Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 76 (1976)

Artikel: Morbiditätsstatistik KKB 1974

Autor: Schmid, Heinz / Volkmer, Jean-Pierre DOI: https://doi.org/10.5169/seals-967184

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Morbiditätsstatistik KKB 1974

Von Dr. Heinz Schmid und Jean-Pierre Volkmer, Bern

Inhaltsverzeichnis

	Seite
1. Einleitung	132
2. Zweck und Definition einer Morbiditätstafel	134
3. Statistische Grundlagen	136
4. Konstruktion und Auswertung von Morbiditätstafeln	137
4.1. Grobkonzept und Voraussetzungen	137
4.2. Die Ermittlung des Risikobestandes	138
4.3. Die Ermittlung der übrigen Grundzahlen	140
4.4. Die Berechnung der rohen Verhältniszahlen	144
4.5 Ausgleichung	144
4.5.1. Übersicht	144
4.5.2. Regression mit orthogonalen Polynomen	145
	148
	152
5. Die Morbiditätsstatistik KKB 1974	154
	154
	155
5.3. Vergleich mit den Morbiditätstafeln Walther	156
6. Ausblick	159
Anhang:	
Tabellen mit den Grundzahlen und Nettowerten der Krankenpflegeversicherung für Männer	
and raden, Emerals Je 27470 and 170 1111111111111111111111111111111111	161
Tabellen mit den Nettodeckungskapitalien der Krankenpflegeversicherung für Männer und	· Some
	173
Graphische Darstellungen der Krankenordnungen, Nettoprämien und Nettodeckungskapi-	10 101111000
(-)/	185
Literaturverzeichnis	189

1. Einleitung

Die Schweizerische Krankenversicherung basiert auf dem Bundesgesetz über die Kranken- und Unfallversicherung (KUVG) vom 13. Juni 1911 und teilt sich grundsätzlich in die Krankenpflege- und die Krankengeldversicherung auf. Bei der Krankengeldversicherung handelt es sich um eine Summenversicherung, aus der bei Arbeitsunfähigkeit des Versicherten infolge Krankheit pro Tag ein versichertes Krankengeld ausgerichtet wird. Das versicherte Risiko ist von verschiedenen äusseren Einflüssen abhängig. Neben dem oft eine Ermessensfrage darstellenden Entscheid des Arztes, ob ein bestimmter reduzierter Gesundheitszustand eine Arbeitsunfähigkeit darstelle, wird die Frage des Eintrittes des versicherten Ereignisses und dessen Dauer im wesentlichen auch durch die Wirtschaftslage, die Begehrlichkeit des Versicherten und die Höhe des versicherten Taggeldes beeinflusst. Verfolgt man die durchschnittliche Zahl der Krankentage für einen bestimmten Risikobestand während mehrerer Jahre, können in der Regel nur relativ kleine Schwankungen oder Trends festgestellt werden. Dies erklärt offenbar auch die sehr kleine Zahl von schweizerischen Morbiditätstafeln für die Krankengeldversicherung. In den letzten 50 Jahren sind praktisch nur die beiden diesbezüglichen mathematischen Untersuchungen von Dr. Fritz Walther über die Beobachtungszeit 1941/42 und von Dr. Johanna Steiger und Dr. Fritz Walther über die Beobachtungszeit 1957/68, welche je auf den Erfahrungen der KKB (Krankenkasse für den Kanton Bern) basieren, publiziert worden.

Einem wesentlich komplexeren Einflussfeld ist das Risiko «Krankenpflegekosten» ausgesetzt. Der Eintritt des versicherten Ereignisses (Krankheit und deren wirtschaftliche Folgen) wird neben der objektiv einwirkenden und nach Alter und Geschlecht verschiedenen Morbidität durch subjektive Faktoren stark beeinflusst. Als wichtigste Abhängigkeiten gelten: Verträge und Tarife mit den Ärzten, Heilanstalten, Apothekern und medizinischen Hilfspersonen, die Arzneimittellisten, die gesetzliche und statutarische Leistungspflicht, das Angebot an Ärzten und Heilanstalten, die Aufteilung in Versichertengruppen, die Kostenbeteiligung der Versicherten, die allgemeine Wirtschaftslage und im besonderen die Lohn- und Preisentwicklung. Damit sind die Rechnungsgrundlagen, d.h. die nach Alter und Geschlecht abgestuften durchschnittlichen Krankenpflegekosten (die Krankenordnung k_x , k_y), einem raschen Wandel unterworfen. Bedingt durch die Fortschritte der Medizin und die gesetzlichen, sozialen und gesellschaftlichen Veränderungen, variieren diese erwarteten Kosten nicht linear. Wir stellen vielmehr vom Alter der versicherten Personen

abhängige wesentliche strukturelle Unterschiede fest. Diese Erkenntnis liesse die Erwartung zu, dass deshalb in sehr kurzen Zeitabständen versicherungsmathematische Rechnungsgrundlagen für die Krankenpflegeversicherung erstellt würden. Die Schlussfolgerung ist wohl richtig, wir müssen aber feststellen, dass in den letzten 50 Jahren praktisch nur vier schweizerische Morbiditätsstatistiken von allgemeiner Bedeutung (siehe Literaturangaben) und zwei bezüglich den Heilanstaltskosten publiziert wurden. Als Hauptgrund dafür ist wohl weitgehend der damit verbundene immense Arbeitsaufwand zu erwähnen. Wenn wir beispielsweise bedenken, dass die im Jahre 1957 als jüngste Publikation veröffentlichte Basler Morbiditätsstatistik auf dem Beobachtungsmaterial von 1948 (123499 Versicherte) basiert, mit 65 stellenlosen kaufmännischen Angestellten und dem Einsatz von Lochkartenmaschinen durchgeführt wurde und damals rund Fr. 273000. – gekostet hat, so kann der grosse Arbeitsaufwand einigermassen beurteilt werden. Die grossen Datenverarbeitungsanlagen unserer Zeit erlauben uns heute bei Vorhandensein von geeigneten Programmen das Erstellen von Morbiditätstafeln innert kürzester Zeit. Aus diesem Grunde konzentrieren wir uns in den folgenden Ausführungen auf einen EDV-gerechten Lösungsweg. Das enorm grosse Zahlenmaterial fällt an, weil das versicherte Ereignis pro Versicherten und Jahr mehrmals eintreten kann. Dabei geht es nicht wie in der Lebensversicherung, bei der das versicherte Ereignis während der ganzen Versicherungsdauer in der Regel nur einmal zur Diskussion steht, lediglich um die Prüfung einer einfachen Bestätigung; es sind vielmehr verschiedenartige und umfangreiche Rechnungen pro Krankheitsfall zu kontrollieren und zu verarbeiten. Trotzdem ist es geradezu unverantwortlich, das in den letzten 30 Jahren angefallene Beobachtungsmaterial versicherungswissenschaftlich nicht auszuwerten. Weder die Krankenkassen noch die Aufsichtsbehörden haben den Wert der zur Verfügung stehenden versicherungsmathematischen Informationen über die Morbidität und deren Veränderungen erkannt.

Dieses «Vakuum» in den mathematischen Grundlagen für die Krankenversicherung sowie die in den letzten Jahren einsetzenden Diskussionen und Forderungen um eine grundlegende Neustrukturierung der sozialen Krankenversicherung haben uns veranlasst, die ganze Problematik neu zu überdenken und mit Hilfe der modernen Datenverarbeitungsanlage der Krankenkasse KKB einem zeitgerechten Lösungsweg zuzuführen. Eine erst nach fünf bis zehn Jahren veröffentlichte Morbiditätsstatistik hat in der heutigen, raschem Wandel unterworfenen Zeit höchstens noch historischen und allenfalls wissenschaftlichen Wert; praktische Schlussfolgerungen könnten kaum gezogen werden.

Unter Leitung von Dr. Heinz Schmid entstand im Rahmen einer Lizentiatsarbeit von Jean-Pierre Volkmer am Institut für mathematische Statistik und Versicherungslehre der Universität Bern und in enger Zusammenarbeit mit der KKB ein System von Computerprogrammen, welche die alljährliche praktische Berechnung der Morbiditätsstatistik mit den Krankenordnungen k_x bzw. k_y als Grundzahlen sowie deren Abstufung nach Versichertengruppen und Regionen zu verschiedenen Zinsfüssen ermöglicht. Analoge Auswertungen erfolgen auch für die Spitalbehandlungskostenversicherung, abgestuft nach Versicherungshöhe. Auf die gleiche Art und Weise können damit die mathematischen Grundlagen für die Krankengeldversicherungen erstellt werden. Sobald das Beobachtungsmaterial, d.h. die Krankenpflegekosten oder die ausbezahlten Krankengelder und der dazu gehörende Risikobestand, in einheitlicher Form auf einem Datenträger zur Verfügung stehen, werden diese Untersuchungen für eine beliebige Gesamtheit realisierbar.

2. Zweck und Definition einer Morbiditätstafel

Art. 9 Abs. 1 der Vo V bestimmt, dass die Krankenkassen ihren Finanzhaushalt so zu gestalten haben, dass die jährlichen Ausgaben durch die Einnahmen des betreffenden Jahres gedeckt werden und eine Vermögensreserve gebildet werden kann.

Die Einnahmen der Krankenkassen setzen sich zusammen aus

- den Aufwendungen der Versicherten,
 - Mitgliederbeiträgen (Prämien),
 - Kostenanteilen,
 - Krankenscheingebühren,
 - evtl. Eintrittsgeldern,
- den Beiträgen des Bundes,
- Beiträgen von Kantonen und Gemeinden,
- übrigen Einnahmen (z. B. Vermögensertrag).

Die Finanzierung erfolgt nach dem Umlageverfahren mit einem Schwankungsfonds. Nach diesem System werden die Ausgaben eines Jahres auf den Versichertenbestand umgelegt und die Kosten durch entsprechende Mitgliederbeiträge gedeckt. Art. 6bis Abs. 1 des KUVG bestimmt, dass die Mitgliederbeiträge für alle Versicherungsarten getrennt festzusetzen und so zu bemessen sind, dass sich diese selbst erhalten und die nötigen Reserven gebildet werden können.

Art. 6^{bis} Abs. 1 KUVG und Art. 9 Abs. 1 Vo V führen die Krankenkassen zu folgender Frage:

Welchen Betrag hat der Versicherungsträger in einem zukünftigen Jahr pro Versicherungsart auszulegen?

Dieser Betrag ist grundsätzlich abhängig von der Altersstruktur einer Krankenkasse.

Statistiken mit Erfahrungszahlen über den vom Versicherungsträger in einem vergangenen Jahr pro Versicherten des Alters x ausgelegten Betrag einer Versicherungsart nennt man Morbiditätstafel oder Krankenordnung dieser Versicherungsart.

Aus solchen Morbiditätstafeln lassen sich die nach Eintrittsalter abgestuften Risikoprämien einer Versicherungsart sowie die Deckungskapitalien berechnen.

Die Morbiditätstafeln der wichtigsten Versicherungsarten können wie folgt definiert werden:

Eine Morbiditätstafel der *Krankenpflegeversicherung* gibt für jedes Alter *x* den Betrag an, den der Versicherungsträger bei gegebenen gleichbleibenden Voraussetzungen zur Deckung der Krankenpflegekosten für einen *x*-jährigen ganzjährig Versicherten im nächsten Jahre auszulegen hat.

Eine Morbiditätstafel der *Krankengeldversicherung* gibt für jedes Alter *x* die Anzahl Krankengelder an, die der Versicherungsträger bei gegebenen gleichbleibenden Voraussetzungen einem *x*-jährigen ganzjährig Versicherten im nächsten Jahre auszurichten hat.

Eine Morbiditätstafel der *Spital-Taggeldversicherung* gibt für jedes Alter *x* die Anzahl Spital-Taggelder an, die der Versicherungsträger bei gegebenen gleichbleibenden Voraussetzungen einem *x*-jährigen ganzjährig Versicherten im nächsten Jahre auszurichten hat.

Eine Morbiditätstafel der *Spitalbehandlungskostenversicherung* gibt für jedes Alter *x* und jede Versicherungssumme *S* den Betrag an, den der Versicherungsträger bei gegebenen gleichbleibenden Voraussetzungen zur Deckung der durch die Krankenpflegeversicherung nicht getragenen Spitalbehandlungskosten für einen *x*-jährigen ganzjährig Versicherten im nächsten Jahre auszulegen hat.

3. Statistische Grundlagen

Um Morbiditätstafeln gemäss den Definitionen in Abschnitt 2 erstellen zu können, werden pro Beobachtungsperiode, pro Alter und Versicherungsart folgende *Grundzahlen* benötigt:

- a) L Risikobestand.
- b) A Ausgaben des Versicherungsträgers: nur für Pflegeversicherungen.
- c) T Anzahl bezahlter Krankentage bzw. Spitaltage: nur für Geldversicherungen.
- d) K Anzahl erkrankte Personen.
- e) F Anzahl Krankheitsfälle.

K und F sind Grundzahlen, die zur Erstellung einer Morbiditätstafel nicht benötigt werden. Sie lassen sich aber ohne grossen zusätzlichen Aufwand mit A und T ermitteln.

Mittels der Grundzahlen können folgende Verhältniszahlen berechnet werden:

- a) $k^{VI} = A/L$ Durchschnittliche Kosten: Rohe Morbiditätswerte für Pflegeversicherungen.
- b) $k'^{VI} = A/K$ Relative Kosten: Kosten pro erkrankte Person.
- c) $k^{V2} = T/L$ Durchschnittliche Anzahl Krankentage: Rohe Morbiditätswerte für Geldversicherungen.
- d) $k'^{V2} = T/K$ Relative Anzahl Krankentage: Anzahl Krankentage bzw. Spitaltage pro erkrankte Person.
- e) $\varepsilon = K/L$ Erkrankungsziffer: Anzahl erkrankte Personen pro Person.
- f) e = F/L Durchschnittliche Erkrankungshäufigkeit: Anzahl Krankheitsfälle pro Person.
- g) e' = F/K Relative Erkrankungshäufigkeit: Anzahl Krankheitsfälle pro erkrankte Person.
- h) $d^{VI} = A/F$ Kosten pro Fall.
- i) $d^{V2} = T/F$ Anzahl bezahlter Krankentage bzw. Spitaltage pro Fall.

Die Berechnung der Verhältniszahlen e' und k'^{VI} ist beim Erstellen einer Morbiditätstafel der Krankenpflegeversicherung sehr zu empfehlen, da sich mit ihrer Hilfe Auswirkungen von Franchise-Ansätzen und Selbstbehaltregelungen auf die Kostengestaltung aufdecken lassen.

4. Konstruktion und Auswertung von Morbiditätstafeln

4.1. Grobkonzept und Voraussetzungen

Die Konstruktion und das Auswerten einer Morbiditätstafel gliedert sich in folgende Teilaufgaben:

- a) Ermittlung des Risikobestandes pro Alter und Beobachtungsjahr.
- b) Ermittlung der Kosten bzw. Krankentage oder Spitaltage pro Alter und Beobachtungsjahr.
- c) Berechnen der rohen Morbiditätswerte.
- d) Ausgleichung der rohen Morbiditätswerte: → Morbiditätstafel.
- e) Erstellen einer Dekremententafel.
- f) Berechnen der Nettowerte der entsprechenden Versicherungsart.
- g) Berechnen der Deckungskapitalien.

Die Wahl der Beobachtungsperiode (ein oder mehrere Jahre) kann die Morbidität stark beeinflussen. Morbiditätstafeln von Beobachtungsperioden, in denen sich Störfaktoren, wie zum Beispiel

- Epidemien,
- Tarifänderungen,
- Vertragsänderungen usw.,

bemerkbar machen, können nicht als Grundlage für Prämien- und Deckungskapitalberechnungen verwendet werden. Ausserdem können solche Tafeln nur bedingt und unter Berücksichtigung der veränderten Einflussfaktoren mit Tafeln früherer Perioden verglichen werden.

Die Wahl der zu beobachtenden Personen ist in Abhängigkeit von der Art der zu erstellenden Morbiditätstafel und der in der Einleitung aufgezeigten Einflussfaktoren zu treffen.

Die Faktoren, die Morbiditätstafeln von Krankenpflegeversicherungen beeinflussen, verunmöglichen es fast, gesamtschweizerische Tafeln zu erstellen. Wegen der verschiedenen statutarischen Leistungen können Erfahrungen einer Kasse nur bedingt auf andere Kassen übertragen werden. Deshalb ist es hier vorteilhaft, Erfahrungen einer Kasse in einem Kanton auszuwerten. Das Erstellen von Morbiditätstafeln mit Erfahrungszahlen aus mehreren Kassen mit verschiedenen Tätigkeitsgebieten ist nur dann sinnvoll, wenn geeignete Ansätze ein Rückschliessen auf die effektiven Verhältnisse einer Kasse ermöglichen.

Für Morbiditätstafeln von Krankengeldversicherungen kann das Erfahrungsmaterial verschiedener Krankenkassen ohne weiteres zusammengelegt werden,

falls diese Kassen ihrer Leistungspflicht während der gleichen Unterstützungsdauer nachkommen.

4.2. Die Ermittlung des Risikobestandes

Bezeichnet

 L^{V} den Risikobestand des Jahres t in Versicherungsart V,

n die Anzahl Tage des Jahres $t: n = \{365, 366\},$

 M^V die Menge aller Personen P, die im Beobachtungsjahr t während mindestens einem Tage für die vollen statutarischen Leistungen in Versicherungsart V versichert waren,

m die Anzahl Elemente (Personen) der Menge M^{V} ,

 d_v die Anzahl Tage, die die v-te Person P_v der Menge M^V angehört hat,

so kann der Risikobestand des Jahres t in Versicherungsart V wie folgt definiert werden:

Definition 1

Risikobestand = Anzahl ganzjährige Mitgliedschaften:

$$L^{V} = \frac{1}{n} \sum_{v=1}^{m} d_{v}$$

Sind

- a) die Daten aller, im Jahr t in Versicherungsart V versicherten Mitglieder auf einem maschinell lesbaren Datenträger gespeichert,
- b) alle Mutationen im Jahr t dieser Mitglieder erfasst und gespeichert, so gestaltet sich die Ermittlung des Risikobestandes des Jahres t pro Alter x in Versicherungsart V sehr einfach. Der jährliche Subventionsbeitrag des Bundes an die sozialen Krankenkassen wird auf Grund des Risikobestandes ausgerichtet. Zur Überprüfung der Angaben der Krankenkasse verlangt das Bundesamt für Sozialversicherung (BSV) jährlich eine Liste, auf der pro Mitglied und Mutation u.a. folgende Daten vermerkt sein müssen:
- Jahrgang,
- Geschlecht,
- Eintrittsdatum in die Krankenkasse,
- Austrittsdatum aus der Krankenkasse,

- Mutationsdatum,
- Versicherung.

