (X | 5, 0)) defined on the
range Qofthe vector (K, Y!... YK)associated with the risk (», 0). In the following
we assume that the expectations are always defined. Then

= h =0

0

where [ TT dS(nl0) = 1.
h=0

Notations

E{E(Y*|0)} = [E(Y"| 0)dQ (0) = mq

E {Var (Y"| 0)} = vg

Var {E(Y*| 0)} = Wq

Similarly we define mp, v, wpand my;, v, w for the random variables K and X
and the distributions T and U. We also use the following notations:

E{E2(Y"|0)} = z, andsimilarly z; and zy.
(a,d) estimate: anestimate [ (K, Y1... YX) for E(X |5, 0) oftheform
(K, Y1...YK)=aX +d (1)
(a, b, d)estimate: anestimate [ (K, Y'... YK) for E(K|#, 0) ofthe form
(K, Y'... YY) =aX +bK +d (2)

r(@d,U) = E{(aX+d—E(X |, 0)2}
=a?vp+(1—aPwy+(d—(1—a)my)?
r((a,b,d),U) = E{(aX +bK+d—E(X |, 0))2}
=a2(mpvg+vewo)+(1—azpwo+ ((L—a)ymg—b)2wq
+ (amg+b)2vyp+ (1 —a)ymy—bmyp—d)?

H:range of n; Z: range of 0.
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Credibility Formulae
From r((ap, do), U) = 1\(/[13 r((a,d), U) we get

g = ————, dop = (1—ap)my.
0 VU+WU’ ( ) L

From r((ag, bo, do), U) = (l\/})iril) r((a,b,d), U) we get

2 .
mypwo+ wpw bo W
ap = 3 9 Q g ————,
MywWo+WwWpWo+mpvo+veWwy Mg Vot we
bo do
ap+ —+ —=1.
mQ my;

In order to evaluate the credibility estimates it is necessary to know the structure
function U (n, ). According to the empirical Bayes point of view it is possible to
estimate U on the basis of actual collateral data. Instead of considering point
estimates for the parameters m, v , z , etc. as in the existing credibility litera-
ture we merely assume that the data lead us to “sets of possible” structure
functions and parameters. We will then define a statistical game where the
nature chooses a structure function in these sets and the statistician chooses
an estimator of the form (1) or (2). In the next section we indicate some possible
definitions of sets of structure functions. We consider only sets containing the
factor Q of U the sets for T are analogously defined.

2. Estimation of the Structure Function

Case 1. Estimates for My Vo Z,can be easily constructed (see [4] for a distri-
bution-free method). Suppose that [le, mo 1 [y, sz]’ [le, zQ_z] are the
corresponding «%-confidence intervals. Finding these intervals is however an
~open problem. We define

1
Pyo=1{Q|mgelmg,, my,l, ze€lzonze.)veelve, Vo.l}-

According to the Bonferroni inequality (P (7 4;) > 1 =) P (Ag)) Pb covers the
i

true distribution Q' with probability greater than | —3 (1 — o) %.

Case 2. Suppose that the distribution of Y” given 0 belongs to a’given para-
metric family {S(y| 6)| #eZ}. We consider a confidence region R (for ex. of
Kolmogorov type) that covers the distribution S(y) = [ S(y|0)dQ’ (0) with a
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certain probability (Q' is the true distribution). Under the hypothesis that R
can be bounded by two (possibly improper) distributions S; and S (i.e. for
ex. S increasing, continuous from left, but S; (—oco) # 0 or S (4 o) # 1):

R ={S"I5:0) = $"() = 521}
we define
PL={QI[S(y|0)dQ(6)eR}.

Case 3. Without observations the pure Bayesian will guess an a-priori distribu-

tion Q (6). In our opinion it is easier and safer to give a set of possible structure
functions:

PQ—— {Q10:1(0) =Q(0) = Qs (0)forall 0

where Q) and Q5 are distributions such that Q, () > Qs () for all 4.

Case 4. Suppose that a fraction 1—§ of the risk population is described by a
distribution Q; e P\, (i = 1,2, 3)and the rest by a distribution Qs ePhLi#j=1,
2, 3). Then the whole population is described by

QePy={0]0=00Q:+(1-0)0}.
Case 5. We consider sets Pg and Py (for T) as in the prededing cases. We set

PU: {UIU = TQ,TEPT,QEPQ}.

3.The Game of the Actuary Against Nature

Let us now define a game (L, Py, r) of the actuary against nature, where
L is the set of the estimators available to the actuary, that is:

L={l=(ad)} or L={l=(abd)},

Py is the set of the possible structure functions for the nature,
r is the loss function defined by

_[r(@d,U) if L={(@ad)}
r(LlU) = {r((a,b,d),U) if ={ab,d)}.

