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Minimax Credibility

By A. Marazzi, Swiss Federal Institute of Technology, Ziirich

This paper is a summary of the last three chapters of my doctoral dissertation
[1], In the first two chapters explicit formulae are derived (using multidimen-
sional techniques as in [2]) for the coefficients of a credibility estimator of the
form

a x (total claims) + b x (number of claims) + c x (average claim size) + d.

This estimator is used to forecast total losses in the future and is based upon
past observations. The asymptotic behaviour (when the number of years tends

to infinity) is also examined. Numerical computations show that there is no
appreciable difference in the Bayes risk when the simpler formulae with c 0

or c =0 and h 0 are used. Only these simpler formulae are therefore con-
sidered in the rest of the dissertation. A method is suggested here to compute
optimal (minimax) credibility estimates when the structure function is not
exactly known: one merely assumes that it belongs to a given set of distribu-
tions. An introductory report on these ideas has alrady been given by Prof.
H. ßiib/mann in [3]. We develop here a more general theory and we describe a

numerical method to compute the minimax solution.

First we give a short summary of the assumptions and formulae presented in

[2] and we introduce some notations. We consider the risk performance of a

risk associated with a parameter (rç, 0) during one year. The generalization to
« years is straightforward.

1. Model, Notations and Credibility Formulae

Pando/n variables
Number of claims X
Claim sizes TT.. P<

Distributions given (>/, 0)

P(/c 11/) Prob (K k| i/)
S (y I 0) Prob (P < y | 0) b 1... K

Total claims X £ P G (x I 0) Prob (X < x I rç, 0)

Mitteilungen der Vereinigung Schweiz. Versicherungsmathematiker, Heft 2, 1976
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f/ypot/zeses
1) »7, flare independent random variables with distribution 1/ (zy, 0) T(i/)ß(0).
2) Given (zy, 0) the random variables {X, Y', Y^...} are independent.

Given 0the random variables (Y/ YT..} are independent.
3) All the random variables and parameters associated with different risks are

independent.

Expectations
We consider a function/(for ex. an estimator of £ (X | zy, 0)) defined on the

range ßofthe vector (X, Y*... Y'<) associated with the risk (zy, 0). In the following
we assume that the expectations are always defined. Then

oo

£ (/'I 0, 0) l.f(co) dP (o> i zy, 0) X I l) j/(^ Yi Yfc) n f/5 (y,, | 0),
ß -0 Zj _0

0

where J Ü (», | 0) 1.

ft =0

AGtatiozis

£ {£ (Y» I 0)} j £ (Y»| 0) c/Q (0) m«
£ {Var (P* I 0)} vq
Var{£(P|0)} w,
Similarly we define zzi y, v y, vv 3. and m y, v (•, vvfor the random variables X and X
and the distributions Tand t/. We also use the following notations:

£ {£2(Y^ I 0)} zq and similarly and z,-.

(a, rf) estimate: an estimate /(X, Y*... Y'/ for E (X | zy, 0) of the form

/(X, Yi... Y*) aX + d (1)

(a, b, d) estimate: an estimate/(X, P... Y«) for £ (X | zy, 0) of the form

/(X, Y*... Y*) aX + fcX + d (2)

r ((a,d), C/) £{(aX + i/-£(X| zy, 0)/}
a^ V[/ + (1 — a)2 we; + (rf — (1 -a)

r (a, ft, d), £7) £ {(aX + bX + d - £ (X | zy, 0)/}
a^ (zjjy VQ + vy WQ) + (1 - a)2zr WQ + ((1 -a)mQ-h)2 WT
+ (aziiQ + b/ vy + ((1 — a) m^-bm^-d/

H: range of zy; Z: range of 0.
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Oed/b/'/ify Powiu/ae
From r ((ao, c/o), 17) Min r (fa, d), (7) we get

(a, </)

ao ——, do (1 -fo) »Jr.
Vc+VVf

From r ((ao, bo, do), C) Min r ((a, b, rf), (7) we get
(a, o, rf)