Das File (BSV-Records), das zur Erstellung dieser Liste aufgebaut werden muss, kann als Basis für die Ermittlung des jährlichen Risikobestandes in allen Versicherungsarten pro

- Alter x,
- Geschlecht,
- Unterabteilung der Versicherungsart V,
- spezielle Unterteilung der Unterabteilung der Versicherungsart V:
 - Tarifstufe → Wohnregion,
 - Sektion
 Altersgruppe
 Eintrittsalter,

 - versicherte Summe usw.

verwendet werden, indem:

Programm 1:

pro BSV-Record und Versicherungsart V ein Risikobestand-Record (RB-Record) erstellt wird, der folgende Daten enthält:

- RB-Record-Code:
 - Code für die Versicherungsart,
 - Code für die Unterabteilung,
 - Code für die spezielle Unterteilung,
 - Code für das Geschlecht des Mitglieds,
- Alter des Mitglieds,
- Anzahl Tage, die das Mitglied für die vollen statutarischen Leistungen in der betreffenden Versicherungsart versichert war;

Programm 2:

die RB-Records nach ihrem RB-Record-Code sortiert werden:

Programm 3:

- Definition 1 für alle sortierten RB-Records mit gleichem RB-Record-Code und gleichem Alter angewandt wird:

$$L_x^V = \frac{1}{n} \sum_{v=1}^{m_g} d_{x,v}$$
, wobei

m_q die Anzahl RB-Records mit gleichem RB-Record-Code und gleichem Alter bezeichnet.

die resultierenden Risikobestands-Tabellen für ihre Weiterverwendung gespeichert werden: pro Tabelle ein Tabellen-Code.

Mit diesen drei einfachen Programmen können unzählige Risikobestands-Ermittlungen gleichzeitig durchgeführt werden: Der Bedarf an Kernspeicherkapazität des Computers ist von der Anzahl zu erstellender Risikobestands-Tabellen unabhängig und beträgt weniger als 100 K.

4.3. Die Ermittlung der übrigen Grundzahlen

Es bezeichne

 M_x^{V1} die Menge aller Personen des Alters x für die der Versicherungsträger im Jahre t in Versicherungsart V1 Kosten zu begleichen hatte,

 P_i das *i*-te Element $(i = 1, 2, ..., m_x^{V1})$ der Menge M_x^{V1} ,

 $a_{x,i}^{V1}$ die Ausgaben des Versicherungsträgers im Jahre t in Versicherungsart V1 für die Person P_i ,

 $a_{x,i,j}^{V1}$ die Ausgaben des Versicherungsträgers im Jahre t in Versicherungsart V1 im j-ten Krankheitsfall der Person P_i ,

 $f_{x,i}^{V1}$ die Anzahl abgerechneter Krankheitsfälle in Versicherungsart V1 der Person P_i im Jahre t,

 $M_x^{V\,2}$ die Menge aller Personen des Alters x, an die der Versicherungsträger im Jahre t in Versicherungsart V2 Krankengelder ausbezahlt hat,

 Q_i das *i*-te Element $(i = 1, 2, ..., m_x^{V_2})$ der Menge $M_x^{V_2}$,

 $t_{x,i}^{V2}$ die Anzahl vom Versicherungsträger im Jahre t in Versicherungsart V2 an die Person Q_i ausbezahlter ganzer Krankengelder,

 $t_{x,i,j}^{V2}$ die Anzahl vom Versicherungsträger im Jahre t in Versicherungsart V2 im Krankheitsfall j der Person Q_i ausgerichteter ganzer Krankengelder,

 $f_{x,i}^{V2}$ die Anzahl abgerechneter Krankheitsfälle in Versicherungsart V2 der Person Q_i im Jahre t.

Dabei gilt:

a)
$$a_{x,i}^{V1} = \sum_{j=1}^{f_x^{V1}} a_{x,i,j}^{V1}$$

b)
$$t_{x,i}^{V2} = \sum_{j=1}^{f_x^{V2}} t_{x,i,j}^{V2}$$

Die übrigen Grundzahlen können nun wie folgt definiert werden:

Definition 2

Ausgaben des Versicherungsträgers im Jahre t in Versicherungsart V1 für die Personen des Alters x:

$$A_x^{V1} = \sum_{i=1}^{m_x^{V1}} \sum_{j=1}^{f_{x,j}^{V1}} a_{x,i,j}^{V1}$$

Definition 3

Anzahl vom Versicherungsträger im Jahre t in Versicherungsart V2 an Personen des Alters x ausbezahlter ganzer Krankengelder:

$$T_x^{V2} = \sum_{i=1}^{m_x^{V2}} \sum_{j=1}^{f_{x,i}^{V2}} t_{x,i,j}^{V2}$$

Definition 4

Anzahl Personen des Alters x, die den Versicherungsträger im Jahre t in Versicherungsart V mit Ausgaben (Bezahlung von Arztrechnungen, Auszahlung von Krankengeldern, usw.) belasteten:

$$K_x^V = m_x^V$$

Definition 5

Anzahl Krankheitsfälle von Personen des Alters x, die im Jahre t in Versicherungsart V abgerechnet wurden:

$$F_x^V = \sum_{i=1}^{m_x^V} f_{x, i}^V$$

Wird pro

- Krankheitsfall,
- Rechnungssteller:
 - Arzt, Spital, Apotheke usw.,
 - Mitglied,
- Versicherungsart

für die Abrechnung des Krankheitsfalles ein sogenannter Abrechnungs-Record (AR-Record) mit u.a. folgenden Daten:

- Identifikationskennzeichen des Mitglieds:
 - Mitglied-Nummer und/oder
 - Sektions-Nummer oder
 - AHV-Nummer,
- Abrechnungsdatum,
- Versicherungsart,
- Kosten des Versicherungsträgers erstellt, so können
- 1) das File, das aus allen nach Identifikationskennzeichen sortierten Abrechnungs-Records des Jahres t besteht,
- 2) das BSV-File (vgl. Abschnitt 4.2) als Basis für die Ermittlung der übrigen Grundzahlen in *allen* Versicherungsarten pro
 - Alter x,
 - Geschlecht,
 - Unterabteilung der Versicherungsart V,
 - spezielle Unterteilung der Unterabteilung der Versicherungsart V:
 - Tarifstufe
 Sektion
 Wohnregion,
 Wohnregion,
 - Altersgruppe ------ Eintrittsalter,
 - versicherte Summe usw.

verwendet werden, indem:

Programm 4:

pro AR-Record ein Morbiditätsstatistik-Kosten-Record (MK-Record) erstellt wird, der folgende Daten enthält:

- MK-Record-Code:
 - Code für die Versicherungsart,
 - Code für die Unterabteilung,

- Code für die spezielle Unterteilung,
- Code f
 ür das Geschlecht des Mitglieds,
- Alter des Mitglieds,
- Kosten bzw. Anzahl ausgerichteter ganzer Krankengelder,
- Code für die Ermittlung der K,
- Code für die Ermittlung der F.

Dabei werden

- Unterabteilung,
- Spezielle Unterteilung,
- Alter,
- Geschlecht,
- Anzahl ausgerichteter ganzer Krankengelder

dem im Zeitpunkt der Abrechnung gültigen BSV-Record des Mitglieds entnommen.

- Versicherungsart,
- Kosten

ergeben sich aus dem AR-Record und

- Code K = 1, falls AR-Record = 1. Record des Mitglieds in dieser Versicherungsart,
 - = 0, sonst,
- Code F = 1, falls AR-Record = 1. Record des Mitglieds in diesem Krankheitsfall in dieser Versicherungsart,
 - = 0, sonst,

Programm 5:

die MK-Records nach ihrem MK-Record-Code sortiert werden (vgl. Programm 2, Abschnitt 4.2),

Programm 6:

die Felder

- Kosten bzw. Anzahl ausgerichteter ganzer Krankengelder,
- Code für die Ermittlung von K,
- Code f
 ür die Ermittlung von F

aller MK-Records mit gleichem MK-Record-Code und gleichem Alter aufsummiert werden und die resultierenden Grundzahlen-Tabellen für ihre Weiterverwendung gespeichert werden: Pro Tabelle ein Tabellen-Code.

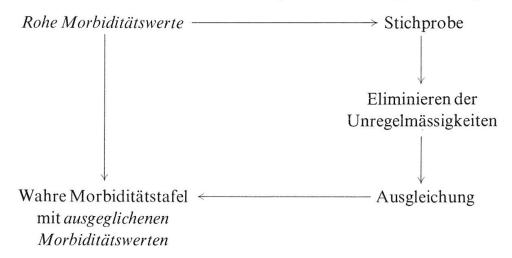
Mit diesen drei einfachen Programmen können unzählige Grundzahlen-Ermittlungen gleichzeitig durchgeführt werden: Der Bedarf an Kernspeicherkapazität des Computers ist von der Anzahl zu erstellender Tabellen unabhängig und beträgt weniger als 100 K. Ausserdem kann Programm 3 (vgl. Abschnitt 4.2) so konzipiert werden, dass es auch als Programm 6 Verwendung findet.

4.4. Die Berechnung der rohen Verhältniszahlen

Mit den ermittelten Grundzahlen einer Versicherungsart V pro Alter x lassen sich die in Abschnitt 3 definierten rohen Verhältniszahlen

$$k_x = A_x/L_x$$
 bzw. $k_x = T_x/L_x$ bzw. $k'_x = A_x/K_x$ bzw. $k'_x = T_x/K_x$ bzw. $k'_x = T_x/K_x$

mit dem Programm-Produkt «AKTUARIAT», einer Programmiersprache für Versicherungsmathematiker, die leicht zu erlernen ist, sehr einfach berechnen.


4.5. Ausgleichung

4.5.1. Übersicht

Die rohen Morbiditätswerte haben erfahrungsgemäss einen mehr oder weniger unregelmässigen Verlauf, der auf die in Abschnitt 1 aufgeführten Einflussgrössen zurückzuführen ist, und sind deshalb für die versicherungstechnische Praxis nicht ohne weiteres verwendbar. Die auftretenden Unregelmässigkeiten können als Beobachtungsfehler aufgefasst werden, die den «wahren» Verlauf der Morbiditätstafel entstellen. Deshalb versucht man diese Unregelmässigkeiten durch einen Ausgleichs-Prozess zu eliminieren.

Die Erfahrung lehrt, dass die bei unausgeglichenen Morbiditätstafeln auftretenden Unregelmässigkeiten um so mehr ins Gewicht fallen, je kleiner der Risikobestand ausfällt. Könnte man den Risikobestand in allen Altersklassen gleichmässig und beliebig vermehren, so würde man schliesslich zu einem hypothetischen Risikobestand gelangen, der Grundgesamtheit genannt werden soll. Aus der Grundgesamtheit könnte ohne Ausgleichung die wahre Morbiditätstafel abgeleitet werden. Von der wahren Morbiditätstafel wird vorausgesetzt, dass sie keinerlei Unregelmässigkeiten aufweist und daher durch glatte Kurven darstellbar ist.

Deshalb fasst man den der zu erstellenden Morbiditätstafel zugrunde liegenden Risikobestand als eine Stichprobe der Grundgesamtheit auf. Die Unregelmässigkeiten erklären sich dann durch den begrenzten Umfang der Stichprobe:

Im Verlaufe der Zeit sind zahlreiche Methoden entwickelt worden, die mit mehr oder weniger Erfolg zu einer Ausgleichung der rohen Morbiditätswerte führen. Von einer guten Ausgleichung verlangt man:

- 1) einen glatten Kurvenverlauf,
- 2) gute Übereinstimmung mit den rohen Morbiditätswerten, d.h. möglichst kleine Abweichungen zwischen beobachteten und ausgeglichenen Morbiditätswerten,
- 3) Wiedergabe der Tendenzen und charakteristischen Eigenheiten der rohen Werte.

Die verschiedenen Methoden der Ausgleichung lassen sich in drei Hauptgruppen einteilen:

- 1) graphische Methoden,
- 2) mechanische Methoden,
- 3) analytische Methoden.

Wir beschränken uns im folgenden auf die Regression mit orthogonalen Polynomen, als eine der analytischen Ausgleichungsmethoden.

4.5.2. Regression mit orthogonalen Polynomen

Als Ausgleichsfunktion wird ein Polynom n-ten Grades von der Form:

$$k_x^a = z_n(x) = A_0 + A_1 P_1(x) + ... + A_n P_n(x)$$

gewählt, wobei gilt:

$$P_i(x) = \sum_{j=0}^i b_j x^j$$

ist ein orthogonales Polynom vom Grad i, d. h. es erfüllt folgende Bedingungen:

1)
$$\sum_{x} P_i(x) P_j(x) = 0, \text{ falls } i \neq j \text{ (Orthogonalitätsbedingung)},$$

2)
$$b_i = 1$$
, d. h. der höchste Koeffizient von $P_i(x) = 1$.

Die orthogonalen Polynome unterscheiden sich je nach Anordnung der Argumentwerte x beträchtlich. Wir unterscheiden die folgenden Hauptfälle:

- die x_i sind beliebig angeordnet,
- die x_i liegen äquidistant,
- die x_i liegen kontinuierlich.

Der für die Praxis wohl wichtigste und einfachste Fall ist der der Äquidistanz. Auch die Argumente einer Morbiditätstafel liegen äquidistant. Zur Vereinfachung empfiehlt sich die Transformation

$$x' = x - u$$
.

so dass die neue Variable die natürlichen Zahlen 0, 1, 2, ..., (m-1) durchläuft. Von den Orthogonalitätsbedingungen ausgehend, lässt sich nach einfachen, aber langwierigen Überlegungen zeigen, dass die orthogonalen Polynome, sofern die Argumente die natürlichen Zahlen von 0, 1, 2, ..., (m-1) durchlaufen, in folgender Form darstellbar sind:

$$P_i(x') = \frac{i!}{\binom{2i}{i}} \sum_{j=0}^{i} (-1)^{i+j} \binom{i+j}{i} \binom{m-j-1}{i-j} \binom{x'}{j}.$$

Mit Hilfe der Rekursionsbeziehung

$$P_i(x') = P_1(x') P_{i-1}(x') - \frac{(i-1)^2 (m^2 - (i-1)^2)}{4(2i-1)(2i-3)} P_{i-2}(x')$$

und

$$P_0(x') = 1$$

$$P_1(x') = -\frac{1}{2}(m-1) + x'$$

lassen sich die orthogonalen Polynome sehr einfach berechnen:

$$P_2(x') = \frac{1}{6}(m^2 - 3m + 2) - (m - 1)x' + x'^2,$$

$$P_3(x') = -\frac{1}{20}(m^3 - 6m^2 + 11m - 6) + \frac{1}{10}(6m^2 - 15m + 11)x'$$

$$-\frac{3}{2}(m - 1)x'^2 + x'^3$$

usw.

Die Methode der kleinsten Quadrate gestattet die Bestimmung der Koeffizienten gemäss

$$\sum_{x'=0}^{m-1} (w(x') - \sum_{j=0}^{i} A_j P_j(x'))^2 = \text{Minimum}.$$

Durch Differenzieren dieser Funktion nach den A_j erhält man:

$$A_{j} = \frac{\sum_{x'=0}^{m-1} P_{j}(x') w(x')}{\sum_{x'=0}^{m-1} (P_{j}(x'))^{2}}$$

wobei mit w(x') der rohe Wert zum Argument x bezeichnet wird.

Die A_j sind damit nur von $P_j(x')$ abhängig. Deshalb ergibt sich bei der Ausgleichung mit orthogonalen Polynomen der Vorteil, dass bei Graderhöhung oder Hinausnehmen einzelner $P_j(x')$ die bisherige Rechenarbeit beibehalten werden kann.

Das Ausgleichspolynom n-ten Grades für die Ausgleichung einer Tafel mit rohen Morbiditätswerten w(x) im Altersintervall (x_a, x_e) mit orthogonalen Polynomen bestimmt sich gemäss folgendem Ansatz:

$$z_n(x') = \sum_{i=0}^n A_i P_i(x'),$$

wobei

$$A_{j} = \frac{\sum_{x'=0}^{m-1} P_{j}(x') w(x')}{\sum_{x'=0}^{m-1} (P_{j}(x'))^{2}}$$

und

$$x' = x - x_a \rightarrow x' = 0, 1, 2, ..., m-1$$

 $m = x_e - x_a + 1$.

Für die numerische Berechnung der Koeffizienten A_j findet man in der Literatur verschiedene Rechenschemas, auf die wir nicht weiter eingehen möchten, da der Rechenaufwand doch relativ gross ist. Vielmehr möchten wir erwähnen, dass heute einige Standardprogramme für Computer und elektronische Tischrechenmaschinen für Regressionen mit orthogonalen Polynomen existieren.

Auch mit dem Programm-Produkt «AKTUARIAT» können Regressionen mit orthogonalen Polynomen durchgeführt werden, wobei verschiedene, im nächsten Abschnitt aufgeführte statistische Tests über die Güte der Ausgleichung es erlauben, eine gute Ausgleichung zu wählen.

4.5.3. Güte der Ausgleichung

Das Kriterium von Lidstone

Als Mass für die Güte der Ausgleichung kann die Varianz der rohen Werte w(x) um die Regressionskurve n-ten Grades $z_n(x)$ herangezogen werden:

$$s_n^2 = \frac{1}{m-n-1} \sum_{x'=0}^{m-1} (w(x') - z_n(x'))^2.$$

Nach G.J. Lidstone wird das Resultat, das mit einem Ausgleichspolynom (n+1)-sten Grad erzielt wird, dann als besser bewertet als bei der Verwendung eines Polynoms n-ten Grades, wenn gilt:

$$s_{n+1}^2 < s_n^2$$
.

Nach diesem Kriterium kann bei jeder Graderhöhung der Stand der Ausgleichung überblickt werden.

Da dem Kriterium von Lidstone der absolute Massstab fehlt, müssen für eine abschliessende Beurteilung der Güte der Ausgleichung noch weitere Kriterien herangezogen werden.

Varianzanalyse

Ziel einer Ausgleichung ist es, einen komplexen Sachverhalt mit einer minimalen Anzahl von Variablen zu beschreiben. In unserem Fall führt diese Zielsetzung zu folgenden Fragen:

- 1) Beeinflusst der Koeffizient A_n die Ausgleichung massgeblich oder würde ein Polynom (n-1)-sten Grades den Verlauf der rohen Morbiditätswerte genügend charakterisieren?
- 2) Welche der Koeffizienten A_i , i = 0, 1, 2, ..., n beeinflussen die Ausgleichung massgeblich? Wäre es unter Umständen möglich, ein gutes Ausgleichspolynom n-ten Grades zu erhalten, wenn ein oder mehrere Koeffizienten A_i , j = 0, 1, 2, ..., n 1 Null gesetzt werden?