We assume at first that the measures P (w| n, 0) i.e. the families {S(y| )} and
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{P (k| n)} are known. It is not unreasonable for the actuary to use a minimax
rule [y for which:
= Mi L, U).
Yiggrlo O =Nip Mgt O

Let K ;; be the closed convex hull of P;; (with the weak topology). Under assump-
tions which are satisfied in all the important practical cases it is shown in [1]
that the game (L, K, r) has a value and a minimax pair (I, Uy). Because the
loss 1s convex attention may be restricted to nonrandomized Bayes rules.

The straightforward calculation of a minimax rule is in general too complicated.
We shall present a method which allows to characterize a least favorable
distribution Uy in Py,. If we can show that Uy is also least favorable in K ;; then
we have a minimax solution. In general this is unfortunately not possible and
a computational control is necessary.

4. Calculation of a Least Favorable Structure Function

We examine only some examples related to the cases described in section 2.
Consider the following situations for the variables Y? and the distribution Q:
(i)y: no relationship is known between Var (Y?| 0) and E (Y*| 6), that is no
relationship is known between v, and (mg, zg) (“non parametric case”).

We suppose that Q PlQ.

(ii),: Hypothesis: Var (Y? | 0) = ko + ki E(Y" | 0) + ko E2 (Y% | 6), where ko, k;
and ks are known positive constants. For many important distributions
in the field of insurance this hypothesis is known to be satisfied. Q belongs
to PIQ or to P?Q.

(iif)y: Thedistribution of Y? given @ belongs to a family { S (y | 6) } and Q belongs
to PZ or to P%. We still suppose that Var (Y2 |0) = ko + ky E(Y"| 0)
+ ks E2(Y" | 0).

Similarly we can consider situations (i), (ii)x, (iii); for K and T (replace above

v, Y2 Q. 0,...byk, K, T, n, ...).

Remark. In the situations (i), (ii)x, (i)y, (ii)y we do not assume that the families

{P(k|n)} and {S(y|0)} are known (except for the constants kg, k; and ks).

In our statistical game we may then interpret the strategies of the nature as

triplets (U, {P (k| n)}, {S (y] 0)}) (the nature chooses also the families {P (k | n)}

and {S(y|0)}) or as vectors &l = (myp, vy, 27, Mg, Ve, Zo) (r depends on U only

via %) but we still denote them by U.
In order to guarantee the existence of a least favorable distribution we may
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require (possibly by additional restrictions such as compactness of H x Z) that
P 1s compact.

Let rm(U) = 1\’/11{1 r (I, U). One notices that in the case
€

(i)y the function rm is increasing in zy and v g (m, fixed)

(it)y the function rm is increasing in z, (mg fixed)

(iti), the function rm is increasing in z, (mg, fixed)

Similar results may be obtained if we consider rm as a function of my, v, z.
In all the cases the problem of finding a maximum of rm over the set P;- can
therefore be reduced to the problem of finding a maximum of a function of
twovariablesmpand m.Inthe cases (i), — (i)xit suffices to choose z ,, = Max z,
Voo = Max vy, zp, = Max z¢, vp, = Max vy. In the cases (ii), or (iii), — (ii)x
or (iii); it s possible to calculate the function z, (mg)=Max {z,|Q € Pg, my
= mygy| (resp. zp, (my)). One chooses then the pair (myp, mg,) which maximi-
zes rm. The cases with Q e Pi) or TGP%[’ require some numerical computations
based on linear parametric optimization (see for ex. [5]). At first the problem
is discretized: the distribution Qg () and the function zg, (mg) are computed
only for a finite set of arguments and the linear condition Q ePg (i.e.
[ S(y10dQ(0)eR)is imposed only on a finite set of points 6 ... O, (resp.
Y1 --. Yax). Under suitable assumptions one can show that the solution of the
discretized problem converges weakly to the solution of the true problem.
IfE(Y"|0) = fand Z is a real closed interval the case Q eP% allows an explicit
solution based on the following

Lemma. The distribution Qy, for which z, = Max {z4|0 EPZ, mg = m} is
given by

0:(0) for 8 <6y
On(0) =149 for 0o < 0 < b4
Q2(0) for 01 < 0

where the parameters 0y, ¢ and 6, are determined so that mg,, = m.