^lyVVQ+WyVVQ bo WT
"o ~ "o H

/?!•/• VVQ-f-WT'WQ + ÂTÎT'VQ-f-Vj'VVQ WÎQ Vy-f Wy

ao + — + I-
mg m r

In order to evaluate the credibility estimates it is necessary to know the structure
function 17 (r/, 11). According to the empirical Bayes point of view it is possible to
estimate 17 on the basis of actual collateral data. Instead of considering point
estimates for the parameters v^„ z etc. as in the existing credibility litera-
ture we merely assume that the data lead us to "sets of possible" structure
functions and parameters. We will then define a statistical game where the

nature chooses a structure function in these sets and the statistician chooses

an estimator of the form 1 or (2). In the next section we indicate some possible
definitions of sets of structure functions. We consider only sets containing the

factor ß of 17 ; the sets for T are analogously defined.

2. Estimation of the Structure Function

Case I. Estimates for m^, v^, z^ can be easily constructed (see [4] for a distri-
bution-free method). Suppose that [m^, J, [v v^J, [z^, z^] are the

corresponding a%-confidence intervals. Finding these intervals is however an

open problem. We define

P« {6 I e ['»<?,>'"<?J- - Q e (: Qi >z<2J, v« e [vq„ VgJ}.

According to the Bonferroni inequality (P A,) > 1 - £ P (A^) P y covers the
2*

true distribution ß' with probability greater than 1 — 3 (1—a) %.
Case 2. Suppose that the distribution of P given 0 belongs to a'given para-
metric family {S (y | 0) | 0eZ}. We consider a confidence region R (for ex. of
Kolmogorov type) that covers the distribution S (y) |S (y | 0)dß' (0) with a
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certain probability (ß' is the true distribution). Under the hypothesis that R

can be bounded by two (possibly improper) distributions Si and S2 (i.e. for
ex. Si increasing, continuous from left, but Si (-00) # 0 or Si (+ 00) / 1):

R {S"|Si(y) > S" (y) > S2 (y)}

we define

P« {öljS(y|0)dß(0)eR}.
Case 3. Without observations the pure Bayesian will guess an a-priori distribu-
tion <2 (0). In our opinion it is easier and safer to give a set of possible structure
functions:

Pl {ßlßi(ö) >ß(0) > 02(0) for all 0}

where ßi and ß.> are distributions such that ßi (0) > ß2 (0) for all 0.
Case 4. Suppose that a fraction 1 — <5 of the risk population is described by a
distribution ßi ePy(i 1,2,3) and the rest by a distribution 62 eP y (i # j 1,

2, 3). Then the whole population is described by

Ö6Pq { q I e <5 ß-2 + (i—<5) ßi}.
Case 5. We consider sets Pq and P^ (for T) as in the prededing cases. We set

Pc= {1/|17 Tß, TePr,ß ePq).

3.The Game of the Actuary Against Nature

Let us now define a game (L, P,-, r) of the actuary against nature, where
L is the set of the estimators available to the actuary, that is:

L {/ (a, d)} or L {/ (a, b, d)},

Pu is the set of the possible structure functions for the nature,
r is the loss function defined by

rt/ m I f L={(a,d)}^ ' 1 r((a, b, d), (7) if L={(a,M)}.
We assume at first that the measures P (m 11/, 0) i.e. the families {S (y | 0)} and
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{P (k I rç)} are known. It is not unreasonable for the actuary to use a minimax
rule /o for which:

Max r (Iq, I/) Min Max r (/, (7).
UePy /eL L'ePu

Let K< be the closed convex hull ofP; • (with the weak topology). Under assump-
tions which are satisfied in all the important practical cases it is shown in [1]
that the game (L, K, r) has a value and a minimax pair (/o, Co). Because the

loss is convex attention may be restricted to nonrandomized Bayes rules.

The straightforward calculation of a minimax rule is in general too complicated.
We shall present a method which allows to characterize a least favorable
distribution Uo in Py. If we can show that Co is also least favorable in then

we have a minimax solution. In general this is unfortunately not possible and

a computational control is necessary.

4. Calculation of a Least Favorable Structure Function

We examine only some examples related to the cases described in section 2.

Consider the following situations for the variables P and the distribution ß:
(î%: no relationship is known between Var (P | 0) and £(P | 0), that is no

relationship is known between vq and (biq, zq) ("non parametric case").