Es sei

$$SQ = \sum_{x'=0}^{m-1} (w(x') - z_n(x'))^2$$

die Quadratsumme der Abweichungen zwischen rohen und ausgeglichenen Morbiditätswerten bei einem Ausgleichspolynom *n*-ten Grades (Alternativ-modell). Der Vergleich dieser Quadratsumme mit der Quadratsumme eines durch Nullsetzen eines oder mehrerer Koeffizienten beschränkten Modells (Nullmodell) in einer Varianzanalyse erlaubt die Modellvereinfachung statistisch zu beurteilen:

Schema der Varianzanalyse

Varianzkomponente	Summenquadrat	Freiheitsgrade	Mittelwerts- quadrat
Nullmodell mit k Koeffizienten A_j $(k < n)$ Alternativmodell mit n Koeffizienten A_j	$SQ^{(k)}$ $SQ^{(n)}$	m-k-1 $m-n-1$	$\frac{SQ^{(n)}}{m-n-1}$
Bezüglich der $(n-k)$ zusätzlichen Koeffizienten	$SQ^{(k)} - SQ^{(n)}$	n-k	$\frac{SQ^{(k)} - SQ^{(n)}}{n - k}$

Treffen wir die Annahme, dass die Abweichungen der rohen Werte von den «wahren» Werten unabhängig normalverteilt sind

$$N(0, \sigma^2),$$

so gilt:

$$F = \frac{SQ^{(k)} - SQ^{(n)}}{n - k} / \frac{SQ^{(n)}}{m - n - 1}$$

ist F-verteilt mit (n-k) und (m-n-1) Freiheitsgraden. Ist ferner

$$n-k=1$$
,

so ist

$$t = \pm \sqrt{F}$$

t-verteilt mit (m-n-1) Freiheitsgraden.

Entscheidungskriterien:

Es sei

 F_P die Sicherheitsgrenze mit (n-k) und (m-n-1) Freiheitsgraden zur Sicherheitsschwelle P.

Dann gilt:

- $F \ge F_P$ Die Beschränkung ist signifikant von Null verschieden. Das Alternativmodell wird beibehalten.
- $F < F_P$ Die Beschränkung ist unwesentlich von Null verschieden. Das einfachere beschränkte Nullmodell wird gewählt.

Oder falls

- t_P die Sicherheitsgrenze mit (m-n-1) Freiheitsgraden zur Sicherheitsschwelle P bezeichnet:
 - $|t| \ge t_P$ Die Beschränkung ist signifikant von Null verschieden. Das Alternativmodell wird beibehalten.
 - $|t| < t_P$ Die Beschränkung ist unwesentlich von Null verschieden. Das einfachere beschränkte Nullmodell wird gewählt.

Der Test von Durbin-Watson

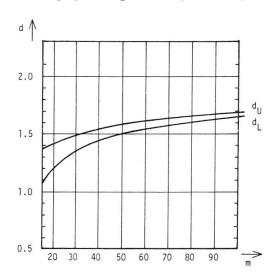
In der Varianzanalyse wird eine Ausgleichung, bei der z.B. alle Residuen zuerst negativ und später positiv sind, genau gleich bewertet, wie eine Ausgleichung, bei der die gleichen Residuen auftreten, diese aber regellos über alle Alter verstreut sind. Eine Ausgleichung wird bevorzugt, wenn die Residuen nicht serienkorreliert sind.

Mit der von Durbin-Watson vorgeschlagenen Teststatistik d

$$d=rac{\sum\limits_{i=0}^{m-2}(r_{i+1}-r_i)^2}{\sum\limits_{i=0}^{m-1}r_i^2},\quad r_i=i$$
-tes Residuum

können die Residuen einer Regressionsanalyse auf ihre Serienkorrelation geprüft werden.

Entscheidungskriterien:


Ist

 $d \le d_L$, so sind die Residuen serienkorreliert.

 $d_L < d < d_U$, so kann keine Aussage gemacht werden.

 $d \ge d_U$, so sind die Residuen nicht serienkorreliert.

Nomogramm der Signifikanzgrenzen ($\alpha = 5\%$)

Anzahl Beobachtungen

4.6. Auswertung von Morbiditätstafeln

Die Berechnung der mathematischen Prämien und Reserven basiert auf den Morbiditätstafeln der entsprechenden Versicherungsart. Dabei wird wie folgt vorgegangen:

- Erstellen der Dekremententafel,
- Berechnen der Nettowerte der Krankenversicherung,
- Berechnen der Deckungskapitalien.

Eine Dekremententafel enthält folgende Zahlen:

- a) q_x Einjährige Sterbenswahrscheinlichkeit für eine Person des Alters x. Da das Beobachtungsmaterial der Krankenkassen über Sterbefälle in der Regel zu klein ausfällt, werden die q_x Volkssterbetafeln neueren Datums entnommen.
- b) σ_x Einjährige Wahrscheinlichkeit für vorzeitigen Abgang einer Person des Alters x.

Die gesetzlichen Bestimmungen über die Freizügigkeit beeinflussen den Finanzhaushalt einer Krankenkasse, da das die Freizügigkeit beanspruchende Mitglied keinen Anspruch auf Reservenanteile bei der Kasse, aus der es austritt, hat. Die Krankenkasse erzielt somit einen Gewinn, den sogenannten Zügergewinn, der bei den Berechnungen von Prämien und Deckungskapitalien zu berücksichtigen ist.

c) l_x Zahl der zu Beginn eines Jahres noch vorhandenen Versicherten des Alters x.

Berechnung der l_x :

$$l_x = l_{x-1} (1 - (q_{x-1} + \sigma_{x-1})).$$

d) D_x Diskontierte Zahl der zu Beginn eines Jahres noch vorhandenen Versicherten des Alters x.

Berechnung der D_x :

$$D_x = l_x \cdot v^x.$$

e) $N_{x:\overline{s-x}|}$ Summe der diskontierten Zahlen der zu Beginn eines Jahres noch vorhandenen Versicherten des Alters x.

Berechnung der $N_{x:\overline{s-x}|}$:

$$N_{x:\overline{s-x}|} = \sum_{t=0}^{s-x} D_{x+t}$$

f) $\ddot{a}_{x:s-x|}^{(4)}$ Barwert der sofort beginnenden bis zum Schlussalter s jährlich in vierteljährlichen Raten vorschüssig zahlbaren Rente 1 für eine Person des Alters x.

Berechnung der $\ddot{a}_{x:s-x|}^{(4)}$:

$$\ddot{a}_{x:s-x|}^{(4)} = \frac{N_{x:\overline{s-x}|}}{D_x} - (3/8).$$

Eine Tafel mit den Nettowerten der Krankenversicherung wird wie folgt zusammengestellt:

- a) k_x Ausgeglichene Morbiditätswerte aus der Morbiditätstafel.
- b) B_x Diskontierte Morbiditätswerte des Alters x. Berechnung der B_x :

$$B_x = v^{1/2} \cdot k_x \cdot D_x.$$

Durch den Faktor $v^{\frac{1}{2}}$ wird dem Umstand, dass sich die Zahlungen über das ganze Jahr hinweg verteilen, Rechnung getragen.

c) K_x Summe der diskontierten Morbiditätswerte. Berechnung der K_x :

$$K_x = \sum_{t=0}^{s-x} B_{x+t}$$

d) Z_x Einmalige Nettoprämie für eine Person des Alters x. Berechnung der Z_x :

$$Z_x = \frac{K_x}{D_x}.$$

e) $P_x^{(4)}$ Jährliche, in vierteljährlichen Raten zahlbare Nettoprämie.

Berechnung der $P_x^{(4)}$:

$$P_x^{(4)} = \frac{Z_x}{\ddot{a}_{x:s-x|}^{(4)}}.$$

Das Deckungskapital einer als x-jährig beigetretenen Person nach t Jahren berechnet sich gemäss folgender Formel:

$$_{t}U_{x}=Z_{x+t}-\left(P_{x}^{(4)}\cdot \ddot{a}_{x+t}^{(4)}:\overline{s-x-t}|\right) .$$

5. Die Morbiditätsstatistik KKB 1974

5.1. Übersicht

Basierend auf den vorstehend erläuterten theoretischen Grundlagen, wurde das Erfahrungsmaterial der Krankenkasse KKB des Jahres 1974 praktisch ausgewertet. Die unter einjährigem Risiko gestandenen Personen sowie die von dieser Gesamtheit verursachten Krankenpflegekosten verteilen sich wie folgt:

Gesamtheit	Risikobestand	Krankenpflegekosten
Kinder	74 139,1	Fr. 9 354 886.—
Männer	79 327,1	Fr. 19 462 441.—
Frauen	99 110,5	Fr. 45 172 485.—
Insgesamt	252 576,7	Fr. 73 989 812.—

Die im Abschnitt 4.5.2 erläuterte Ausgleichungsmethode konnte mit Hilfe der EDV optimiert werden. Für die publizierten k_x bzw. k_y fanden wir die besten Resultate durch die folgende Ausgleichung:

Gesamtheit	Altersintervall	Ausgleichung
Kinder	0–15	Orth. Polynome, 5. Grad, $A_2 = A_3 = A_4 = 0$
Männer	16–90	Orth. Polynome, 4. Grad, $A_3 = 0$
Frauen	16–38 39–40 41–59 60 61–90	Orth. Polynome, 5. Grad Graphisch Orth. Polynome, 4. Grad, A ₃ = 0 Graphisch Orth. Polynome, 4. Grad

Die im Anhang wiedergegebenen Tabellen stellen einen Auszug aus den sehr variantenreichen Berechnungen dar. Zu den Zinssätzen $3\frac{1}{4}\%$ und 4% haben wir für Männer und Frauen die für die Krankenpflegeversicherung benötigten versicherungstechnischen Grundzahlen und Nettowerte sowie die Dekkungskapitalien für die wichtigsten Eintrittsalter und Versicherungsdauern angegeben. Die Krankenordnungen k_x und k_y , die in vierteljährlichen Raten zu bezahlenden Jahresprämien $P_x^{(4)}$ und $P_y^{(4)}$, die Deckungskapitalien $_tU_x$ und $_tU_y$ haben wir zudem graphisch dargestellt. Neben den hier publizierten Werten liegen auch Berechnungen vor für die einzelnen Versichertengruppen, drei verschiedene Regionen und weitere Zinssätze sowie analoge Untersuchungen für die Spitalbehandlungskostenversicherung.

5.2. Beurteilung der Morbiditätsstatistik KKB 1974

Die k_x steigen von Fr. 108.– bei x=20 auf rund den zweieinhalbfachen Wert bei x=50. Für x>50 stellen wir eine starke Zunahme fest, welche erst für x>80 leicht gedämpft wird, um für x=90 den Wert 1268 zu erreichen. Die k_y weisen eine grundlegend unterschiedliche Charakteristik auf. Bedingt durch die Kosten des Wochenbettes, erhalten wir bei y=27 ein Maximum. Erst für y>39 nehmen die k_y wieder zu, um für y>58 extrem steil anzusteigen. Die Differenz zwischen k_x und k_y beträgt rund Fr. 100.– bis Fr. 400.–. Bei den Kindern, für die wir keine Unterteilung nach Geschlecht vorgenommen haben, stellen wir nach dem Maximalwert von Fr. 167.– für z=1 eine Abnahme bis Beginn der Schulzeit fest. Nach einer erneuten Reduktion wird mit Fr. 80.– bei z=14 ein Minimum durchlaufen.

Die auf den k_x bzw. k_y basierenden Nettoprämien $P_x^{(4)}$ bzw. $P_y^{(4)}$ zeigen einen ähnlichen Verlauf wie die Krankenordnungen, wobei insbesondere bei den Frauen der Einfluss des Wochenbettes wesentlich abgeschwächt wird. Über die Unterschiede zwischen den Krankenordnungen einerseits und den Nettoprämien $(3\frac{1}{4}\%)$ andererseits der Männer und der Frauen gibt die nachfolgende Texttabelle Auskunft:

Vergleich der Krankenordnungen und der Nettoprämien (31/4%)

<i>x</i> , <i>y</i>	$k_{\scriptscriptstyle X}$	$P_x^{(4)}$	k_y	$P_y^{(4)}$	k_y : k_x	$P_{.}^{(4)}:P_{.}^{(4)}$
16	75.65	215.48	141.22	430.32	1,87	2,00
20	108.07	237.58	274.94	471.35	2,54	1,98
25	137.85	264.41	438.11	498.27	3,18	1,88
30	158.10	292.86	436.48	509.92	2,76	1,74
35	174.50	325.71	385.36	533.13	2,21	1,64
40	193.31	365.53	379.17	572.19	1,96	1,57
45	220.45	414.71	411.48	622.33	1,87	1,50
50	261.51	475.54	449.79	681.39	1,72	1,43
55	321.97	550.22	482.93	755.06	1,50	1,37
60	406.83	640.73	525.84	855.29	1,29	1,33
65	519.63	748.43	649.06	988.06	1,25	1,32
70	660.58	873.10	827.05	1147.77	1,25	1,31
75	824.22	1012.10	1052.58	1331.81	1,28	1,32
80	997.03	1160.72	1303.91	1532.61	1,31	1,32
85	1155.85	1318.22	1536.65	1745.14	1,33	1,32
90	1268.01	1996.62	1682.83	2649.80	1,33	1,33

Daraus geht hervor, dass insbesondere in den jungen Jahren die Frauen wesentlich höhere Kosten aufweisen. Von über 200% der Männerprämien für y=16 sinken diese Werte kontinuierlich ab, um von y=60 an mit rund 132% der Männerprämien relativ konstant zu bleiben. Wir sehen daraus deutlich, dass die Vorschrift des KUVG, die Prämiendifferenz zwischen den Männern und Frauen dürfe höchstens 10% betragen, wesentliche Mehrleistungen in Form von Subventionen oder Solidaritätsbeiträgen der Männer erfordert.

Die Deckungskapitalien $_tU_x$ bzw. $_tU_y$ sind sehr stark abhängig vom Eintrittsalter und erreichen das Maximum je für 70 < x < 80. Die Deckungskapitalien für die Frauen liegen um 25–50% über den entsprechenden Werten für die Männer.

5.3. Vergleich mit den Morbiditätstafeln Walther

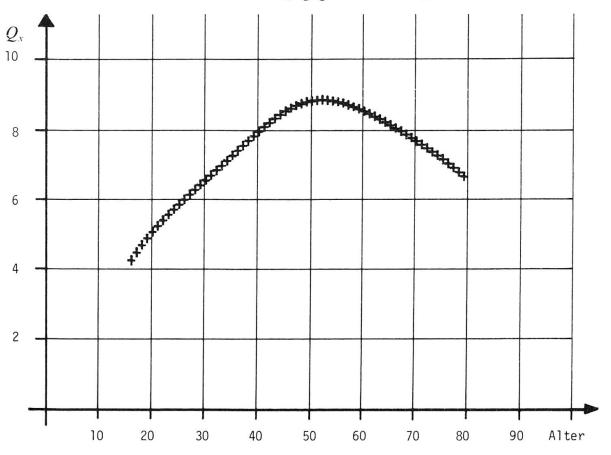
Eine Gegenüberstellung der von Dr. Walther auf dem Beobachtungsmaterial der KKB vor rund 40 Jahren erstellten Morbiditätstafeln mit den neusten Untersuchungen liefert deutliche Unterlagen für die vom Alter abhängigen strukturellen Kostenentwicklungen in der Krankenpflegeversicherung. Um diese Entwicklung besser beurteilen zu können, haben wir dafür die tabellarische und grafische Darstellung gewählt:

Dabei gilt:

 k_x^W, k_y^W Krankenordnung Walther 1935/36

 k_x^{74}, k_y^{74} Krankenordnung KKB 1974

 $Q_x = k_x^{74} : k_x^W$

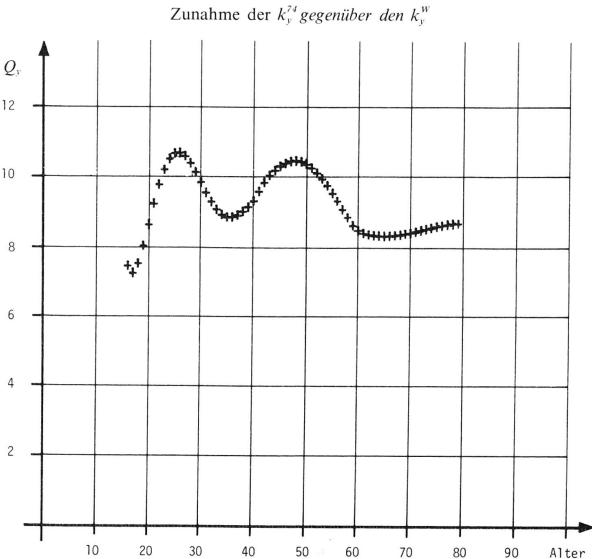

 $Q_y = k_y^{74} : k_y^W$

Vergleich der Morbiditätsstatistik KKB 1974 mit der Morbiditätstafel Walther 1935/36

Männer

Alter	k_x^W	k_x^{74}	Zunahme Q_x
X			
16	17.79	75.65	4,25
20	21.35	108.07	5,06
25	23.56	137.85	5,85
30	24.16	158.10	6,54
31	24.17 Max	161.49	6,68
35	24.11 Min	174.50	7,24
40	24.39	193.31	7,93
45	25.94	220.45	8,50
50	29.72	261.51	8,80
55	36.71	321.97	8,77
60	47.85	406.83	8,50
65	64.11	519.63	8,11
70	86.45	660.58	7,64
75	115.83	824.22	7,12
79	145.05	962.70	6,64

Zunahme der k_x^{74} gegenüber den k_x^W



Vergleich der Morbiditätsstatistik KKB 1974 mit der Morbiditätstafel Walther 1935/36

Frauen

Alter	k_y^W		k_{y}^{74}		Zunahme Q_y
y 					
16	19.01		141.22		7,43
20	31.90		274.94		8,62
25	41.11		438.11		10,66
27	43.03		455.04	Max	10,57
30	44.40		436.48		9,83
31	44.52	Max	424.59		9,54
35	43.66		385.36		8,83
39	41.42		377.72	Min	9,12
40	40.76		379.17		9,30
43	39.51	Min	396.43		10,03
45	40.00		411.48		10,29
50	43.46		449.79		10,35
55	50.76		482.93		9,51
60	62.35		525.84		8,43
65	78.42		649.06		8,28
70	98.86		827.05		8,37
75	123.22		1 052.58		8,54
79	145.05		1 253.35		8,64

Bei den k_x stellen wir die grösste Kostensteigerung für 45 < x < 60 fest. Für die tieferen Alter ergeben sich Erhöhungen um den vier- bis achtfachen Wert, während im Altersabschnitt x > 60 mit mindestens dem siebenfachen Wert gerechnet werden muss. Vor allem die Fortschritte der Medizin, insbesondere der Operationstechnik und der Operationsmethoden, haben für die oberen Alterskategorien Behandlungsmöglichkeiten eröffnet, welche vor 40 Jahren kaum zur Diskussion standen. Die Behandlung ist wesentlich intensiver und damit auch teurer geworden. Die dadurch bedingte Kostensteigerung wurde durch die seit Jahren feststellbare Überalterung verstärkt. Ein analoger Vergleich der k_y zeigt ein noch ausgeprägteres Resultat. Vorerst fällt auf, dass die weitgehend durch das Wochenbett beeinflussten Extrema zwischen den Altern 25 und 45 sich in den letzten 40 Jahren um je 4 Jahre vorverschoben haben. Dies führt denn auch zu den unterschiedlichen Erhöhungssätzen in den einzelnen Altersabschnitten. Die Krankenpflegekosten sind bei den Frauen in den letzten 40 Jahren um den sieben- bis elffachen Wert angestiegen; was deutlich über den entsprechenden Werten für die Männer liegt.