5.0On the Existence of a Saddlepoint for the Game (L, P, r)

If the set Pr- is convex then the saddlepoint theorem holds for the game
(L, Py.r) and we obtain easily a minimax estimate. All the sets Py and Py
considered in section 2 are convex. Unfortunately if P, and Py are convex the
set P, ={U|U =TQ, TePr, QcPy}is convex if and only if at least P,
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or Py contains exactly one element. Without this restriction it i1s possible to
show the existence of a saddlepoint only for some special cases. We notice
here merely that they include the important case P (k|#) Poisson, S(y|0)
unknown and | = (a, d).

In general we must perform an approximate numerical control as follows.

Define meg, = Minmg,  mg, = Maxmg,
QGPQ QEPQ

5 =1{0€ePqglzg=zg,(mg) Mg, <mg <mg,,(vg = M%x voin the case (i)y)}.
=Py

Define similarly mqp,, mp, and P%. Let

P = {U|U = TQ, TeP% 0 cP¥)
Q &= [anm’I‘z] X[leamQ‘z]

ri(L(mpmp)) =r(l, U)forallU eP¥suchthat U = TQ,my = nip,mg = my.

We have:

a) The game (L, P;, r) has a saddlepoint if and only if the game (L, P§, r) has
a saddlepoint. If the two saddlepoints exist then they coincide.

b) The game (L, P¥, r) is equivalent to the game(L, Q,r}).

Let (my,, mg,) be the least favorable strategy in the game (L, Q, r1) constructed

by the method of section 4 and let [y be the corresponding Bayes solution. If

r1 (lo, (mp, mg)) < ry(lo, (mp,,mg,)) holds  for all  (mp,my)eQ then

(lo, (mp,,mg,)) is a saddlepoint and I, is minimax. This inequality can be

verified on a fine grid in Q.

6. An Example

We compute numerically the distribution
OmeM ={0]8:(y) <[S(y[6)dQ(0) < Si(y),mqg=m}

for which zo, = Max zg, m € [mg,, mg,]. We suppose that:
Y

1 | o2 & .
ayS(y|f)=——| —exp —(lnz—lnﬁ—l-v) 2/062%) dzwithg = 1.
Lx2n:o, z 2

0

Notice that E (Y| §) = 6, Var (Y*| 0) = 2(e—1)so that vy = zg(e—1).
b)Z ={6;]j=1...5} = {1, 1.5, 2,25, 3}. Because Z is finite we do not con-
sider a further discretization of Z.
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¢) Sz(y) = [S(y)—-0.11% S1(y) = L + [S(y) + 09T,

where S(y) = l > S(10,) and [.]+ ([.]) denote the positive (resp.
negative) part.
Let y; =020, y2 =0.56, y3 =1, yqs =172, y5 =25, y¢ =344, y;, =5,
yg = 6.56 be the discretization of the range of Y*. By linear parametric optimi-
zation we obtain the solutions (t,;1, tmsa ... tms) of the problems

~

-1

=~ .
1

1
1—1

gt

(()j“ 0j+1) tmj + Ontmn = m
=1

~.

) n—1
Ss(v) <2, (Sl 0)—S il 041)) tmg + S (Vi | On) tmn < S1(3)
f=i
O<tm <tma <... <tmn=1 (3)

ie=]1...0%,
where m € [mg,, mg,]. We put

0 for 0 <6
Qm (0) =19 lmi for ;<0 < U’i+1-
1 for 0 > 0,

By linear optimization of the object function

x|

(8]_ 0j+1) t]‘ + O-n [n
1

=

~.
I

under the side conditions (3) (with t,,; = t;) we can also find m, and my,.
The following table gives us the results of the parametric optimization for our
example.

m Z Qu Om (1) Om(15) Qu?  Ou(23) Qu()
1.450 2.125 0 0.099 1.000 1000 1.000
1.664 3.658 0 0.667 0.667 0.667  0.667
2.607 7.428 0 0.196  0.196 0.196  0.196

For further values of m one can interpolate linearly.




