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Claims Mortality and the Existence of Moments
of the Claim Size Distribution

By H.Bühlmann and G.C.Taylor

Abstract

It has been conjectured by Benktander that the condition

lim x /r (x) oo ;
A—»OO

where ^ (x) is the mortality of a claim size distribution, is sufficient to ensure
the existence of all moments of this distribution.
This suggestions is examined, and it is shown that a necessary and sufficient
condition /or existence 0/ a// moments is:

j /r(f)dt
0

>00 as x —> 00.
logx

This result is then used to examine the

large x on the existence of moments. In
shown to be sufficient but not necessary.

effect of the behaviour of x/r(x) for
particular Benktander's condition is

1. Introduction and Notation

As the present paper deals with the problem of existence of moments of a

distribution (of a random variable of one real dimension), only distributions
of infinite range need to be considered. Moreover, distributions whose range
is infinite in both directions can be treated by decomposition. Thus, we need

only here consider distributions on (0, 00). For such the following definition
makes sense:

Consider a claim size distribution with p.d.f. and d.f./f) and F(-) respectively.
Define

/f(x) 1 — F(x)
and

/t(x) =/(x)/H(x).
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It follows easily from this definition that:

and so H(x) exp [- J ju(r) df]. (1)
0

The function /i(x), well known as intensity of mortality in life assurance, is here
called claims morfa/ify at size x, as introduced by Benktander and Segerdahl
(1960) and later studied by Benktander (1963, 1970). In the 1970 paper, Benk-
tander deals with two particular classes of distribution and shows (p. 274) that
the condition:

is sufficient to ensure the existence of all moments. He has conjectured pri-
vately that this result holds for more general classes of distribution.

We shall find it helpful to consider here some properties of the Pareto distri-
bution. The density function of such a distribution is

lim xji(x) oo. (2)

2. The Pareto Distribution

/(A I VC X X>c.
This leads to

/i(x) a/x,

whence (3)

Another fact that we know concerning the Pareto distribution is that all
moments up to and including that of order [a] exists, where [•] denotes

"greatest integer strictly less than". (Note: not as usual less than or equal!)
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3. Statement and Proof of the Result

Lemma. Let F, G be two d.f.'s (with infinite range) and let /.<, /ig be the as-

sociated claims mortalitites. Suppose that

(a) j x" dF(x)<oo;
0

and there exists xo>0 and a constant C, such that:

£ X

(h) C + J ^c(t)dt > [ for all x>xo.
*0 *0

oo

Then Jx"dG(x) <oo.
0

Froof By integration by parts

oo oo

J X» <ZF(x) - X» [1 - F(x)] I + n J x»-i [1 - F(x)] dx, (4)
0

' 0

provided that all quantities on the right exist. Now, by hypothesis (a) the inte-
gral on the left exists, implying that

Jx"dF(x)->0 as TV —> OO.
yV

Thus, lim TV" [1 -F(iV)] < lim f x" dF(x) 0
iV —>oo N-»oo

/V

oo oo

and it follows J" x" dF(x) n J x"~* [1 — F(x)] c/x
0 0

OO X

n j x"-i exp [— J /^(Odfjdx
0 0

"[ J + |]x"-iexp[- j /^(f)df]Jx (5)
0 0

a:

<xg + nexp[-jj x"-i exp [- [^.(t)df]dx.
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Without the first term xg, the right hand side is also a lower bound for

j x"dF(x). It is then easily seen that
0

OO oo J
J' x"dF(x)<oo «s>j exp [ — J dx<oo. (6)

The lemma follows directly from (6) and (5) consecutively applied to F and G.
Coro//ary. Suppose that

(n) j x"x/F(x)<oo ;

0

and there exists xo>0 such that:

(fr) FgM > for all x>xo.

Then Jx"dG(x) < OO.
0

Tfieorem. All moments associated with a d. f. G exist if and only if

J'

—— > oo as x —» oo.
logx

Prou/ // Let n be an arbitrary positive integer. By hypothesis, there exists
xo > 0 such that

£

J >(« + 1) log x for all x>xo. (7)
0

« j; 1

Hence + f Fg(0^ >(« + 1) J-dt for all x>xo > 1. (8)
0 *o Zo

*

As the right hand side is the integral of the Pareto intensity with a n + 1,
the moments up to and including order n exist by virtue of the lemma.
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On/y (/ Suppose that

J /ic(î)(/t
0

7->oo. (9)
logx

Then there exists X and an unbounded increasing sequence yi, >'2, etc. such

that

J^c(t)dt<Xlogyi, 1,2, etc. (10)
0

Therefore,

y?[l -G(yd] y"exp[ — J/(c(t)dt]
0

(by 10).

Thus for n>/C, x [1 — G(x)] does not converge to zero for x->oo.
Since existence of the n-th moment implies x" [1 — G(À)]->0 as x->oo not all
moments do exist.

4. The conjecture of Benktander

We are now in a position to return to Benktander's conjecture mentioned in
Section 1. Let us examine the effect of the limiting behaviour of x^(x) on the
existence of the moments of the distribution. We distinguish three cases:

Case / lim x/r(x) 00.
X—>00

Case // lim x^(x) does not exist.
X—>00

Case/// lim x/r(x) a<00.
X—»CO

In Case I, for arbitrarily large /C, we can find xo such that

/r (x) > K/x for x > xo.

Existence of moments follow from the corollary with /q? (x) —.
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In Case III, we can use precisely similar methods to show that not all moments
exist.
Case II is inconclusive as far as the existence of moments is concerned. This
is easily seen as follows.
Consider a mortality /</••, (a) satisfying Case 1. Now construct a new mortality

defined by:

Then comes under Case II, but T" i (a) Gi(x) so that all moments of

G] exist.

Now consider satisfying Case III, and construct a new mortality /(«.,(*)

from /</.',(x) in the same way as was constructed from ///.. (x). Then

/!(v,(x) comes under Case II, but /Tlx) Go(x) so that not all moments of

G2 exist.

We thus have constructed two mortality functions which are included under
Case II, one of which has all moments existing and the other of which does

not.

We can conclude as follows:

Case / All moments exist.

Case // Inconclusive. Perhaps all moments exist, perhaps some, perhaps
none.

Case /// Moments higher than some finite order do not exist.

In particular, we note from Cases I and II that condition (2), suggested by
Benktander, is sufficient but not necessary for the existence of all moments.

The second author acknowledges the use of facilities of the Swiss Reinsurance
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/</.•, (x), x non-integral ;

0, x integral.
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Zusammenfassung

Die Autoren beweisen einen interessanten Zusammenhang zwischen dem asymptotischen Verhal-
ten der Schadensterblichkeit und der Existenz aller Momente der Schadenverteilung.

Résumé

Les auteurs démontrent une relation intéressante entre la conduite asymptotique de la mortalité
des sinistres et l'existence des moments de la loi de répartition des sinistres.

Riassunto

Gli autori dimostrano una relazione molto interessante fra il comportamento asintotico délia
mortalità dei sinistri e l'esistenza dei momenti délia distribuzione delle probabilità.

Summary

The authors prove an interesting connection between the asymptotic behaviour of the claims
mortality and the existence of all moments of the claims distribution.
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