Die Begründung für die sehr bedeutenden Kostenentwicklungen und strukturellen Änderungen könnte wohl Gegenstand einer besonderen Arbeit darstellen. Wir beschränken uns in diesem Rahmen auf die objektive Feststellung der zahlenmässigen Unterschiede.

6. Ausblick

Bei Abschluss dieser Arbeit liegen bereits die Auswertungen der Krankenpflegekosten des Jahres 1975 bei der KKB vor. Um den Rahmen dieser Publikation nicht zu sprengen, werden wir eine vergleichende Beurteilung

gemeinsam mit der Morbiditätsstatistik KKB 1976 sowie der Dreijahresstatistik 1974/76, welche ab Frühjahr 1977 zur Verfügung stehen, vornehmen. In einer weiteren Arbeit soll auch noch auf die regionalen Unterschiede innerhalb der neuesten Morbiditätsstatistik eingetreten werden. Ebenso wird eine Besprechung der besonderen Morbiditätsuntersuchungen bei der Spitalbehandlungskostenversicherung interessante Ergebnisse liefern. Eine weitere Arbeit wird der Analyse der einzelnen Kostenkomponenten der Krankenpflegeversicherung (Ambulante Behandlung, Heilanstaltskosten, Medikamente usw.) gewidmet sein. Bereits die beiden vorliegenden Morbiditätsstatistiken KKB 1974 und 1975 zeigen eine derart starke strukturelle Änderung der Krankenpflegekosten, dass eine laufende Überprüfung und Beurteilung notwendig wird, um die finanziellen Auswirkungen auf die Prämien und Reserven der Krankenversicherung rechtzeitig abschätzen zu können. Die KKB kann mit dem bestehenden Programmpaket die notwendigen Morbiditätsstatistiken und Strukturanalysen zur Verfügung stellen und für den Aufbau von objektiven und zuverlässigen Grundlagen für die soziale Krankenversicherung einen Beitrag leisten.

Morbiditätsstatistik KKB 1974 Grundzahlen und Nettowerte der Krankenpflegeversicherung

Männer; Versichertengruppe I; Sterbetafel SM 1968/73; Zinsfuss 3 $^{1\!/_{\!\!4}}\%$

<i>x</i>	q_{x}	l_{N}	$D_{\scriptscriptstyle X}$	$N_{x:\overline{s-x}}$	$\ddot{a}_{x}^{(4)}_{s-x}$	$k_{\scriptscriptstyle X}$	$B_{\scriptscriptstyle X}$	K_{x}	Z_{x}	$P_{\scriptscriptstyle X}^{(4)}$	X
16	0.000856	97335	58348.59	1511497.03	25.529	75.65	4344044.6	320997169.8	5501.36	215.48	16
17	0.001101	97252	56463.52	1453148.43	25.361	84.40	4689919.4	316653125.1	5608.10	221.13	17
18	0.001360	97144	54625.95	1396684.91	25.193	92.76	4986717.4	311963205.7	5710.89	226.68	18
19	0.001579	97012	52834.48	1342058.95	25.026	100.65	5233428.1	306976488.2	5810.15	232.16	19
20	0.001701	96859	51090.61	1289224.47	24.859	108.07	5433770.3	301743060.1	5906.03	237.58	20
21	0.001699	96694	49398.22	1238133.85	24.689	114.98	5589700.9	296309289.7	5998.37	242.95	21
22	0.001608	96530	47761.97	1188735.63	24.513	121.40	5706317.9	290719588.7	6086.84	248.30	22
23	0.001474	96374	46184.14	1140973.65	24.329	127.33	5787334.9	285013270.7	6171.23	253.64	23
24	0.001340	96232	44664.42	1094789.50	24.136	132.81	5837777.5	279225935.7	6251.64	259.01	24
25	0.001253	96103	43200.51	1050125.07	23.933	137.85	5860716.2	273388158.2	6328.35	264.41	25
26	0.001211	95983	41788.26	1006924.55	23.720	142.51	5860770.1	267527442.0	6401.97	269.88	26
27	0.001186	95867	40423.88	965136.29	23.500	146.81	5840481.8	261666671.8	6473.07	275.44	27
28	0.001177	95753	39105.03	924712.40	23.271	150.81	5803870.8	255826190.0	6542.02	281.11	28
29	0.001182	95640	37829.54	885607.37	23.035	154.56	5754176.5	250022319.1	6609.18	286.91	29
30	0.001197	95527	36595.47	847777.82	22.791	158.10	5693957.8	244268142.5	6674.81	292.86	30
31	0.001224	95413	35401.09	811182.35	22.539	161.49	5626228.3	238574184.7	6739.17	208.00	21
32	0.001258	95296	34244.81	775781.25	22.278	164.77	5553002.8	232947956.4	6802.43	298.99	31
33	0.001309	95176	33125.13	741536.44	22.010	168.00	5476736.6	227394953.5		305.32	32
34	0.001380	95051	32040.45	708411.31	21.734	171.23			6864.72	311.87	33
35	0.001476	94920	30989.09	676370.85			5399250.8	221918216.9	6926.18	318.66	34
55	5.001470	77720	30707.09	070370.83	21.451	174.50	5321808.9	216518966.1	6986.94	325.71	35

•	-	-	-
-	_		
	_	i	
t			

X	$q_{\scriptscriptstyle X}$	l_{x}	$D_{\scriptscriptstyle X}$	$N_{x:\overline{s-x}}$	$\ddot{a}_{x+s-x}^{(4)}$	$k_{\scriptscriptstyle X}$	$B_{\scriptscriptstyle X}$	K_{x}	$Z_{\scriptscriptstyle X}$	$P_{X}^{(4)}$	Х
36	0.001597	94780	29969.35	645381.76	21.159	177.88	5246376.0	211197157.1	7047.10	333.04	36
37	0.001741	94629	28979.62	615412.41	20.861	181.40	5173506.0	205950781.0	7106.74	340.67	37
38	0.001908	94464	28018.53	586432.78	20.555	185.11	5104230.7	200777275.0	7165.87	348.61	38
39	0.002096	94284	27084.82	558414.25	20.242	189.07	5039686.9	195673044.2	7224.45	356.89	39
40	0.002307	94086	26177.26	531329.43	19.922	193.31	4980047.9	190633357.3	7282.40	365.53	40
41	0.002530	93869	25294.79	505152.16	19.595	197.89	4926175.8	185653309.4	7339.58	374.55	41
42	0.002765	93631	24436.60	479857.37	19.261	202.85	4878326.4	180727133.6	7395.75	383.95	42
43	0.003028	93372	23601.95	455420.77	18.920	208.23	4836666.7	175848807.1	7450.60	393.77	43
44	0.003331	93089	22789.79	431818.82	18.572	214.08	4801439.1	171012140.4	7503.89	404.02	44
45	0.003690	92779	21998.89	409029.03	18.218	220.45	4772719.2	166210701.3	7555.41	414.71	45
46	0.004093	92437	21227.81	387030.13	17.857	227.37	4749997.4	161437982.0	7605.02	425.87	46
47	0.004536	92059	20475.45	365802.32	17.490	234.89	4733180.0	156687984.6	7652.47	437.52	47
48	0.005027	91641	19740.97	345326.87	17.117	243.06	4722120.4	151954804.5	7697.43	449.67	48
49	0.005579	91180	19023.45	325585.89	16.739	251.92	4716360.6	147232684.1	7739.53	462.33	49
50	0.006204	90671	18321.84	306562.44	16.357	261.51	4715333.9	142516323.4	7778.49	475.54	50
51	0.006886	90109	17635.01	288240.59	15.969	271.88	4718545.6	137800989.5	7814.05	489.30	51
52	0.007617	89488	16962.29	270605.57	15.578	283.07	4725343.1	133082443.9	7845.78	503.63	52
53	0.008421	88806	16303.21	253643.28	15.182	295.12	4735076.1	128357100.7	7873.11	518.55	53
54	0.009320	88058	15657.05	237340.06	14.783	308.07	4746948.8	123622024.6	7895.60	534.07	54
55	0.010338	87238	15022.87	221683.01	14.381	321.97	4760180.8	118875075.7	7912.93	550.22	55
56	0.011449	86336	14399.56	206660.13	13.976	336.84	4773402.9	114114894.9	7924.88	567.00	56
57	0.011443	85347	13786.64	192260.56	13.570	352.74	4785950.1	109341491.9	7930.97	584.43	57
58	0.012033	84269	13183.98	178473.92	13.162	369.68	4796533.9	104555541.8	7930.49	602.52	58
59	0.015395	83095	12591.04	165289.94	12.752	387.70	4804104.1	99759007.9	7923.01	621.28	59
60	0.013390	81815	12006.96	152698.90	12.732	406.83	4807298.7	94954903.8	7908.31	640.73	60

61 62 63 64	0.018882 0.020855 0.023014 0.025396	80420 78901 77256 75478	11430.69 10861.84 10300.54 9746.71	140691.93 129261.24 118399.39 108098.85	11.933 11.525 11.119 10.715	427.09 448.49 471.05 494.76	4804488.3 4794145.9 4775094.8 4745782.7	90147605.0 85343116.6 80548970.7 75773875.9	7886.44 7857.14 7819.87 7774.29	660.87 681.71 703.25 725.49	61 62 63 64
65	0.028046	73561	9200.17	98352.14	10.315	519.63	4704843.3	71028093.1	7720.29	748.43	65
66 67	0.030936 0.034040	71498 69286	8660.67 8128.56	89151.96 80491.29	9.918 9.527	545.65 572.79	4650726.1 4582098.6	66323249.8 61672523.6	7657.97 7587.13	772.05 796.35	66 67
68	0.037396	66927	7604.71	72362.72	9.140	601.02	4498073.6	57090425.0	7507.24	821.31	68
69 70	0.041038 0.045003	64425 61781	7089.90 6584.93	64758.01 57668.11	8.758 8.382	630.30 660.58	4397871.6 4280869.5	52592351.3 48194479.7	7417.92 7318.89	846.90 873.10	69 70
71	0.049165	59000	6090.64	51002 17	0.013	(01.00	41.46666.2				
72	0.049103	56100	5608.91	51083.17 44992.52	8.012 7.646	691.80 723.87	4146666.2 3995712.2	43913610.1 39766943.9	7210.00 7089.95	899.88 927.20	71 72
73 74	0.058197 0.063443	53098 50008	5141.72 4690.06	39383.61 34241.89	7.284 6.925	756.70 790.19	3829018.4 3647247.7	35771231.6 31942213.2	6957.05 6810.61	955.03 983.34	73 74
75	0.069424	46835	4254.24	29551.82	6.571	824.22	3450809.8	28294965.5	6650.98	1012.10	75
76	0.076101	43584	3834.28	25297.57	6.222	858.64	3240043.1	24844155.6	6479.47	1041.25	76
77 78	0.083353 0.091235	40267 36910	3430.98 3046.00	21463.29 18032.30	5.880 5.544	893.31 928.06	3016309.0 2782026.6	21604112.5	6296.76	1070.74	77
79	0.099803	33543	2680.96	14986.30	5.214	962.70	2540020.6	18587803.4 15805776.8	6102.35 5895.55	1100.51 1130.52	78 79
80	0.109115	30195	2337.42	12305.33	4.889	997.03	2293514.6	13265756.1	5675.36	1160.72	80
81 82	0.119184 0.129986	26900	2016.83	9967.91	4.567	1030.83	2046027.4	10972241.4	5440.33	1191.13	81
83	0.141503	23694 20614	1720.53 1449.77	7951.08 6230.54	4.246 3.922	1063.87 1095.90	1801391.4 1563601.7	8926214.0 7124822.5	5188.03 4914.43	1221.78 1252.85	82 83
84 85	0.153712 0.166594	17697 14977	1205.44 988.04	4780.76 3575.31	3.590 3.243	1126.65 1155.85	1336572.2 1123912.5	5561220.8 4224648.5	4613.40 4275.77	1284.72 1318.22	84 85
86	0.180146	12482	797.52								
87	0.194389	10233	633.26	2587.27 1789.75	2.869 2.451	1183.20 1208.41	928656.7 753108.1	3100736.0 2172079.2	3887.96 3429.94	1355.09 1399.28	86 87
88 89	0.209341 0.225017	8244 6518	494.10 378.37	1156.48 662.37	1.965 1.375	1231.16 1251.14	598676.6	1418971.1	2871.77	1461.05	88
90	0.241431	5051	284.00	284.00	0.625	1268.01	465888.8 354405.6	820294.5 354405.6	2167.94 1247.89	1576.00 1996.62	89 90

Morbiditätsstatistik KKB 1974 Grundzahlen und Nettowerte der Krankenpflegeversicherung

Männer; Versichertengruppe I; Sterbetafel SM 1968/73; Zinsfuss 4%

х	q_x	I_N	$D_{\scriptscriptstyle X}$	$N_{x:\overline{s-x}}$	$\ddot{a}_{x+s-x}^{(4)}$	k_x	$B_{\scriptscriptstyle X}$	K_{X}	Z_{x}	$P_x^{(4)}$	X
16	0.000856	97335	51968.22	1173895.06	22.213	75.65	3855051.4	230067692.1	4427.08	199.29	16
17	0.001101	97252	49926.62	1121926.83	22.096	84.40	4131978.0	226212640.6	4530.90	205.05	17
18	0.001360	97144	47953.46	1072000.20	21.980	92.76	4361783.4	222080662.6	4631.16	210.69	18
19	0.001579	97012	46046.35	1024046.74	21.864	100.65	4544565.0	217718879.1	4728.25	216.25	19
20	0.001701	96859	44205.42	978000.39	21.748	108.07	4684508.8	213174314.1	4822.35	221.72	20
21	0.001699	96694	42432.87	933794.96	21.631	114.98	4784186.2	208489805.2	4913.40	227.14	21
22	0.001608	96530	40731.47	891362.09	21.508	121.40	4848776.8	203705619.0	5001.18	232.51	22
23	0.001474	96374	39101.86	850630.61	21.379	127.33	4882155.0	198856842.2	5085.60	237.87	23
24	0.001340	96232	37542.49	811528.74	21.241	132.81	4889193.2	193974687.2	5166.80	243.24	24
25	0.001253	96103	36050.14	773986.25	21.094	137.85	4873007.4	189085493.9	5245.06	248.64	25
26	0.001211	95983	34620.16	737936.11	20.940	142.51	4837910.1	184212486.4	5320.95	254.10	26
27	0.001186	95867	33248.30	703315.94	20.778	146.81	4786394.6	179374576.3	5394.99	259.64	27
28	0.001177	95753	31931.61	670067.63	20.609	150.81	4722090.3	174588181.6	5467.56	265.29	28
29	0.001182	95640	30667.33	638136.02	20.433	154.56	4647896.5	169866091.3	5538.99	271.07	29
30	0.001197	95527	29452.96	607468.69	20.250	158.10	4566087.5	165218194.7	5609.56	277.01	30
31	0.001224	95413	28286.23	578015.72	20.059	161.49	4479237.2	160652107.1	5679.51	283.13	31
32	0.001258	95296	27165.00	549729.49	19.861	164.77	4389058.1	156172869.9	5749.04	289.45	32
33	0.001230	95176	26087.31	522564.48	19.656	168.00	4297560.6	151783811.8	5818.29	296.00	33
34	0.001309	95051	25051.12	496477.17	19.443	171.23	4206204.4	147486251.2	5887.41	302.79	34
35	0.001380	94920	24054.37	471426.04	19.223	174.50	4115976.4	143280046.7	5956.50	309.85	35