MIN

m,7 30 3.1 3.2 33 34 3.5 3.6 3.7 38 39 4.0
1.4501 5.24 5.44 5.61 5.76 5.89 575 5.57 5.35 4.96 451 3.84
15658 9.11 9.49 9.86 10.20 10.52 10.56 10.56 10.54 10.35 10.13 9.71
16645 | 1217 12.70 13.20 13.68 14.14 14.28 14.40 14.48 14.40 14.28 13.96
17972 | 1376 14.35 1491 15.45 15.97 16.11 16.22 16.30 16.17 16.00 15.60
19129 | 1504 15.68 16.29 16.88 17.44 17.57 17.66 17.72 17.54 17.31 16.81
20286 | 16.24 16.92 17.58 18.20 18.79 18.90 18.97 18.99 18.75 18.44 17.82
21443 | 17.33 18.06 18.75 19.40 20.02 20.10 20.12 20.09 19.77 19.36 18.60
22530 | 18.32 19.08 19.80 20.48 21.12 2115 21.12 21.02 20.59 20.06 19.13
23757 | 19.20 19.99 20.73 21.43 22.08 2205 21.95 21.77 21.21 20.54 19.41
24914 | 19.97 2077 21.53 2224 22.89 2278 22.59 2231 21.60 2076 19.39
26071 | 2061 21.43 22.19 22.90 23.54 2334 23.04 22,64 21.75 2071 19.07
CONTROL

m U 30 31 32 13 34 35 36 37 38 39 40
14501 | 14.08 13.72 13.35 12.99 12.63 12.04 11.46 10.88 10.20 9.53 8.76
15658 | 16.66 16.50 16.34 16.18 16.01 15.55 15.08 14.61 14.02 13.43 12.70
1.6645 | 18.86 18.87 18.88 18.89 18.90 18.54 18.17 17.80 17.28 16.75 16.07
17972 | 19.17 19.27 19.36 19.46 19.56 19.22 18.88 18.54 18.03 17.51 16.81
19129 | 19.44 19.61 19.78 19.96 20.13 19.81 19.50 19.19 18.68 18.17 17.45
20286 | 19.72 19.96 2021 20.45 20.70 20.41 20.12 19.84 19.33 18.83 18.10
21443 | 19.99 2031 20.63 2095 2126 21,01 20.75 20.49 19.99 19.49 18.75
22530 | 2026 20,65 21.05 21.44 21.83 21.60 2137 2113 20.64 20.15 19.39
23757 | 20.53 21.00 21.47 21.94 22.40 2220 21.99 2178 21.29 2081 20.04
24914 | 2081 2135 2189 22.43 2297 2279 2261 2243 21.95 2147 20.68
26071 | 21.08 21.69 2231 22.93 23.54 23.39 2323 23.08 22.60 22.13 21.33

LT
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A parametric optimization of =4 gave the following results.
m’ ‘ 3.0 3.4 3.7 39 4.0
Zr, | 1244 1540 1690 1770 180

We compute now the least favorable pair (m,, my,) in the game (L, Q, r1) with
L ={(a,d)}, Q= [3.0,4.0] x [1.450,2.607]
Zg, (m) defined by linear interpolation between the points (m, z, ) of the first

table

zp,(m’) defined by linear interpolation between the points (m',zp ) of the
second table.

The matrix MIN represents the function Ml}’l ri((a,d), (mp,mp))onan 11 x 11
grid inQ. id

By further subdivisions of the grid we find a local maximum at mg, = 2.607,
do

mp, = 3.4 with the value 23.54. We obtain [, = ((10, -) = (0.34, 0.66).

Moy, Mg,
The Matrix CONTROL represents the function r; (ly, (m 1, mg)) on the grid of
MIN. The inequality ry (o, (my, mg)) < 23.54 holds for all the points of the
grid and the obvious monotonicity of the function in all directions suggest
strongly that the inequality holds also on the whole domain Q. The point
(lo, (mp,, mg,)) should therefore be a saddlepoint.
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Zusammenfassung

Es wird eine Methode vorgeschlagen, um optimale (minimax) Credibility-Schidtzungen zu berech-
nen, wenn die Strukturfunktion nicht exakt bekannt ist; es wird nur angenommen, dass sie zu einer
vorgegebenen Menge von Verteilungsfunktionen gehort. Es wird auch eine numerische Methode
fiir die Berechnung der Minimax-Losung beschrieben.

Résumé

Une méthode est proposée pour calculer des estimateurs de Credibility optimales (minimax) lors-
que la vraie distribution de structure n’est pas exactement connue. On suppose seulement qu’elle
appartient a un ensemble donné de distributions. Une méthode numeérique pour calculer la solu-
tion minimax est également décrite.

Riassunto

Viene proposto un metodo per calcolare stime di Credibility ottimali (minimax) qualora non si
conosca esattamente la funzione di struttura ma si sappia solo che appartiene ad un dato insieme
di distribuzioni. Viene anche descritto un metodo numerico per calcolare la soluzione minimax.

Summary

A method is suggested to compute optimal (minimax) Credibility estimates when the structure
function is not exactly known; one merely assumes that it belongs to a given set of distributions.
A numerical method to compute the minimax solution is also described.
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