We suppose that ß e Pq.
(h')g,: Hypothesis: Var (P | 0) /co + ki £ (7* | 0) + /c2 £^ (P | 0), where ko, ki

and /c2 are known positive constants. For many important distributions
in the field of insurance this hypothesis is known to be satisfied, ß belongs
to Pq or to Pq.

(in),,: The distribution of U® given 0belongstoafamily (S(y | 0)} and ß belongs
to Pq or to Pq. We still suppose that Var (P | 0) ko + ki £ (P | 0)

+ k,£2(P| 0).

Similarly we can consider situations (i)fc, (ü)t, (m')fc for ^ and T (replace above

y, P, ß. 0,...by k, JC.T, »,,...).
Pemark. In the situations (i)fc, (ü)t, (i)y, 00y we do not assume that the families

{P (k I ^)} and {S(y | 0)} are known (except for the constants ko, ki and kä).

In our statistical game we may then interpret the strategies of the nature as

triplets ([/, {P (k | >7)}, {S (y | 0)}) (the nature chooses also the families {P (k 177)}

and {S (y | 0)}) or as vectors tî (m-/', Vy, zy, Vq, zq) (r depends on U only
via if) but we still denote them by U.
In order to guarantee the existence of a least favorable distribution we may
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require (possibly by additional restrictions such as compactness of H x Z) that
Pf is compact.

Let nn (17) Min r (/, (7). One notices that in the case
/eL

(i')v the function is increasing in z<j and vq (wq fixed)
(i'Oi/ the function cm is increasing in Zq (hjq fixed)
(liify the function cm is increasing in z<_, (m§ fixed)
Similar results may be obtained if we consider rm as a function of z,-.
In all the cases the problem of finding a maximum of rm over the set P,- can
therefore be reduced to the problem of finding a maximum of a function of
two variables m -/.and m g. In the cases (i\ — (if. it suffices to choose z Max z

vqo Max vq, Zyo Max z-,., Max v-,-. In the cases (ii)j, or (iii)» —(»)*
or (/lift it is possible to calculate the function Zy„ (mft Max [zy-1 g' e Pq, mq.

»ft! (resp. zto(wt))- One chooses then the pair (m-r». »'«„) which maximi-
zes rm. The cases with g e Pq or T e P r require some numerical computations
based on linear parametric optimization (see for ex. [5]). At first the problem
is discretized: the distribution go(0) and the function z<j„ (m<j) are computed
only for a finite set of arguments and the linear condition gePç (he.
J S (y I 0)dg(0)eR) is imposed only on a finite set of points ft... ft, (resp.

yi... >'„*). Under suitable assumptions one can show that the solution of the
discretized problem converges weakly to the solution of the true problem.
If ft U [ 0) 0 and Z is a real closed interval the case g e Pq allows an explicit
solution based on the following
Lemma. The distribution g„, for which zq Max (zq | g e Pq, m§ m} is

given by

[gi (ft for 0 <0o
gm (0) s 4 for 0o < 0 < 0i

L g-2 (0) for 01 < 0

where the parameters 0o, r/ and 0i are determined so that mq„, m.

5.On the Existence of a Saddlepoint for the Game (L, P,, r)

If the set Pr is convex then the saddlepoint theorem holds for the game
(L, Pf I') and we obtain easily a minimax estimate. All the sets Pq and P-,

considered in section 2 are convex. Unfortunately if Pq and P-, are convex the
set Pf {17 I (7 Tg, TePr, g ePg } is convex if and only if at least P-,-
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or Pç> contains exactly one element. Without this restriction it is possible to
show the existence of a saddlepoint only for some special cases. We notice
here merely that they include the important case P (/c | 17) Poisson, S (y | 0)

unknown and / (a, r/).

In general we must perform an approximate numerical control as follows.