9	۲	-
1 1	(J
	(J

36	0.001597	94780	23095.07	447371.67	18.995	177.88	4028373.5	139164070.3	6025.70	317.21	36
37	0.001741	94629	22171.31	424276.60	18.761	181.40	3943773.8	135135696.7	6095.07	324.87	37
38	0.001908	94464	21281.43	402105.29	18.519	185.11	3862905.2	131191922.9	6164.61	332.86	38
39	0.002096	94284	20423.87	380823.85	18.271	189.07	3786552.9	127329017.6	6234.32	341.21	39
40	0.002307	94086	19597.15	360399.98	18.015	193.31	3714759.6	123542464.7	6304.10	349.92	40
				200277170	10.010	1,50.01	371.733.0	1233 12 10 1.7	0301.10	347.72	40
41	0.002530	93869	18799.94	340802.82	17.752	197.89	3648075.6	119827705.0	6373.83	359.03	41
42	0.002765	93631	18031.13	322002.88	17.483	202.85	3586588.0	116179629.3	6443.27	368.54	42
43	0.003028	93372	17289.67	303971.74	17.206	208.23	3530315.5	112593041.2	6512.15	378.47	43
44	0.003331	93089	16574.33	286682.06	16.921	214.08	3479329.1	109062725.7	6580.21	388.86	44
45	0.003690	92779	15883.75	270107.73	16.630	220.45	3433576.2	105583396.6	6647.25	399.70	45
		iaicai i t _i			10.050	220.13	5 1555 10.2	103303370.0	0047.23	377.10	73
46	0.004093	92437	15216.48	254223.97	16.332	227.37	3392586.2	102149820.3	6713.10	411.03	46
47	0.004536	92059	14571.33	239007.48	16.027	234.89	3356195.7	98757234.0	6777.49	422.86	47
48	0.005027	91641	13947.33	224436.14	15.716	243.06	3324206.7	95401038.3	6840.09	435.21	48
49	0.005579	91180	13343.46	210488.81	15.399	251.92	3296208.6	92076831.6	6900.51	448.09	49
50	0.006204	90671	12758.66	197145.34	15.076	261.51	3271725.5	88780622.9	6958.45	461.53	50
						201101	02/1/20.5	00700022.9	0730.13	401.55	50
51	0.006886	90109	12191.82	184386.68	14.748	271.88	3250343.7	85508897.3	7013.62	475.53	51
52	0.007617	89488	11642.17	172194.85	14.415	283.07	3231552.4	82258553.6	7065.56	490.13	52
53	0.008421	88806	11109.11	160552.68	14.077	295.12	3214856.1	79027001.2	7113.70	505.33	53
54	0.009320	88058	10591.88	149443.56	13.734	308.07	3199674.8	75812145.1	7157.57	521.14	54
55	0.010338	87238	10089.57	138851.68	13.386	321.97	3185454.9	72612470.2	7196.78	537.59	55
							0.100.10.1.5	72012170.2	7170.70	331.37	33
56	0.011449	86336	9601.20	128762.11	13.036	336.84	3171267.1	69427015.2	7231.07	554.69	56
57	0.012633	85347	9126.23	119160.90	12.681	352.74	3156673.2	66255748.0	7259.92	572.46	57
58	0.013935	84269	8664.35	110034.67	12.324	369.68	3140839.1	63099074.8	7282.60	590.89	58
59	0.015396	83095	8215.01	101370.31	11.964	387.70	3123110.2	59958235.6	7298.61	610.01	59
60	0.017053	81815	7777.43	93155.30	11.602	406.83	3102649.6	56835125.4	7307.69	629.83	60
							0.0000.5.0	50055125.1	7507.05	027.03	00
61	0.018882	80420	7350.76	85377.86	11.239	427.09	3078474.0	53732475.7	7309.77	650.34	61
62	0.020855	78901	6934.58	78027.09	10.876	448.49	3049694.3	50654001.7	7304.55	671.56	62
63	0.023014	77256	6528.80	71092.51	10.514	471.05	3015669.7	47604307.4	7291.43	693.49	63
64	0.025396	75478	6133.21	64563.71	10.151	494.76	2975543.8	44588637.6	7270.02	716.12	64
65	0.028046	73561	5747.55	58430.49	9.791	519.63	2928602.2	41613093.7	7270.02		
				20.20.19	2.171	317.03	2720002.2	41013093.7	7240.14	739.45	65

х	q_x	I_{N}	D_{X}	$N_{x : \overline{s-x}}$	$\ddot{a}_{x:s-x}^{(4)}$	k_x	B_{χ}	K_{x}	Z_{X}	$P_{X}^{(4)}$	Х
66	0.030936	71498	5371.49	52682.94	9.432	545.65	2874039.3	38684491.4	7201.81	763.48	66
67	0.034040	69286	5005.11	47311.44	9.432	572.79	2811208.7	35810452.1	7154.76	788.17	67
68	0.037396	66927	4648.78	42306.33	8.725	601.02	2739756.4	32999243.3	7098.46	813.52	68
69	0.041038	64425	4302.82	37657.54	8.376	630.30	2659406.0	30259486.9	7032.46	839.51	69
70	0.045003	61781	3967.54	33354.71	8.031	660.58	2569986.4	27600080.8	6956.45	866.10	70
71	0.049165	59000	3643.26	29387.16	7.691	691.80	2471465.9	25030094.3	6870.23	893.26	71
72	0.053501	56100	3330.90	25743.90	7.353	723.87	2364321.2	22558628.3	6772.51	920.95	72
73	0.058197	53098	3031.44	22412.99	7.018	756.70	2249346.9	20194307.1	6661.61	949.14	73
74	0.063443	50008	2745.21	19381.55	6.685	790.19	2127115.0	17944960.2	6536.81	977.81	74
75	0.069424	46835	2472.16	16636.33	6.354	824.22	1998036.7	15817845.1	6398.38	1006.91	75
76	0.076101	43584	2212.05	14164.17	6.028	858.64	1862472.8	13819808.4	6247.50	1036.38	76
77	0.083353	40267	1965.10	11952.12	5.707	893.31	1721360.0	11957335.5	6084.82	1066.17	77
78	0.091235	36910	1732.02	9987.01	5.391	928.06	1576209.2	10235975.5	5909.82	1096.22	78
79	0.099803	33543	1513.46	8254.99	5.079	962.70	1428718.1	8659766.2	5721.81	1126.48	79
80	0.109115	30195	1310.01	6741.52	4.771	997.03	1280759.4	7231048.0	5519.82	1156.91	80
81	0.119184	26900	1122.18	5431.51	4.465	1030.83	1134316.4	5950288.6	5302.42	1187.51	81
32	0.129986	23694	950.42	4309.32	4.159	1063.87	991488.2	4815972.1	5067.20	1218.33	82
33	0.141503	20614	795.07	3358.90	3.849	1095.90	854402.1	3824483.9	4810.21	1249.52	83
34	0.153712	17697	656.31	2563.83	3.531	1126.65	725079.0	2970081.7	4525.38	1281.46	84
35	0.166594	14977	534.06	1907.51	3.196	1155.85	605316.0	2245002.6	4203.58	1314.98	85
36	0.180146	12482	427.97	1373.44	2.834	1183.20	496548.4	1639686.6	3831.25	1351.80	86
37	0.194389	10233	337.38	945.47	2.427	1208.41	399779.4	1143138.2	3388.25	1395.85	87
38	0.209341	8244	261.34	608.08	1.951	1231.16	315509.2	743358.8	2844.35	1457.32	88
39	0.225017	6518	198.68	346.74	1.370	1251.14	243757.9	427849.5	2153.38	1571.60	89
90	0.241431	5051	148.05	148.05	0.625	1268.01	184091.5	184091.5	1243.38	1989.40	90

Morbiditätsstatistik KKB 1974 Grundzahlen und Nettowerte der Krankenpflegeversicherung

Frauen; Versichertengruppe I; Sterbetafel SF 1968/73; Zinsfuss 3 1/4 %

У	q_y	$l_{\mathcal{X}}$	D_{y}	$N_{y+\overline{s-y}}$	$\ddot{a}_{y : s-y}^{(4)}$	k_y	B_{y}	K_{y}	Z_y	$P_{\mathcal{N}}^{(4)}$	y'
16	0.000410	98055	58780.00	1584503.63	26.581	141.22	8169223.7	672369774.5	11438.75	430.32	16
17	0.000446	98014	56906.38	1525723.63	26.436	164.33	9203072.5	664200550.8	11671.81	441.51	17
18	0.000477	97971	55090.50	1468817.24	26.286	195.99	10625898.6	654997478.2	11889.47	452.29	18
19	0.000496	97924	53330.97	1413726.73	26.133	233.78	12269923.1	644371579.5	12082.50	462.33	19
20	0.000506	97875	51626.60	1360395.76	25.975	274.94	13969036.7	632101656.3	12243.71	471.35	20
21	0.000504	97826	49976.25	1308769.15	25.812	316.56	15569501.2	618132619.6	12368.52	479.16	21
22	0.000492	97776	48378.75	1258792.90	25.644	355.79	16939609.7	602563118.4	12455.11	485.68	22
23	0.000477	97728	46832.83	1210414.14	25.470	390.21	17984726.4	585623508.6	12504.54	490.94	23
24	0.000466	97681	45336.99	1163581.30	25.290	418.00	18650222.6	567638782.2	12520.43	495.07	24
25	0.000468	97636	43889.42	1118244.31	25.103	438.11	18923348.2	548988559.5	12508.44	498.27	25
26	0.000481	97590	42487.97	1074354.89	24.911	450.31	18829232.3	530065211.2	12475.65	500.80	26
27	0.000502	97543	41130.74	1031866.91	24.712	455.04	18419216.7	511235978.8	12429.53	502.96	27
28	0.000529	97494	39816.03	990736.16	24.507	453.33	17763456.5	492816762.1	12377.34	505.03	28
29	0.000559	97442	38542.31	950920.12	24.297	446.60	16939923.2	475053305.5	12325.50	507.28	29
30	0.000589	97388	37308.21	912377.81	24.080	436.48	16025948.2	458113382.2	12279.15	509.92	30
31	0.000623	97330	36112.54	875069.60	23.856	424.59	15089775.5	442087434.0	12241.93	513.14	31
32	0.000663	97269	34954.00	838957.06	23.626	412.44	14187721.3	426997658.5	12241.93	517.04	32
33	0.000710	97205	33831.27	804003.06	23.390	401.29	13360775.9	412809937.1	12213.98	521.67	33
34	0.000769	97136	32743.07	770171.78	23.146	392.09	12634561.0	399449161.1	12199.50	527.05	33 34
35	0.000836	97061	31688.03	737428.71	22.896	385.36	12034301.0	386814600.0	12199.30	533.13	35

y.	q_y	l_y	$D_{\mathcal{X}}$	$N_{y:s-y}$	$\ddot{a}_{y:s-y}^{(4)}$	k_{y}	B_{y}	K_y	Z_{y}	$P_{\mathcal{Y}}^{(4)}$	y
36	0.000909	96980	30664.93	705740.68	22.639	381.20	11504025.6	374797024.4	12222.33	539.86	36
37	0.000993	96892	29672.66	675075.75	22.375	379.18	11072786.3	363292998.8	12243.35	547.17	37
38	0.001090	96795	28710.09	645403.08	22.105	378.23	10686746.5	352220212.4	12268.16	554.99	38
39	0.001199	96690	27776.07	616692.99	21.827	377.72	10325136.8	341533465.9	12295.95	563.32	39
40	0.001322	96574	26869.48	588916.92	21.542	379.17	10026475.0	331208329.0	12326.56	572.19	40
41	0.001454	96446	25989.31	562047.43	21.251	383.46	9807759.3	321181853.9	12358.22	581.53	41
42	0.001601	96306	25134.62	536058.12	20.952	389.58	9636602.9	311374094.6	12388.25	591.25	42
43	0.001766	96152	24304.46	510923.50	20.646	396.43	9482164.1	301737491.6	12414.90	601.29	43
44	0.001951	95982	23497.85	486619.04	20.334	403.80	9337907.5	292255327.5	12437.53	611.65	44
45	0.002156	95794	22713.81	463121.18	20.014	411.48	9198008.1	282917420.0	12455.74	622.33	45
46	0.002377	95588	21951.42	440407.37	19.687	419.33	9058860.6	273719411.9	12469.32	633.35	46
47	0.002619	95361	21209.90	418455.95	19.354	427.18	8916707.3	264660551.2	12478.16	644.72	47
48	0.002882	95111	20488.47	397246.04	19.013	434.93	8769685.1	255743843.8	12482.32	656.48	48
49	0.003169	94837	19786.37	376757.57	18.666	442.48	8616180.2	246974158.7	12482.03	668.69	49
50	0.003474	94536	19102.82	356971.20	18.311	449.79	8455949.9	238357978.4	12477.62	681.39	50
51	0.003795	94208	18437.25	337868.37	17.950	456.82	8288888.3	229902028.5	12469.42	694.66	51
52	0.004141	93850	17789.13	319431.12	17.581	463.59	8116034.7	221613140.2	12457.77	708.57	52
53	0.004522	93462	17157.82	301641.98	17.205	470.14	7938608.6	213497105.5	12443.13	723.20	53
54	0.004944	93039	16542.60	284484.16	16.822	476.54	7758149.7	205558496.8	12426.00	738.67	54
55	0.005391	92579	15942.66	267941.55	16.431	482.93	7577047.4	197800347.0	12406.98	755.06	55
56	0.005855	92080	15357.59	251998.89	16.033	489.44	7397374.5	190223299.5	12386.26	772.51	56
57	0.006363	91541	14787.09	236641.30	15.628	496.28	7222118.2	182825925.0	12363.88	791.12	57
58	0.006947	90958	14230.49	221854.20	15.215	503.67	7053767.8	175603806.8	12339.96	811.03	58
59	0.007633	90326	13686.80	207623.70	14.794	511.90	6895124.9	168550038.9	12314.78	832.38	59
60	0.008379	89637	13154.78	193936.90	14.367	525.84	6807575.1	161654914.0	12288.67	855.29	60
00	0.000577	37031	15150	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			eta eta otarretto tratto en tracalida 278				

۰		-	•
C		J	•
ď	7	-	

61	0.009168	88885	12633.94	180782.11	13.934	544.68	6772288.8	154847338.8	12256.44	879.59	61
62	0.010059	88070	12124.08	168148.17	13.493	567.67	6773294.3	148075050.0	12213.29	905.09	62
63	0.011119	87184	11624.32	156024.08	13.047	592.70	6780437.9	141301755.7	12155 69	931.67	63
64	0.012412	86215	11133.23	144399.75	12.595	619.82	6791128.3	134521317.7	12082.85	959.32	64
65	0.013877	85145	10648.94	133266.52	12.139	649.06	6802154.6	127730189.4	11994.63	988.06	65
66	0.015471	83963	10170 (1	122617.57	11.601	600.43	(010605.0	1200200210	11000 01	101500	
67	0.013471	82664	10170.61	122617.57	11.681	680.43	6810605.0	120928034.8	11889.94	1017.88	66
68	0.017284	81235	9698.06	112446.95	11.219	713.94	6813997.4	114117429.7	11767.02	1048.77	67
69	0.019409	79658	9230.44	102748.88	10.756	749.57	6809104.1	107303432.2	11624.94	1080.73	68
70	0.021937	77911	8766.37	93518.43	10.292	787.30	6792277.6	100494328.1	11463.60	1113.74	69
70	0.024773	77911	8304.17	84752.06	9.830	827.05	6759012.8	93702050.4	11283.72	1147.77	70
71	0.027856	75981	7843.54	76447.88	9.371	868.76	6706052.9	86943037.6	11084.66	1182.79	71
72	0.031327	73864	7385.03	68604.34	8.914	912.33	6630704.2	80236984.6	1084.80	1218.75	72
73	0.035327	71550	6928.51	61219.30	8.460	957.60	6529485.6	73606280.4	10623.68	1255.62	73
74	0.039999	69023	6473.35	54290.79	8.011	1004.42	6398818.6	67076794.7	10361.98	1293.33	74
75	0.045234	66262	6018.81	47817.43	7.569	1052.58	6234780.7	60677976.1	10081.37	1331.81	75
					71007	7002.00	025 1700.7	00077770.1	10001.57	1331.01	13
76	0.050939	63264	5565.67	41798.62	7.135	1101.85	6035246.0	54443195.3	9781.96	1370.96	76
77	0.057275	60042	5115.88	36232.95	6.707	1151.95	5799756.2	48407949.3	9462.27	1410.71	77
78	0.064399	56603	4671.06	31117.06	6.286	1202.57	5528170.6	42608193.1	9121.72	1450.96	78
79	0.072473	52957	4232.68	26445.99	5.873	1253.35	5220878.5	37080022.4	8760.39	1491.62	79
80	0.081491	49119	3802.35	22213.30	5.466	1303.91	4879270.2	31859143.8	8378.79	1532.61	80
81	0.091273	45116	3382.55	18410.95	5.067	1353.80	4506658.5	26979873.5	7976.17	1573.85	81
82	0.101863	40998	2977.06	15028.39	4.673	1402.55	4109238.8	22473215.0	7548.78	1615.38	82
83	0.113303	36822	2589.64	12051.33	4.278	1449.65	3694521.8	18363976.1	7091.31	1657.36	83
84	0.125634	32650	2223.94	9461.69	3.879	1494.54	3271050.9	14669454.2	6596.12	1700.26	84
85	0.138900	28548	1883.33	7237.74	3.468	1536.65	2848114.4	11398403.2	6052.24	1745.14	85
86	0.152980	24502	1570 (0	5254.40	2 022						
87	0.132980	24583 20822	1570.69	5354.40	3.033	1575.34	2435116.8	8550288.8	5443.65	1794.24	86
88	0.183706	17326	1288.52	3783.71	2.561	1609.97	2041579.8	6115171.9	4745.86	1852.79	87
89	0.183706		1038.42	2495.18	2.027	1639.89	1675890.5	4073592.1	3922.84	1934.47	88
90		14143	820.97	1456.76	1.399	1664.40	1344759.5	2397701.6	2920.54	2086.96	89
90	0.218040	11308	635.78	635.78	0.625	1682.83	1052942.0	1052942.0	1656.13	2649.80	90

Morbiditätsstatistik KKB 1974 Grundzahlen und Nettowerte der Krankenpflegeversicherung

 $Frauen\,;\,Versichertengruppe\,I\,;\,Sterbetafel\,SF\,1968/73\,;\,Zinsfuss\,4\%$

<i>y</i> '	$q_{,:}$	$I_{\mathcal{Y}}$	D_{y}	$N_{j^*+\overline{s-j}}$	$\ddot{a}_{N}^{(4)}$	k_{y}	B_{y}	$K_{\mathcal{Y}}$	Z_{i}	$P_y^{(4)}$	J.
16	0.000410	98055	52352.46	1222126.67	22.969	141.22	7249644.1	493700390.7	9430.31	410.56	16
17	0.000446	98014	50318.22	1169774.21	22.872	164.33	8108218.8	486450746.6	9667.48	422.66	17
18	0.000477	97971	48361.27	1119455.99	22.772	195.99	9294264.1	478342527.7	9891.02	434.33	18
19	0.000496	97924	46479.04	1071094.71	22.669	233.78	10654863.8	469048263.6	10091.60	445.15	19
20	0.000506	97875	44669.18	1024615.66	22.562	274.94	12042849.0	458393399.7	10261.96	454.81	20
21	0.000504	97826	42929.40	979946.48	22.451	316.56	13325827.9	446350550.7	10397.31	463.09	21
22	0.000492	97776	41257.46	937017.08	22.336	355.79	14393937.8	433024722.8	10495.66	469.88	22
23	0.000477	97728	39651.08	895759.61	22.216	390.21	15171788.5	418630784.9	10557.86	475.23	23
24	0.000466	97681	38107.81	856108.53	22.090	418.00	15619735.9	403458996.4	10587.30	479.27	24
25	0.000468	97636	36625.02	818000.71	21.959	438.11	15734189.2	387839260.5	10589.46	482.22	25
26	0.000481	97590	35199.84	781375.69	21.823	450.31	15543031.3	372105071.2	10571.21	484.40	26
27	0.000502	97543	33829.69	746175.84	21.681	455.04	15094925.9	356562039.9	10539.91	486.11	27
28	0.000529	97494	32512.19	712346.15	21.535	453.33	14452534.9	341467114.0	10502.74	487.70	28
29	0.000559	97442	31245.15	679833.96	21.383	446.60	13683106.5	327014579.0	10466.08	489.45	29
30	0.000589	97388	30026.59	648588.80	21.225	436.48	12851497.2	313331472.4	10435.13	491.63	30
31	0.000623	97330	28854.68	618562.21	21.062	424.59	12013498.3	300479975.2	10413.55	494.42	31
32	0.000663	97269	27727.58	589707.52	20.892	412.44	11213884.6	288466476.9	10403.59	497.94	32
33	0.000710	97205	26643.43	561979.94	20.717	401.29	10484116.4	277252592.3	10406.03	502.27	33
34	0.000769	97136	25600.46	535336.51	20.536	392.09	9842763.1	266768475.8	10420.45	507.41	34
35	0.000836	97061	24596.90	509736.04	20.348	385.36	9294594.7	256925712.7	10445.44	513.32	35

