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Claims Mortality and the Existence of Moments
of the Claim Size Distribution

By H.Biihlmann and G.C. Taylor

Abstract
It has been conjectured by Benktander that the condition

lim xu(x) = oo,

X—o0
where pu (x) 1s the mortality of a claim size distribution, is sufficient to ensure
the existence of all moments of this distribution.
This suggestions is examined, and it is shown that a necessary and sufficient
condition for existence of all moments 1s:

J u(t)de
0

—————>00 as X—oo.
log x

This result is then used to examine the effect of the behaviour of x u(x) for

large x on the existence of moments. In particular Benktander’s condition is

shown to be sufficient but not necessary.

1. Introduction and Notation

As the present paper deals with the problem of existence of moments of a
distribution (of a random variable of one real dimension), only distributions
of infinite range need to be considered. Moreover, distributions whose range
is infinite in both directions can be treated by decomposition. Thus, we need
only here consider distributions on (0, co). For such the following definition
makes sense:

Consider a claim size distribution with p.d.f. and d.f. f(-) and F () respectively.
Define

and

ux) = f(x)/H(x).
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It follows easily from this definition that:

dH
].l(x) = _d_/H(x)y
X
and so }ﬂﬂ==ﬁp[—fymdﬂ. (1)
0

The function yu(x), well known as intensity of mortality in life assurance, is here
called claims mortality at size x, as introduced by Benktander and Segerdahl
(1960) and later studied by Benktander (1963, 1970). In the 1970 paper, Benk-

tander deals with two particular classes of distribution and shows (p.274) that
the condition:

lim x p(x) = oo, (2)

1s sufficient to ensure the existence of all moments. He has conjectured pri-
vately that this result holds for more general classes of distribution.

2. The Pareto Distribution

We shall find it helpful to consider here some properties of the Pareto distri-
bution. The density function of such a distribution is

f(x) =acrx ), x>c.

This leads to
N\
H(x) = (—) . - s
c
u(x) =a/x,
T T X
whence [ u(tydt = | a/tdt = alog (—) (3)
0 c ¢

Another fact that we know concerning the Pareto distribution is that all
moments up to and including that of order [«] exists, where [-] denotes
“greatest integer strictly less than”. (Note: not as usual less than or equal!)



iy

3. Statement and Proof of the Result

Lemma. Let F, G be two d.f’s (with infinite range) and let pz, us be the as-
sociated claims mortalitites. Suppose that

(a) Tx” dF (x)<oo;
0

and there exists xo>0 and a constant C, such that:

z x
b) C+ [ pe(t)dt> | up(t)de forall x> x.

Then [ x7dG(x)<oo.
0

Proof. By integration by parts

o0

jx" dF(x) = —x"[1—F(x)] ‘;:o + nafx"—1 [1—-F(x)]dx, 4)
0

0

provided that all quantities on the right exist. Now, by hypothesis (a) the inte-
gral on the left exists, implying that

Jx“dF(x)—+O as N -oo.
-

Thus, Nlim N2[1-F(N)] < b}!im [xrdF(x)=0
—>0oQ — 00 N
and it follows [xndF(x)=n [ x71[1 = F(x)]dx
0 0

= R

xntexp = | ue(t)di]dx
0

O’-ﬂg

0

di

Ot &

+ TJX’“ exp [ — [ pr(t)di Jdx (5)
Ty 0

< x8+nexp[— jn,up(t)dt]-ofx”*l exp[— f,up(t)dt]dx.
0

z, z,
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Without the first term x7%, the right hand side is also a lower bound for

| x"dF(x). It is then easily seen that
0

[ x"dF (x) <00 <= [ xm1 exp [ | ur(0)dt ] dx <oo. (6)
0 Zo Zo

The lemma follows directly from (6) and (5) consecutively applied to F and G.
Corollary. Suppose that

(a) }Qx"dF(x)<oo;
0

and there exists x>0 such that:

(b) pe(x)>up(x) forall x> x,.

oo

Then [ x7dG(x) < oo.
0

Theorem. All moments associated with a d.f. G exist if and only if
T
| uelt)de
. —o00 as X—oo.

log x

Proof. If. Let n be an arbitrary positive integer. By hypothesis, there exists
x>0 such that

[ ne()dt>(m+1)log x forall x> xo. (7)
0
IO T 171
Hence Juc@)dt + [pc(t)ydt=(n+1) j';dt forall x>xp>1. (8)
0 Ty z

As the right hand side is the integral of the Pareto intensity with o = n+ 1,
the moments up to and including order n exist by virtue of the lemma.



79

Only if. Suppose that

[ ul)de
0~T—+>oo. 9)
og x

Then there exists K and an unbounded increasing sequence y;, ys, etc. such
that

Yy

[ue(ydt<Klogy, i=1,2,etc. (10)
0

Therefore,

Y,
y?[l - G(Vz‘)] = 3 exp[— j',u(,v(t)dt]
0

> yry;%  (by 10).

Thus for n> K, x™ [1 — G(x)] does not converge to zero for x—oco.
Since existence of the n-th moment implies x” [1 — G(4)]—0 as x— oo not all
moments do exist.

4. The conjecture of Benktander

We are now in a position to return to Benktander’s conjecture mentioned in
Section 1. Let us examine the effect of the limiting behaviour of xx(x) on the
existence of the moments of the distribution. We distinguish three cases:

Case I lim xpu(x) = oco.

X—=0c0

Case Il lim xu(x) does not exist.

X—=0c0o

Case I1I  lim xpu(x) = a <oo.

X—oo
In Case I, for arbitrarily large K, we can find x, such that

u(x)>K/x for x> xp.

K
Existence of moments follow from the corollary with uzp(x) = —.
x
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In Case III, we can use precisely similar methods to show that not all moments
exist:

Case IT 1s inconclusive as far as the existence of moments is concerned. This
is easily seen as follows.

Consider a mortality p (x) satisfying Case I. Now construct a new mortality
pte, (x), defined by:

[ ft, (x), x non-integral;
H(;l(x) = l

0, X integral.

Then p, (x) comes under Case II, but Fy(x)= G,(x) so that all moments of
G exist.
Now consider pp,(x) satisfying Case III, and construct a new mortality ug,(x)
from pp,(x) in the same way as ug,(x) was constructed from pp (x). Then
K, (x) comes under Case 11, but Fa(x) = Gza(x) so that not all moments of
G exist.

We thus have constructed two mortality functions which are included under

Case II, one of which has all moments existing and the other of which does
not.

We can conclude as follows:
Case I All moments exist.

Case II  Inconclusive. Perhaps all moments exist, perhaps some, perhaps
none.

Case 111 Moments higher than some finite order do not exist.

In particular, we note from Cases I and II that condition (2), suggested by
Benktander, is sufficient but not necessary for the existence of all moments.
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Zusammenfassung

Die Autoren beweisen einen interessanten Zusammenhang zwischen dem asymptotischen Verhal-
ten der Schadensterblichkeit und der Existenz aller Momente der Schadenverteilung.

Résumé

Les auteurs démontrent une relation intéressante entre la conduite asymptotique de la mortalité
des sinistres et I’existence des moments de la loi de répartition des sinistres.

Riassunto

Gli autori dimostrano una relazione molto interessante fra il comportamento asintotico della
mortalita dei sinistri e I'esistenza dei momenti della distribuzione delle probabilita.

Summary

The authors prove an interesting connection between the asymptotic behaviour of the claims
mortality and the existence of all moments of the claims distribution.
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