Define mg, Minm^, mg, Maxnig
Ö e P Q Ô 6 P g

Py {ßePe|z<2 'g,, ('"vk »'<?. < '"e <>«<?>,(vy Maxv^in the case (/)„)}.
Ö £ P(J

Define similarly m?,,, oir, and P* Let

Pf {t/|l7 70, 7eP*, 0 £PQ}
Q =[mr„mj,Jx[mg„mgJ

J'i (/. (njy-, niy)) r(/, fi/) for all 1/ eP* such that L 70, niy ni^mg mg.
We have:

a) The game (L, P,, r) has a saddlepoint if and only if the game (L, Pft, r) has

a saddlepoint. If the two saddlepoints exist then they coincide.

b) The game(L, P*, r) is equivalent to the game(L, Q,''i)-
Let (m,,,, mg,) be the least favorable strategy in the game (L, Q, constructed
by the method of section 4 and let Zo be the corresponding Bayes solution. If
n (Zo, (mi, »ig)) < ri (Zo, (»it., m«,)) holds for all (m^ mg) eQ then
(Zo, (mjo, Bigo)) is a saddlepoint and /o is minimax. This inequality can be

verified on a fine grid inQ.

6. An Example

We compute numerically the distribution

0m e M {0 I SÔ (y) < J' S (y | 0) 00 (0) < S( (y), m« m

for which Zq„, Max zq, m e [m^,, We suppose that:
2/

1 f 1 / / /t2\ / / \2
a) S (y I 0)

1/271 I

cxp — In z — In 0 + — / 2 / ] ^Zz with a 1.

Notice that £ (7* | 0) 0, Var (T" | 0) 0^ (e — 1) so that vq z<j(e — 1).

b) Z {0j |y 1... 5} {1, 1.5, 2, 2.5, 3}. Because Z is finite we do not con-
sider a further discretization of Z.
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c) Sâ (v) [S(y)-0.1]+, S,' (y) 1 + [S(y)+ 0.9]-

where S(y) - £ S(y|0p and [.]+ ([.]-) denote the positive (resp.
negative) part.

Let >>t 0.20, >>2 0.56, ya 1, yj 1-72, >'5 2.5, ye 3.44, y, 5,

>'8 6.56 be the discretization of the range of 7''. By linear parametric optimi-
zation we obtain the solutions (f,„i, f?«2 tms) of the problems

n-1

X (0|-0|+l)tmj + ön Ln « Max

«-1

y. (&? ö;+i) îm; ~i" ^^ « 1

S-2 (Vi) < X (S (>'» I 0j)- s (}'i I Öj+i)) t,„; + S (y,; I 0„) < S{ (y,;)

J-l
0 < < ^7?i2 < ••• < fmw —

1 1... n*,

where m e [wq,, m^J. We put

Cm (0) — fmi

By linear optimization of the object function

ft—1

y (0; 0j'+l) H" öft ^ft

;'=i

under the side conditions (3) (with f,„; tj) we can also find and m^,.
The following table gives us the results of the parametric optimization for our
example.

m CmO) ßm (1.5) Cm (2) Cm (2.5) Cm (3)

1.450 2.125 0 0.099 1.000 1.000 1.000

1.664 3.658 0 0.667 0.667 0.667 0.667

2.607 7.428 0 0.196 0.196 0.196 0.196

For further values of m one can interpolate linearly.

(3)

for 0 < 0i

for 0j < 0 < 0f+i.
for 0 > 0„
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\fflr"!v\ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

1.4501 5.24 5.44 5.61 5.76 5.89 5.75 5.57 5.35 4.96 4.51 3.84
1.5658 9.11 9.49 9.86 10.20 10.52 10.56 10.56 10.54 10.35 10.13 9.71
1.6645 12.17 12.70 13.20 13.68 14.14 14.28 14.40 14.48 14.40 14.28 13.96
1.7972 13.76 14.35 14.91 15.45 15.97 16.11 16.22 16.30 16.17 16.00 15.60
1.9129 15.04 15.68 16.29 16.88 17.44 17.57 17.66 17.72 17.54 17.31 16.81
2.0286 16.24 16.92 17.58 18.20 18.79 18.90 18.97 18.99 18.75 18.44 17.82
2.1443 17.33 18.06 18.75 19.40 20.02 20.10 20.12 20.09 19.77 19.36 18.60
2.2530 18.32 19.08 19.80 20.48 21.12 21.15 21.12 21.02 20.59 20.06 19.13
2.3757 19.20 19.99 20.73 21.43 22.08 22.05 21.95 21.77 21.21 20.54 19.41
2.4914 19.97 20.77 21.53 22.24 22.89 22.78 22.59 22.31 21.60 20.76 19.39
2.6071 20.61 21.43 22.19 22.90 23.54 23.34 23.04 22.64 21.75 20.71 19.07