36	0.000909	96980	23631.09	485139.13	20.154	381.20	8833242.5	247631117.9	10479.03	519.93	36	
37	0.000993	96892	22701.53	461508.03	19.954	379.18	8440806.8	238797875.3	10519.01	527.15	37	
38	0.001090	96795	21806.70	438806.50	19.747	378.23	8087778.8	230357068.5	10563.59	534.93	38	
39	0.001199	96690	20945.12	416999.80	19.534	377.72	7757759.2	222269289.6	10611.98	543.25	39	
40	0.001322	96574	20115.37	396054.67	19.314	379.17	7479033.5	214511530.4	10664.05	552.13	40	
41	0.001454	96446	19316.13	375939.29	19.087	383.46	7263128.4	207032496.8	10718.10	561.52	41	
42	0.001601	96306	18546.18	356623.15	18.853	389.58	7084914.4	199769368.4	10771.45	571.31	42	
43	0.001766	96152	17804.30	338076.97	18.613	396.43	6921095.3	192684453.9	10822.35	581.42	43	
44	0.001951	95982	17089.28	320272.66	18.366	403.80	6766649.0	185763358.6	10870.16	591.85	44	
45	0.002156	95794	16399.95	303183.37	18.111	411.48	6617205.0	178996709.5	10914.46	602.61	45	
46	0.002377	95588	15735.18	286783.42	17.850	419.33	6470101.7	172379504.4	10955.03	613.70	46	
47	0.002619	95361	15094.00	271048.24	17.582	427.18	6322644.5	165909402.7	10991.74	625.15	47	
48	0.002882	95111	14475.45	255954.23	17.306	434.93	6173549.9	159586758.2	11024.64	637.00	48	
49	0.003169	94837	13878.59	241478.78	17.024	442.48	6021746.4	153413208.2	11053.94	649.30	49	
50	0.003474	94536	13302.51	227600.18	16.734	449.79	5867144.8	147391461.7	11079.97	662.10	50	
	0.000505	0.4000										
51	0.003795	94208	12746.44	214297.67	16.437	456.82	5709754.3	141524316.9	11103.04	675.47	51	
52	0.004141	93850	12209.68	201551.23	16.132	463.59	5550367.6	135814562.5	11123.51	689.50	52	
53	0.004522	93462	11691.45	189341.54	15.819	470.14	5389878.4	130264194.9	11141.83	704.29	53	
54	0.004944	93039	11190.94	177650.09	15.499	476.54	5229371.0	124874316.5	11158.51	719.92	54	
55	0.005391	92579	10707.31	166459.15	15.171	482.93	5070467.7	119644945.5	11174.13	736.53	55	
56	0.005855	92080	10220.00	155751 02	14.025	100 11	101.150.1.0					
57	0.003833	91541	10239.99	155751.83	14.835	489.44	4914534.0	114574477.7	11188.92	754.21	56	
58	0.006947	90958	9788.49	145511.84	14.490	496.28	4763498.7	109659943.6	11202.94	773.11	57	
59	0.006947		9352.11	135723.35	14.137	503.67	4618908.3	104896444.9	11216.33	793.36	58	
60	0.007633	90326	8929.94	126371.23	13.776	511.90	4482466.3	100277536.6	11229.36	815.11	59	
00	0.006379	89637	8520.93	117441.29	13.407	525.84	4393635.9	95795070.2	11242.32	838.49	60	
61	0.009168	88885	8124.54	108920.36	13.031	544.68	4220241.2	01401424.2	11050.00	0.62.20		
62	0.010059	88070	7740.44	100795.81	12.646	567.67	4339341.3	91401434.3	11250.03	863.30	61	
63	0.011119	87184	7367.85	93055.37	12.040	592.70	4308687.6	87062092.9	11247.69	889.35	62	
64	0.012412	86215	7005.69	85687.51	11.856		4282126.8	82753405.3	11231.67	916.50	63	
65	0.013877	85145	6652.63	78681.81	11.830	619.82 649.06	4257948.8	78471278.4	11201.06	944.74	64	
00	0.013077	05175	0032.03	70001.01	11.432	049.00	4234106.0	74213329.5	11155.48	974.09	65	

- J.	q_{j}	l_y	D_y	$N_{y:\overline{s-y}}$	$\ddot{a}_{y}^{(4)}$	k_{j}	B_{j}	K_{μ}	Z_y	$P_{y}^{(4)}$. <i>y</i>
66	0.015471	83963	6307.98	72029.18	11.043	680.43	4208793.7	69979223.5	11093.74	1004.52	66
67	0.017284	82664	5971.52	65721.19	10.630	713.94	4180523.2	65770429.7	11014.00	1036.05	67
68	0.019409	81235	5642.60	59749.66	10.214	749.57	4147394.6	61589906.5	10915.14	1068.64	68
69	0.021937	79658	5320.27	54107.06	9.794	787.30	4107310.5	57442511.8	10796.90	1102.28	69
70	0.024773	77911	5003.42	48786.78	9.375	827.05	4057720.2	53335201.3	10659.74	1136.95	70
71	0.027856	75981	4691.79	43783.36	8.956	868.76	3996893.0	49277481.0	10502.89	1172.60	71
72	0.031327	73864	4385.67	39091.56	8.538	912.33	3923484.4	45280587.9	10324.65	1209.19	72
73	0.035327	71550	4084.89	34705.89	8.121	957.60	3835729.4	41357103.5	10124.40	1246.66	73
74	0.039999	69023	3789.01	30620.99	7.706	1004.42	3731861.4	37521374.1	9902.66	1284.97	74
75	0.045234	66262	3497.56	26831.97	7.296	1052.58	3609970.2	33789512.6	9660.88	1324.01	75
76	0.050939	63264	3210.91	23334.41	6.892	1101.85	3469238.3	30179542.3	9399.05	1363.71	76
77	0.057275	60042	2930.14	20123.50	6.492	1151.95	3309829.4	26710303.9	9115.70	1403.97	77
78	0.064399	56603	2656.07	17193.36	6.098	1202.57	3132088.6	23400474.5	8810.17	1444.71	78
79	0.072473	52957	2389.44	14537.29	5.708	1253.35	2936654.9	20268385.8	8482.46	1485.81	79
80	0.081491	49119	2131.03	12147.84	5.325	1303.91	2724713.9	17331730.9	8133.02	1527.19	80
81	0.091273	45116	1882.08	10016.81	4.947	1353.80	2498488.8	14607016.9	7761.07	1568.78	81
82	0.101863	40998	1644.52	8134.72	4.571	1402.55	2261730.6	12108528.1	7362.95	1610.59	82
83	0.113303	36822	1420.19	6490.20	4.194	1449.65	2018805.3	9846797.5	6933.41	1652.80	83
84	0.125634	32650	1210.84	5070.01	3.812	1494.54	1774517.3	7827992.1	6464.88	1695.85	84
85	0.138900	28548	1018.00	3859.16	3.415	1536.65	1533935.4	6053474.8	5946.42	1740.79	85
86	0.152980	24583	842.88	2841.16	2.995	1575.34	1302045.5	4519539.3	5361.98	1789.85	86
87	0.152986	20822	686.48	1998.27	2.535	1609.97	1083750.8	3217493.8	4686.93	1848.23	87
88	0.183706	17326	549.24	1311.79	2.013	1639.89	883212.9	2133742.9	3884.85	1929.54	88
89	0.103700	14143	431.10	762.54	1.393	1664.40	703592.4	1250529.9	2900.77	2081.14	89
90	0.218040	11308	331.44	331.44	0.625	1682.83	546937.5	546937.5	1650.15	2640.24	90

Morbiditätsstatistik KKB 1974 Nettodeckungskapital $_tU_x$ der Krankenpflegeversicherung

Männer; Versichertengruppe I; Sterbetafel SM 1968/73; Zinsfuss 3 1/4 %

	Ein- tritts- alter	16	20	25	30	35	40	45	50	55	60	65	70	75
Dauer	χ_e	-	1		20	55	10	43	50	33	00	03	70	13
der	/													
Vers.														
01		143.2	132.6	129.9	138.3	155.1	176.8	199.4	219.7	234.5	240.4	234.3	214.5	181.4
02		282.2	262.8	259.3	277.8	312.0	354.9	399.0	437.6	464.2	472.4	456.6	413.6	344.8
03		417.5	390.9	388.6	418.6	470.8	534.4	598.4	653.0	688.3	695.2	666.2	596.8	490.2
04		549.3	517.3	518.3	560.8	631.3	714.9	797.2	865.3	906.2	908.3	862.5	763.5	617.5
05		678.3	642.3	648.5	704.7	793.4	896.1	995.0	1074.0	1117.2	1111.0	1045.1	913.4	726.7
06		804.6	766.3	779.6	850.2	957.0	1077.6	1191.2	1278.3	1320.5	1302.6	1213.4	1046.4	817.7
07		928.6	889.8	911.6	997.3	1121.9	1259.2	1385.2	1477.6	1515.5	1482.7	1366.9	1162.2	890.3
08		1050.7	1013.0	1044.8	1146.0	1287.8	1440.3	1576.6	1671.3	1701.7	1650.6	1505.0	1261.0	944.3
09		1171.2	1136.4	1179.2	1296.3	1454.5	1620.5	1764.6	1858.6	1878.2	1805.8	1627.0	1342.4	978.9
10		1290.5	1260.0	1315.0	1447.9	1621.5	1799.4	1948.8	2038.9	2044.6	1947.9	1732.7	1406.3	992.9
11		1409.2	1384.3	1452.2	1600.8	1788.7	1976.6	2128.5	2211.7	2200.4	2076.3	1822.1	1452.5	984.0
12		1527.3	1509.3	1590.8	1754.7	1955.6	2151.4	2303.1	2376.3	2345.0	2190.5	1895.4	1480.6	949.0
13		1645.4	1635.3	1730.8	1909.4	2121.9	2323.3	2472.0	2532.1	2477.9	2289.5	1952.3	1489.6	882.4
14		1763.7	1762.4	1872.1	2064.6	2287.1	2491.7	2634.3	2678.4	2598.6	2372.9	1992.5	1478.1	775.7
15		1882.4	1890.5	2014.7	2220.0	2450.8	2656.1	2789.7	2814.9	2706.6	2440.4	2015.9	1443.7	615.3
16		2001,7	2019.9	2158.3	2375.3	2612.5	2815.9	2937.6	2941.1	2801.5	2492.3	2021.9	1382.9	
17		2121.8	2150.5	2302.7	2530.2	2771.7	2970.5	3077.4	3056.5	2882.6	2528.8	2009.9	1289.7	
18		2242.7	2282.3	2447.7	2684.2	2927.8	3119.3	3208.5	3160.5	2948.9	2549.5	1978.6	1155.6	
19		2364.6	2415.2	2593.0	2837.0	3080.4	3261.5	3330.3	3252.7	2999.8	2554.2	1925.8	966.9	

1	_	_	7
1			
		_	-
		Г	`

Ein trit t alte Dauer x _e der Vers.	ts-	20	25	30	35	40	45	50	55	60	65	70	7.
	2407.6	2540.2	2720.2	2000 1	2220.7	2207.7	2442.4	2222.6	2025.2	2542.5	1040.1	702.2	
20	2487.6		2738.3	2988.1	3228.7	3396.7	3442.4	3332.6	3035.2	2542.5	1848.1	702.2	
21	2611.6		2883.3	3137.1	3372.4	3524.4	3544.5	3399.9	3055.6	2513.8	1740.6		
22 23	2736.6 2862.6		3027.8 3171.2	3283.5 3426.6	3510.9 3643.4	3644.2 3755.3	3636.0 3716.5	3453.6 3492.9	3061.0 3051.3	2467.3 2401.1	1595.3		
	2989.5		3313.3	3566.0	3769.3	3857.3	3716.5	3492.9		2312.5	1400.6		
24	2909.3	3091.3	3313.3	3300.0	3709.3	3031.3	3/03.3	3317.0	3026.2	2312.3	1138.4		
25	3117.1	3227.1	3453.5	3701.2	3888.2	3949.7	3842.5	3526.0	2985.0	2197.5	780.1		
26	3245.2		3591.4	3831.6	3999.6	4032.3	3887.2	3520.3	2927.2	2049.6			
27	3373.5		3726.7	3956.7	4103.1	4104.6	3918.8	3500.2	2851.6	1859.3			
28	3501.8	3630.5	3858.6	4075.8	4198.1	4166.1	3936.0	3465.4	2756.1	1612.3			
29	3629.7		3986.6	4188.2	4284.0	4216.3	3938.3	3415.6	2637.5	1286.5			
30	3757.1	3892.3	4110.3	4293.6	4360.5	4254.8	3925.7	3350.2	2491.0	847.4			
31	3883.6	4019.9	4229.2	4391.6	4427.2	4234.8	3898.8	3268.3	2309.2	047.4			
32	4008.8	4144.6	4342.8	4481.7	4484.0	4294.8	3857.9	3168.7	2081.2				
33	4132.3	4265.9	4450.2	4563.4	4530.0	4294.3	3802.7	3049.0	1790.2				
34	4253.8	4383.2	4551.0	4636.0	4565.0	4278.9	3732.8	2905.7	1411.0				
25	4272.0	1407.2	4644.0	4600.3	4500.5	42.40.0	2647	2722.2	0040				
35	4372.8	4496.2	4644.8	4699.3	4588.5	4248.9	3647.6	2733.3	904.0				
36	4488.9	4604.2	4731.1	4753.1	4600.3	4204.8	3546.1	2523.5					
37	4601.5	4706.9	4809.6	4796.9	4599.3	4147.1	3427.0	2264.2					
38	4710.0	4803.4	4879.7	4830.3	4584.3	4075.4	3287.6	1937.0					
39	4814.0	4893.2	4940.9	4852.8	4554.7	3989.3	3124.1	1513.7					
40	4913.1	4975.9	4992.8	4863.9	4510.5	3888.1	2930.6	950.6					
41	5006.8	5051.3	5035.3	4863.5	4452.6	3770.8	2698.0						
42	5094.3	5118.9	5068.0	4850.5	4381.3	3635.8	2413.3						
43	5175.0	5178.1	5090.3	4823.6	4296.2	3480.6	2056.6						
44	5248.7	5228.4	5101.9	4782.2	4197.0	3300.7	1597.4						

```
175
```

45	5315.0	5269.5	5102.4	4726.4	4082.8	3090.1	988.6	
46	5373.6	5301.4	5091.5	4657.0	3952.6	2839.2		
47	5423.8	5323.6	5068.1	4574.5	3804.9	2533.9		
48	5465.2	5335.6	5030.9	4478.4	3636.8	2153.3		
49	5497.5	5336.9	4979.3	4368.3	3443.7	1665.1		
50	5520.6	5327.3	4913.4	4243.4	3219.3	1019.4		
51	5534.1	5306.4	4834.1	4102.7	2953.4			
52	5537.6	5273.2	4741.8	3944.4	2631.5			
53	5530.5	5226.3	4636.1	3765.6	2231.5			
54	5512.6	5165.1	4516.6	3561.7	1719.8			
55	5483.5	5089.7	4382.5	3325.8	1044.3			
56	5442.2	5001.0	4232.6	3047.7				
57	5387.3	4899.6	4065.2	2712.0				
58	5318.2	4784.9	3877.2	2296.1				
59	5234.9	4656.5	3663.9	1765.0			2	
60	5138.5	4513.7	3418.1	1064.8				
61	5029.5	4355.2	3129.3					
62	4907.5	4179.1	2781.8					
63	4771.8	3982.4	2352.0					
64	4621.7	3760.2	1804.2					
65	4456.1	3505.1	1082.6					
66	4273.0	3206.3						
67	4069.1	2847.5						
68	3839.6	2404.7						
69	3576.8	1841.1						
70	3269.7	1099.4						
71	2901.7							
72	2448.2							
73	1871.5							
74	1113.2							

Morbiditätsstatistik KKB 1974 Nettodeckungskapital $_{t}U_{x}$ der Krankenpflegeversicherung

Männer; Versicherungsgruppe I; Sterbetafel SM 1968/73; Zinsfuss 4%

t Dauer der Vers.	Ein- tritts- alter	16	20	25	30	35	40	45	50	55	60	65	70	75
01		127.2	117.2	114.3	122.8	139.8	161.7	185.1	206.6	223.0	230.5	226.6	208.9	177.6
02		250.7	232.2	228.6	247.1	281.8	325.5	371.2	412.3	442.2	453.9	442.3	403.3	338.2
03		370.8	345.3	343.2	373.2	426.2	491.3	558.1	616.5	656.9	669.3	646.3	582.8	481.4
04		487.9	457.1	458.4	501.3	573.0	658.9	745.2	818.7	866.5	876.0	838.2	746.8	607.3
05 06 07 08 09 10 11 12 13		602.4 714.6 824.9 933.6 1041.0 1147.7 1254.0 1360.3 1466.8 1573.9	567.9 678.0 787.9 898.0 1008.5 1119.7 1231.9 1345.3 1460.0 1576.3	574.5 691.9 810.6 930.9 1052.9 1176.8 1302.5 1430.2 1559.8 1691.4	631.4 763.6 898.0 1034.4 1173.0 1313.6 1456.1 1600.2 1745.8 1892.7	722.0 873.1 1026.1 1180.8 1337.0 1494.3 1652.5 1811.3 1970.2 2128.9	827.9 998.1 1169.1 1340.5 1511.8 1682.7 1852.7 2021.2 2187.7 2351.6	932.2 1118.5 1303.6 1486.9 1667.9 1846.0 2020.5 2190.9 2356.4 2516.3	1018.3 1214.5 1406.8 1594.3 1776.5 1952.7 2122.2 2284.5 2438.8 2584.6	1070.2 1267.3 1457.2 1639.1 1812.4 1976.5 2130.7 2274.7 2407.7 2529.1	1073.3 1260.7 1437.4 1602.8 1756.4 1897.7 2026.1 2140.8 2241.1 2326.3	1017.2 1182.9 1334.7 1471.7 1593.4 1699.5 1789.9 1864.6 1923.3 1965.8	894.7 1026.4 1141.8 1240.5 1322.5 1387.5 1435.1 1464.9 1476.0 1466.8	715.7 806.4 879.3 933.9 969.5 984.8 977.5 944.1 879.0 773.7
15 16 17 18		1681.8 1790.8 1900.9 2012.5 2125.4	1694.2 1813.9 1935.3 2058.4 2183.2	1824.7 1959.7 2096.2 2234.0 2372.7	2040.4 2188.9 2337.6 2486.4 2634.6	2286.8 2443.7 2598.8 2751.8 2902.0	2512.4 2669.5 2822.2 2969.9 3111.9	2670.1 2817.2 2957.0 3088.9 3212.3	2721.2 2848.2 2965.1 3071.3 3166.3	2638.5 2735.5 2819.1 2888.5 2942.9	2396.1 2450.7 2490.2 2514.3 2522.6	1991.7 2000.6 1991.7 1963.5 1914.0	1434.9 1376.5 1285.9 1153.9 966.6	614.0

•		
•	_	L
	7	۰
•		
		۰

20	2240.0	2309.7	2512.2	2782.0	3048.8	3247.6	3326.6	3249.4	2982.2	2514.8	1839.8	702.0	
21	2356.1	2437.6	2652.2	2928.0	3191.8	3376.7	3431.4	3320.5	3006.8	2490.1	1735.5		
22	2473.8	2566.9	2792.3	3072.2	3330.4	3498.5	3526.4	3378.5	3016.6	2447.6	1593.3		
23	2593.0	2697.2	2932.2	3214.1	3463.7	3612.3	3610.8	3422.3	3011.6	2385.5	1401.1		
24	2713.8	2828.3	3071.5	3353.0	3591.3	3717.6	3684.2	3451.4	2991.1	2301.1	1140.2		
25	2835.8	2959.9	3209.7	3488.4	3712.6	3814.0	3746.1	3465.6	2954.8	2190.2	781.2		
26	2959.0	3091.9	3346.4	3619.9	3827.1	3901.0	3796.0	3465.3	2902.0	2046.2			
27	3083.1	3223.8	3481.2	3746.8	3934.3	3978.3	3833.1	3450.7	2831.2	1859.4			
28	3207.8	3355.3	3613.5	3868.5	4033.6	4045.2	3856.3	3421.6	2740.6	1615.0			
29	3333.0	3486.0	3742.6	3984.2	4124.4	4101.2	3864.7	3377.5	2626.9	1290.4			
30	3458.2	3615.6	3868.2	4093.6	4206.3	4145.9	3858.4	3317.7	2485.0	849.7			
31	3583.3	3743.5	3989.7	4196.2	4279.0	4178.9	3838.0	3241.6	2307.6				
32	3707.9	3869.3	4106.6	4291.5	4342.0	4199.2	3803.6	3147.6	2083.3				
33	3831.5	3992.4	4218.1	4378.9	4394.8	4205.6	3755.0	3033.4	1795.1				
34	3953.7	4112.4	4323.7	4457.8	4436.9	4197.5	3691.5	2895.5	1416.7				
0.0													5
35	4074.3	4228.6	4422.8	4527.8	4467.7	4174.8	3612.7	2728.2	907.3				
36	4192.6	4340.7	4515.0	4588.8	4487.1	4138.1	3517.7	2523.1					
37	4308.2	4448.0	4600.1	4640.1	4493.9	4087.7	3404.7	2267.9					
38	4420.4	4549.9	4677.2	4681.4	4486.9	4023.3	3271.5	1943.5					
39	4528.9	4645.8	4745.8	4711.9	4465.4	3944.4	3113.8	1521.0					
40													
40	4633.1	4735.1	4805.6	4731.5	4429.4	3850.3	2925.8	954.9					
41	4732.5	4817.6	4856.4	4739.6	4379.6	3739.9	2698.4						
42	4826.4	4892.9	4897.6	4735.4	4316.4	3611.8	2418.0						
43	4914.1	4960.2	4928.9	4717.4	4239.3	3463.1	2064.2						
44	4995.3	5019.1	4949.6	4684.9	4147.9	3289.6	1605.7						
45	5060.5	5010.5											
45	5069.7	5069.2	4959.3	4638.1	4041.4	3085.0	993.5						
46	5136.8	5110.3	4957.8	4577.6	3918.8	2839.5							
47	5196.0	5142.0	4944.0	4503.8	3778.4	2538.8							
48	5246.8	5163.8	4916.5	4416.4	3617.3	2161.3							
49	5288.8	5175.1	4874.6	4314.7	3431.1	1673.9							

-	
2	
	- >

t Dauer	Ein- tritts- alter x_e 16	20	25	30	35	40	45	50	55	60	65	70	7
der Vers.													
50	5321.9	5175.6	4818.4	4198.1	3213.0	1024.6							
51	5345.6	5164.9	4748.6	4065.5	2953.0								
52	5359.5	5142.0	4665.7	3915.0	2636.1								
53	5363.0	5105.4	4569.3	3743.8	2239.5								
54	5355.7	5054.5	4458.8	3547.1	1728.8								
55	5337.4	4989.4	4333.5	3318.0	1049.7								
56	5306.9	4910.9	4192.2	3046.1									
57	5262.8	4819.4	4033.0	2715.8									
58	5204.5	4714.5	3853.0	2303.6									
59	5131.9	4595.6	3647.3	1773.8									
60	5046.1	4461.9	3408.7	1070.2									
61	4947.4	4312.4	3126.5										
62	4835.4	4145.0	2784.7										
63	4709.5	3956.6	2359.0										
64	4568.9	3742.3	1812.6										
65	4412.5	3494.8	1087.9										
66	4238.3	3202.8											
67	4043.0	2850.0											
68	3821.6	2411.6											
69	3566.5	1849.5											
70	3266.4	1104.8											
71	2904.4												
72	2455.3												
73	1880.3												
74	1118.8												

Morbiditätsstatistik KKB 1974 Nettodeckungskapital $_tU_y$ der Krankenpflegeversicherung

Frauen; Versichertengruppe I; Sterbetafel SF 1968/73; Zinsfuss 31/4%

t Dauer der	Ein- tritts- alter	16	20	25	30	35	40	45	50	55	60	65	70	75
Vers.														
01		295.8	201.6	63.2	76.9	152.4	198.5	217.0	238.2	279.8	338.6	348.3	328.2	279.3
02		577.6	367.5	116.0	168.2	314.1	399.4	433.4	477.8	563.6	672.0	681.2	632.8	529.2
03		836.7	499.0	165.8	274.9	483.3	601.0	649.4	719.5	851.6	996.5	996.8	912.5	749.0
04		1065.8	599.9	218.9	396.5	659.1	802.5	865.4	963.6	1143.9	1310.3	1293.6	1166.2	938.6
05		1260.7	675.8	280.7	531.5	841.5	1003.6	1081.6	1210.6	1440.2	1611.8	1570.1	1393.1	1097.7
06		1419.7	733.8	354.8	677.9	1028.6	1204.1	1298.4	1461.0	1735.2	1899.2	1824.9	1593.1	1226.6
07		1544.1	781.3	443.4	833.5	1217.8	1403.8	1516.2	1714.9	2024.5	2170.8	2056.6	1763.6	1325.1
08		1637.5	825.5	547.4	996.3	1407.4	1602.8	1735.6	1972.5	2304.2	2424.9	2263.8	1906.0	1392.9
09		1705.8	873.0	666.2	1165.7	1596.8	1801.3	1957.1	2233.8	2572.7	2660.2	2445.8	2019.4	1429.4
10		1755.9	928.9	798.3	1341.5	1785.4	1999.7	2181.1	2498.6	2828.5	2875.4	2602.0	2103.9	1433.4
11		1795.2	997.0	941.7	1521.8	1973.1	2198.4	2407.9	2761.7	3070.0	3069.2	2732.0	2159.3	1403.0
12		1831.1	1079.5	1094.1	1704.1	2159.8	2397.7	2637.9	3018.6	3295.4	3240.1	2834.9	2185.1	1334.4
13		1869.9	1177.1	1253.8	1886.6	2345.5	2598.3	2871.1	3265.4	3503.1	3387.1	2910.1	2180.3	1222.1
14		1916.9	1289.3	1420.0	2068.7	2530.4	2800.5	3107.6	3500.6	3691.8	3509.5	2957.4	2143.3	1056.7
15		1975.8	1414.6	1592.4	2249.9	2715.0	3004.9	3347.2	3722.8	3860.7	3607.1	2977.0	2071.7	823.7
16		2048.9	1551.1	1769.4	2430.1	2899.5	3211.9	3584.7	3930.5	4008.5	3679.3	2968.7	1961.3	023.1
17		2136.7	1696.5	1948.2	2609.0	3084.5	3421.5	3815.6	4121.9	4133.7	3725.4	2931.5	1805.8	
18		2239.0	1848.9	2127.2	2786.8	3270.3	3634.0	4036.0	4295.5	4235.2	3744.8	2863.7	1595.3	
19		2354.1	2007.6	2305.6	2963.7	3457.6	3849.4	4244.5	4450.1	4312.5	3737.2	2762.9	1314.3	

•	-	•	
C	×	0	
1	-	•	

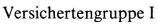
	Ein- tritts-	16	20	25	20	25	40	45	50	55	60	65	70
	alter	16	20	25	30	35	40	43	30	33	00	03	70
Dauer	y _e												
der													
Vers.													
20		2480.0	2172.4	2483.1	3140.0	3646.8	4067.6	4439.8	4585.0	4365.8	3702.9	2625.6	938.7
21		2614.6	2341.5	2659.4	3316.1	3838.1	4283.4	4620.4	4698.9	4394.5	3641.6	2445.9	
22		2755.9	2512.2	2834.5	3492.5	4032.0	4492.1	4784.6	4790.4	4397.7	3551.9	2214.9	
23		2903.2	2683.0	3008.3	3669.7	4228.3	4690.2	4930.8	4858.5	4374.9	3431.8	1919.1	
24		3056.3	2853.0	3181.1	3848.0	4427.3	4876.0	5058.0	4902.8	4325.8	3278.0	1537.8	
25		3213.4	3021.9	3353.3	4028.1	4628.8	5048.5	5165.6	4923.4	4250.8	3086.0	1038.5	
26		3371.9	3189.4	3525.3	4210.3	4827.6	5206.1	5252.4	4920.1	4149.5	2848.7		
27		3530.1	3355.5	3697.4	4394.7	5019.2	5347.1	5316.9	4891.8	4020.3	2555.0		
28		3687.3	3520.1	3870.1	4581.5	5199.8	5470.1	5358.2	4838.0	3860.6	2188.4		
29		3843.1	3683.6	4044.0	4770.7	5367.9	5574.1	5375.9	4758.5	3666.8	1723.6		
2)		30 13.1	5005.0										
30		3997.2	3846.3	4219.6	4962.2	5522.6	5658.5	5370.5	4653.6	3433.6	1121.5		
31		4149.6	4008.5	4397.1	5151.0	5662.4	5722.3	5341.5	4522.9	3152.8			
32		4300.3	4170.7	4576.8	5332.4	5785.4	5763.9	5288.0	4364.6	2811.7	*		
33		4449.5	4333.3	4758.7	5502.6	5890.3	5782.4	5209.3	4175.8	2391.6			
34		4597.6	4496.9	4943.0	5660.3	5976.1	5777.7	5105.4	3952.6	1863.8			
35		4745.0	4661.9	5129.6	5804.4	6042.5	5750.0	4976.5	3689.1	1184.2			
36		4892.0	4828.7	5313.4	5933.5	6088.3	5699.3	4822.2	3376.3				
37		5039.2	4997.5	5489.6	6045.8	6112.1	5624.3	4640.5	3000.5				
38		5187.1	5168.3	5654.6	6139.9	6112.9	5524.5	4428.5	2541.0				
39		5336.1	5341.3	5807.0	6215.0	6090.6	5399.8	4181.8	1966.9				
37		5550.1	001110		38.2311								
40		5486.6	5516.4	5945.8	6270.7	6045.7	5250.6	3893.9	1230.2				
41		5638.7	5688.5	6069.6	6305.8	5978.0	5076.3	3555.5					
42		5792.6	5852.9	6176.5	6319.0	5886.3	4874.8	3151.7					
43		5948.3	6005.8	6265.2	6309.3	5770.1	4643.0	2660.8					
44		6105.9	6146.1	6334.9	6276.5	5629.2	4376.3	2049.6					

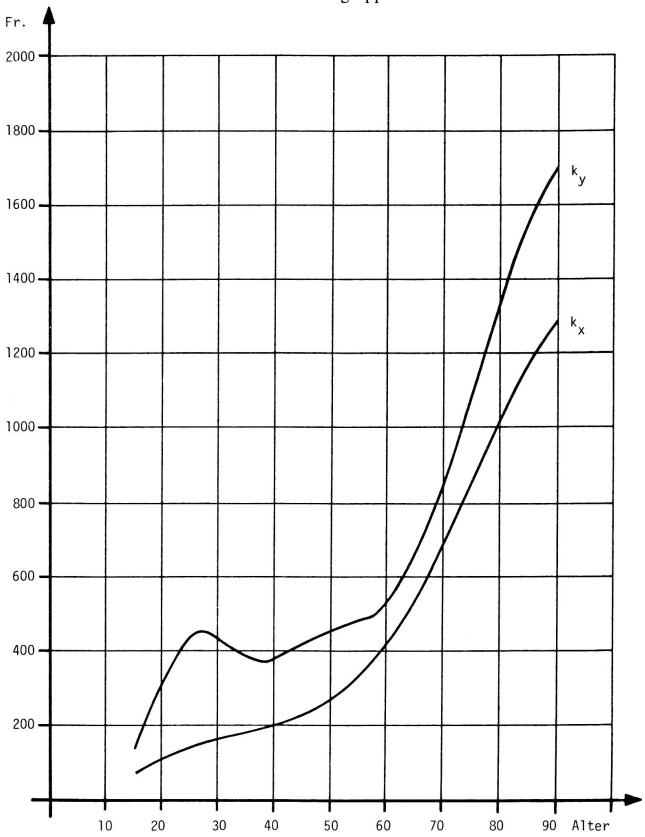
```
181
```

```
6272.6
                                 6385.2
                                         6221.4
45
                 6260.2
                                                 5464.1
                                                         4067.8 1267.1
46
                 6406.5
                        6384.0
                                 6415.0
                                         6143.6
                                                 5274.3
                                                         3707.6
47
                 6541.2
                        6478.5
                                 6422.9
                                         6042.0
                                                 5057.4
                                                         3280.2
48
                 6662.9
                        6554.8
                                 6407.8
                                         5916.0
                                                 4810.2
                                                         2762.5
49
                        6612.0
                 6770.7
                                6369.9
                                         5765.6
                                                 4527.8
                                                         2119.8
50
                 6863.3
                        6649.8
                                 6309.6
                                         5591.0
                                                 4203.3
                                                         1298.5
51
                 6938.9
                        6667.3
                                 6226.7
                                         5391.9
                                                 3826.1
52
                        6662.8
                 6996.1
                                 6120.1
                                         5165.8
                                                 3380.2
53
                 7034.3
                        6635.6
                                 5989.2
                                         4909.5
                                                 2841.7
54
                 7053.2
                        6585.6
                                 5834.0
                                         4617.9
                                                 2174.4
55
                 7051.8
                        6513.4
                                 5654.7
                                         4283.8
                                                 1322.9
56
                 7028.6
                        6418.8
                                 5450.9
                                         3896.5
57
                 6982.8
                        6300.7
                                 5220.3
                                         3439.7
58
                        6158.5
                                 4959.3
                 6914.3
                                         2888.7
59
                 6823.9
                        5992.1
                                 4663.1 2206.9
60
                6711.5
                        5801.9
                                4324.2 1337.4
61
                 6575.9
                        5587.4
                                 3931.9
62
                 6416.4
                        5346.1
                                 3469.5
63
                 6233.1
                        5074.5
                                2912.4
64
                 6026.2
                        4767.5
                                2223.2
65
                 5795.3
                        4417.5
                                 1344.7
66
                 5537.8
                        4013.5
67
                 5250.1
                        3538.5
68
                 4926.7
                        2967.0
69
                 4559.8
                        2260.9
70
                 4138.0
                        1361.5
71
                 3643.6
72
                 3050.2
73
                 2318.3
74
                 1387.1
```

 $Morbidit \"{a}ts statistik~KKB~1974$ Nettodeckungskapital $_tU_y$ der Krankenpflegeversicherung

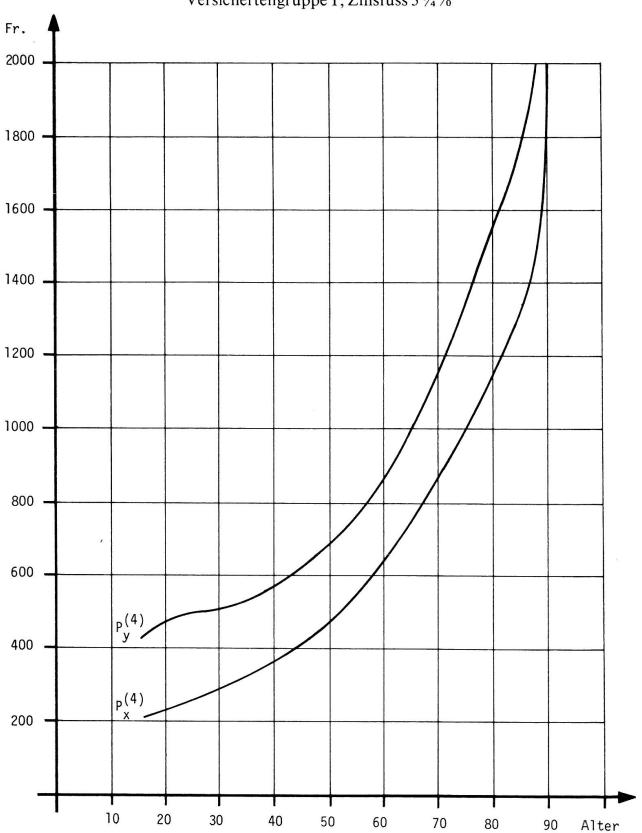
Frauen; Versichertengruppe I; Sterbetafel SF 1968/73; Zinsfuss 4%