»•J

CONTROL

\m-,. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

1.4501 14.08 13.72 13.35 12.99 12.63 12.04 11.46 10.88 10.20 9.53 8.76
1.5658 16.66 16.50 16.34 16.18 16.01 15.55 15.08 14.61 14.02 13.43 12.70
1.6645 18.86 18.87 18.88 18.89 18.90 18.54 18.17 17.80 17.28 16.75 16.07
1.7972 19.17 19.27 19.36 19.46 19.56 19.22 18.88 18.54 18.03 17.51 16.81
1.9129 19.44 19.61 19.78 19.96 20.13 19.81 19.50 19.19 18.68 18.17 17.45
2.0286 19.72 19.96 20.21 20.45 20.70 20.41 20.12 19.84 19.33 18.83 18.10
2.1443 19.99 20.31 20.63 20.95 21.26 21.01 20.75 20.49 19.99 19.49 18.75
2.2530 20.26 20.65 21.05 21.44 21.83 21.60 21.37 21.13 20.64 20.15 19.39
2.3757 20.53 21.00 21.47 21.94 22.40 22.20 21.99 21.78 21.29 20.81 20.04
2.4914 20.81 21.35 21.89 22.43 22.97 22.79 22.61 22.43 21.95 21.47 20.68
2.6071 21.08 21.69 22.31 22.93 23.54 23.39 23.23 23.08 22.60 22.13 21.33
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A parametric optimization of r-, gave the following results.

m' 3.0 3.4 3.7 3.9 4.0

Z 71T m' 12.44 15.40 16.90 17.70 18.0

We compute now the least favorable pair (m^, in the game (L.Q, r,) with

L {(a, </)}, Q [3.0,4.0] x [1.450, 2.607]

(m) defined by linear interpolation between the points (m, z^J of the first
table

z To (^') defined by linear interpolation between the points (m', zj^,) of the
second table.

The matrix MIN represents the function Mine, ((a, rf), (m^ m,])onan 11x11
grid in Q.
By further subdivisions of the grid we find a local maximum at m<j„ 2.607,

fir, 3.4 with the value 23.54. We obtain /(> (ao, —— ] (0.34 0 66)
\ '"To '»<?„/

The Matrix CONTROL represents the function n (/o, (m^ mç)) on the grid of
MIN. The inequality (Zq, (my, wiq)) < 23.54 holds for all the points of the
grid and the obvious monotonicity of the function in all directions suggest
strongly that the inequality holds also on the whole domain Q. The point
(Zo, ('"To' '"<3o)) should therefore be a saddlepoint.
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Zusammenfassung

Es wird eine Methode vorgeschlagen, um optimale (minimax) Credibility-Schätzungen zu berech-

nen, wenn die Strukturfunktion nicht exakt bekannt ist; es wird nur angenommen, dass sie zu einer

vorgegebenen Menge von Verteilungsfunktionen gehört. Es wird auch eine numerische Methode
für die Berechnung der Minimax-Lösung beschrieben.

Résumé

Une méthode est proposée pour calculer des estimateurs de Credibility optimales (minimax) lors-

que la vraie distribution de structure n'est pas exactement connue. On suppose seulement qu'elle
appartient à un ensemble donné de distributions. Une méthode numérique pour calculer la solu-
tion minimax est également décrite.

Riassunto

Viene proposto un metodo per calcolare stime di Credibility ottimali (minimax) qualora non si

conosca esattamente la funzione di struttura ma si sappia solo che appartiene ad un dato insieme
di distribuzioni. Viene anche descritto un metodo numerico per calcolare la soluzione minimax.

Summary

A method is suggested to compute optimal (minimax) Credibility estimates when the structure
function is not exactly known; one merely assumes that it belongs to a given set of distributions.
A numerical method to compute the minimax solution is also described.
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