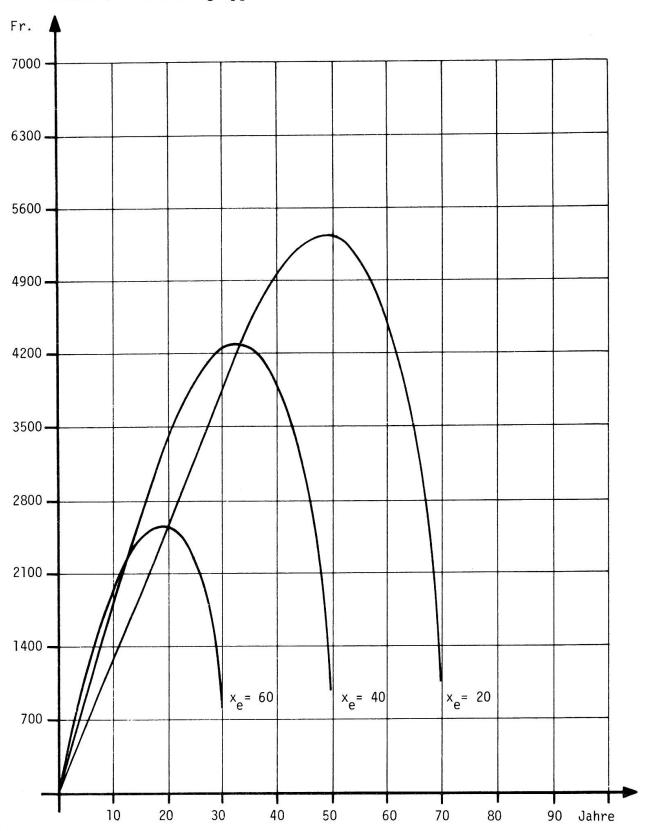

	Ein- tritts-										-		- 0	
t \	alter	16	20	25	30	35	40	45	50	55	60	65	70	75
Dauer \	\\ Ye													
der														
Vers.														
01		276.9	185.9	47.5	58.7	133.2	179.3	198.0	219.8	262.3	323.3	336.1	319.3	273.6
02		541.4	336.8	84.4	132.0	276.0	361.6	396.4	442.1	530.1	643.3	658.6	616.8	519.2
03		784.3	453.7	118.0	220.6	426.7	545.2	595.3	667.4	803.5	956.0	965.7	891.0	736.0
04		998.5	540.3	154.7	324.2	584.7	729.6	794.8	896.3	1082.6	1259.8	1255.7	1140.7	923.7
01		770.5	5 10.5	10	022		,_,,	1 7 105	15.53 5.15					
05		1179.4	602.0	199.7	441.4	749.7	914.3	995.5	1129.2	1367.1	1552.9	1526.9	1364.9	1082.0
06		1325.2	645.7	256.9	570.3	920.1	1099.1	1197.7	1366.5	1652.0	1833.6	1778.0	1562.9	1210.9
07		1436.8	678.7	328.6	708.8	1093.3	1284.0	1401.9	1608.7	1932.8	2100.2	2007.4	1733.7	1310.1
08		1517.8	708.3	415.5	855.1	1267.6	1468.9	1608.6	1855.8	2205.5	2350.7	2213.6	1876.7	1379.2
09		1573.7	740.8	517.4	1008.4	1442.4	1654.2	1818.3	2108.0	2468.6	2583.9	2395.8	1991.6	1417.5
0)		13/3.7	710.0	517.1	1000.1	1	100 1.2	1010.2	2100.0	_ ,				
10		1611.4	781.5	632.9	1168.6	1617.2	1840.3	2031.7	2365.0	2720.6	2798.3	2553.3	2078.2	1423.7
11		1638.2	834.2	760.0	1334.1	1791.9	2027.4	2249.1	2621.9	2959.7	2992.6	2685.4	2136.3	1395.5
12		1661.2	901.2	896.6	1502.2	1966.3	2216.2	2470.7	2874.1	3184.1	3165.2	2791.1	2165.3	1329.3
13		1687.0	983.4	1040.9	1671.3	2140.6	2407.2	2696.8	3117.6	3392.2	3314.8	2869.9	2163.9	1219.1
14		1720.7	1080.3	1192.2	1840.8	2314.9	2600.7	2927.5	3351.1	3582.6	3440.8	2921.4	2130.6	1055.3
15		1766.2	1190.7	1350.3	2010.1	2489.7	2797.5	3162.7	3572.9	3754.2	3542.7	2945.5	2062.6	822.6
16		1825.7	1312.4	1513.7	2179.1	2665.4	2997.9	3397.2	3781.6	3905.8	3619.9	2942.0	1955.9	
17		1900.2	1443.5	1679.7	2347.7	2842.3	3202.2	3626.4	3975.3	4035.8	3671.5	2909.8	1803.7	
18		1989.1	1582.2	1846.5	2516.0	3021.1	3410.5	3846.7	4152.4	4142.9	3696.8	2847.1	1595.7	
19		2091.1	1727.6	2013.6	2684.2	3202.3	3622.9	4056.4	4311.6	4226.5	3695.5	2751.4	1316.0	
				And Audio secumental Dis										


20		2204.3	1879.7	2180.5	2852.7	3386.3	3839.5	4254.2	4452.0	4286.6	3667.6	2619.0	939.5
21		2326.5	2036.9	2347.1	3021.9	3573.7	4055.0	4438.6	4572.5	4322.7	3612.9	2443.8	, , , , ,
22		2456.0	2196.4	2513.1	3192.2	3764.6	4264.9	4607.7	4671.3	4333.5	3529.7	2216.7	
23		.2592.0	2356.7	2678.8	3364.3	3959.2	4465.3	4760.0	4747.3	4318.6	3415.9	1923.6	
24		2734.4	2517.0	2844.4	3538.5	4157.6	4654.9	4894.3	4800.1	4277.6	3268.4	1543.0	
		2751.1	2317.0	2044.4	3336.3	4137.0	4034.9	4074.3	4000.1	4277.0	3206.4	1343.0	
25		2881.5	2677.0	3010.2	3715.4	4359.8	4832.3	5009.8	4829.7	4210.6	3082.2	1041.3	
26		3030.7	2836.3	3176.6	3895.5	4560.7	4996.1	5105.3	4835.7	4117.3	2850.0		
27		3180.3	2995.1	3344.0	4078.9	4755.7	5144.4	5179.2	4816.8	3995.8	2560.6		
28		3329.7	3153.2	3513.1	4265.8	4940.9	5275.6	5230.5	4772.5	3843.7	2196.6		
29		3478.4	3311.0	3684.3	4456.4	5115.0	5388.7	5258.6	4702.5	3657.1	1732.0		
				17 7 7 13.50		0110.0	0000.7	3230.0	1702.5	3037.1	1752.0		
30		3626.2	3468.9	3858.2	4650.6	5276.8	5483.1	5263.8	4607.0	3430.4	1126.0		
31		3773.1	3627.1	4035.1	4843.4	5424.7	5557.5	5245.7	4485.5	3155.5			
32		3919.1	3786.2	4215.2	5030.0	5557.0	5610.3	5203.0	4336.1	2819.1			
33		4064.4	3946.7	4398.9	5206.7	5672.0	5640.4	5135.3	4155.9	2401.9			
34		4209.4	4109.2	4586.0	5372.2	5768.9	5647.6	5042.1	3940.8	1874.1			
								00.2.1	55 10.0	1074.1			
35		4354.5	4274.0	4776.8	5525.2	5847.0	5632.1	4923.8	3684.7	1189.8			
36		4500.1	4441.7	4966.0	5664.3	5905.1	5593.6	4779.8	3378.4	1107.0			
37		4646.8	4612.4	5149.0	5787.5	5941.6	5530.8	4608.0	3007.9				
38		4795.0	4786.4	5322.1	5893.6	5955.6	5443.1	4405.4	2551.8				
39		4945.3	4963.7	5483.8	5981.3	5946.7	5330.3	4167.6	1977.9				
						0, 10.7	5550.5	1107.0	17/1.7				
40		5098.1	5144.3	5633.0	6050.3	5915.3	5192.6	3887.9	1236.3				
41		5253.6	5323.2	5768.2	6099.4	5861.1	5029.5	3556.7					
42		5412.0	5495.7	5887.6	6126.8	5782.8	4838.8	3158.7					
43		5573.3	5658.0	5989.7	6131.7	5679.8	4617.2	2671.5					
44		5737.6	5808.7	6073.5	6113.9	5551.9	4360.0	2060.8					
45	36	5899.8	5946.9	6138.5	6073.6	5399.3	4060.3	1273.5					
46		6055.3	6070.9	6183.6	6010.6	5221.5	3707.9						
47		6200.2	6179.0	6207.2	5923.6	5016.2	3286.7						
48		6333.4	6269.6	6208.2	5812.0	4780.0	2773.2						
49		6453.6	6342.0	6186.4	5675.7	4508.0	2131.1						

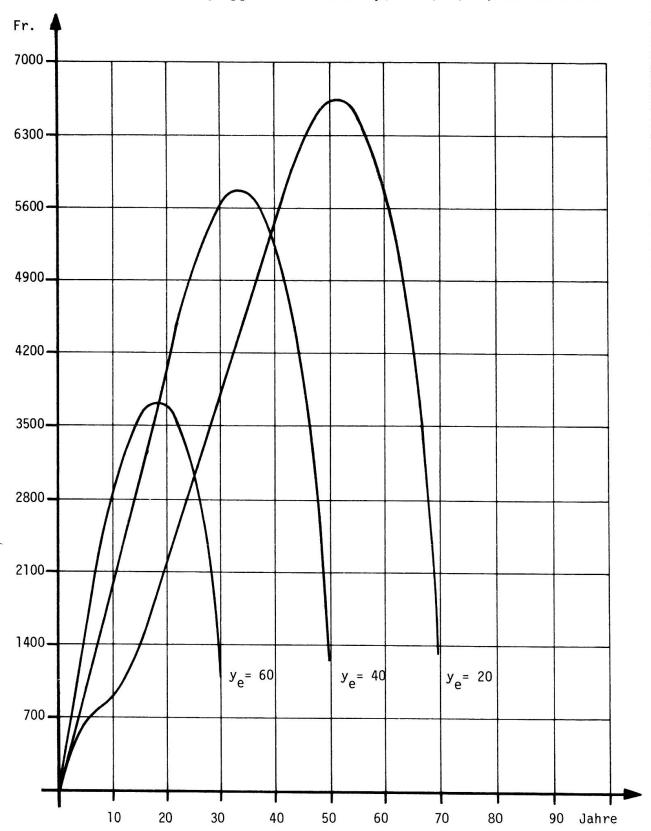
- 6			
-	-	•	
٠,	•	•	

	Ein- tritts-													
t	alter	16	20	25	30	35	40	45	50	55	60	65	70	7
Dauer	\ Ye													
der														
Vers.									************					
50		6559.6	6395.5	6142.2	5514.8	4192.9	1305.0							
51		6649.4	6429.2	6075.4	5328.8	3824.1								
52		6721.6	6441.2	5984.7	5115.4	3385.2								
53		6775.4	6430.8	5869.4	4871.0	2851.3								
54		6810.4	6397.6	5729.4	4590.7	2185.2								
55		6825.5	6342.2	5564.9	4267.0	1329.3								
56		6819.0	6264.3	5375.4	3889.1									
57		6790.1	6162.7	5158.4	3440.2									
58		6738.6	6036.6	4910.5	2895.0									
59		6665.1	5885.9	4626.5	2215.5									
60		6569.3	5710.9	4299.1	1342.8									
61		6450.0	5511.0	3917.3										
62		6306.4	5283.7	3464.0										
63		6138.5	5025.5	2913.9										
64		5946.6	4731.0	2228.6										
65		5729.9	4392.8	1348.7										
66		5486.0	3999.4	1005 10 50 10										
67		5211.1	3533.5											
68		4899.7	2969.1										*	
69		4543.9	2266.8											
70		4132.0	1365.8											
71		3645.7												
72		3058.2		v										
73		2328.5												
74		1393.5												


 $Morbidit \"{a}ts statistik\ KKB\ 1974$ Krankenordnungen k_x und k_y der Krankenpflegeversicherung


Morbiditätsstatistik KKB 1974 Nettoprämien $P_x^{(4)}$ und $P_y^{(4)}$ der Krankenpflegeversicherung

Versichertengruppe I; Zinsfuss 3 1/4 %


$Morbidit \"{a}ts statistik~KKB~1974$ Nettodeckungskapital $_tU_x$ der Krankenpflegeversicherung

Männer; Versichertengruppe I; Eintrittsalter $x_e = 20, 40, 60$; Zinsfuss $3\frac{1}{4}\%$

$Morbidit \"{a}ts statistik~KKB~1974$ Nettodeckungskapital $_tU_y$ der Krankenpflegeversicherung

Frauen; Versichertengruppe I; Eintrittsalter $y_e = 20, 40, 60$; Zinsfuss $3 \frac{1}{4} \frac{9}{0}$

Literaturverzeichnis

- Ammeter H.: Wahrscheinlichkeitstheoretische Kriterien für die Beurteilung der Güte der Ausgleichung einer Sterbetafel. MVM Band 52, Heft 1, 1952.
- Draper N. R./Smith H.: Applied Regression Analysis. John Wiley & Sons, Inc. 1966; S. 71–72 Partial F-Tests; S. 86–100 The Examination of Residuals; S. 150–158 Orthogonal Polynomials.
- Durbin J./Watson G. S.: Testing for Serial Correlation in Least Squares Regression. Biometrika 37, 1950; Biometrika 38, 1951.
- Grieshaber H.: Beiträge zur kontinuierlichen Methode in der Krankenversicherung. MVM Heft 14, 1919.
- Grossen H.: Regression mit orthogonalen Polynomen. Dissertation, 1948.
- Hüsser R.: Orthogonale Polynome mehrerer Veränderlichen und ihre Anwendung in der ein- und zweidimensionalen Ausgleichsrechnung. MVM Band 57, Heft 1, 1957.
- Jester E.: Grundzahlen der Krankenversicherung. MVM Heft 9, 1914.
- Kreis H.: Über die Orthogonalpolynome. MVM Band 53, Heft 1, 1953.
- Nolfi P.: Zürcher Morbiditäts-Statistik 1938. Statistik der Stadt Zürich, Heft 55, 1948.
- Öffentliche Krankenkasse Basel: Morbiditäts-Statistik 1936. Basel 1942.
- Öffentliche Krankenkasse Basel: Morbiditäts-Statistik 1948. Basel 1957.
- Riedwyl H.: Einführung in die angewandte Statistik. Skriptum zur gleichnamigen Vorlesung.
- Robert J.-P.: Bases techniques des assurances en cas d'hospitalisations. MVM Band 53, Heft 2, 1953.
- Saxer W.: Versicherungsmathematik 2. Teil. Springer-Verlag, 1958; S. 149–197 Ausgleichung von Sterbetafeln.
- Tschanz J.-P.: Fréquence, durée et coût des hospitalisations en chambre commune dans le canton de Neuchâtel. MVM Band 69, Heft 2, 1969.
- Walther F.: Eine Morbiditätstafel für die Krankenpflegeversicherung. MVM Heft 35, 1938.
- Walther F.: Neue Morbiditätstafeln für die Krankengeldversicherung. Festschrift «75 Jahre Krankenkasse für den Kanton Bern», 1945.
- Walther F./Steiger J.: Eine Morbiditätstafel für Ausgesteuerte. Jubiläumsschrift «100 Jahre Krankenkasse für den Kanton Bern», 1970.
- Wegmüller W./Hüsser R.: Einsatz elektronischer Rechenautomaten für die Ausgleichung mit orthogonalen Polynomen. MVM Band 60, Heft 1, 1960.
- Wolff K. H.: Versicherungsmathematik. Springer-Verlag, 1970; S. 26–38 Ausgleichung von rohen Sterbenswahrscheinlichkeiten; S. 153–189 Krankenversicherung.

Dr. Heinz Schmid Direktor der Krankenkasse für den Kanton Bern Oberholzweg 17 3067 Boll

Jean-Pierre Volkmer Lic. phil. nat. Sektionschef Personalvers. SBB Wagnerstrasse 25 3007 Bern

Zusammenfassung

Seit einigen Jahrzehnten sind keine Morbiditätstafeln für die Krankenversicherung publiziert worden. In der vorliegenden Arbeit werden die theoretischen Grundlagen und auch die EDV-gerechten Lösungswege für die praktische Berechnung der auf einem konkreten Beobachtungsmaterial basierenden Krankenordnungen für die Krankenpflege-, Krankengeld- und Spitalzusatzversicherungen dargestellt. Der Risikobestand und die Krankenpflegekosten 1974 der KKB (Krankenkasse für den Kanton Bern) bilden die Grundlage für die Morbiditätsstatistik KKB 1974. Die ausgewählten Tabellen und Graphiken enthalten neben den Grundzahlen auch die Nettowerte der Prämien und Deckungskapitalien. Diese Untersuchungen können als mathematisches Fundament der heutigen sozialen Krankenversicherung herangezogen werden.

Résumé

Depuis des décennies, aucune table de morbidité adaptée à l'assurance-maladie n'a été publiée. Le présent ouvrage démontre les éléments de base théoriques ainsi que les modes d'acheminement conformes au traitement électronique des données pour la détermination pratique des valeurs actuarielles, basées sur un matériel d'observation concret englobant les assurances des soins médicaux et pharmaceutiques, d'indemnité journalière et les assurances complémentaires d'hospitalisation. L'effectif du risque et les frais des soins médicaux et pharmaceutiques 1974 de la KKB (Caisse-maladie pour le canton de Berne) constituent la base de la «Statistique de morbidité KKB 1974». Les tableaux et graphiques sélectionnés contiennent, en plus des unités de base, également les valeurs effectives des cotisations et des réserves. Ces travaux scientifiques peuvent être mis à contribution comme base mathématique de l'assurance-maladie sociale actuelle.

Riassunto

Tavole della morbosità per l'assicurazione malattia non sono più state pubblicate da alcuni decenni. Nello studio presente sono esaminati i principi teorici nonchè le soluzioni pratiche adatte all'ordinatore elettronico sulla base di materiale d'osservazione concreto. L'analisi si estende alle cure medico-farmaceutiche, all'indennità giornaliera nonchè all'assicurazione complementare per trattamento spedaliero. L'effettivo del rischio degli assicurati e i costi per le cure medico-farmaceutiche della Cassa malati del canton Berna (KKB) costituiscono le basi di calcolo per la statistica della morbosità KKB 1974. Oltre i dati essenziali, le tabelle e i grafici contengono pure informazioni sui valori netti dei premi e dei capitali di copertura. La presente indagine può essere considerata come il fondamento matematico dell'attuale assicurazione malattia.

Summary

Since some decennials, no morbidity tables have been published. The present work shows the theoretical bases and the way of solutions based on EDP in order to calculate in a practical way the mathematical statements concerning medical services, salary insurance and complementary insurances in case of sojourns in a hospital.

The effectifs of risks and the cost of medical services for 1974 of the insurance Association KKB (Krankenkasse für den Kanton Bern) are the base on which the statistic of morbidity 1974 of the KKB has been calculated.

The choosen tables and statistics show not only the base-figures but also the clear value of the shares and the guarantee capital. This study can be used as a mathematical base for the actual social health insurance.