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Grenzwertsätze für
Warteschlangen, Dämme und Risikotheorie

Von Kaspar Hösli

1. Einfuhrung

Für die vorliegende Zusammenfassung meiner Diplomarbeit (1973 bei Prof.
Bühlmann) sind folgende Probleme wegleitend :

/. Das fFur/eproWem

Wir stellen uns vor, dass an einem einzigen Bedienungsschalter Kunden erschei-

nen und eine gewisse Bedienungszeit beanspruchen. Ist der Schalter frei, dann
wird der Kunde sogleich bedient, ist der Schalter besetzt, so bleibt dem Kun-
den nichts anderes übrig, als anzustehen und zu warten. Wir können uns da-
bei fragen, wie gross die Wartezeiten der Kunden werden, wie lange die Warte-
schlänge wird, oder auch, mit welcher Wahrscheinlichkeit der Schalter an einem
bestimmten Zeitpunkt frei ist.

2. Das Damm/?roè/em

Wir stellen uns ein Wasserreservoir vor, das von zufälligen Regenfällen gespie-
sen wird und aus dem gleichmässig Wasser abfliesst, solange das Reservoir nicht
leer ist. Wir können annehmen, dass das Reservoir beliebig viel Wasser fasst,
oder aber auch, dass die Kapazität des Reservoirs endlich ist und dass, wie bei
einem Staudamm, Wasser überfliesst, wenn die Kapazität überschritten wird.
Hier können wir uns für den Verlauf des Reservoirinhalts interessieren, insbe-
sondere etwa für die Wahrscheinlichkeit, dass das Reservoir in einem bestimm-
ten Zeitpunkt zum erstenmal leer wird.

3. Das R/.sz/coproWmi

Wir denken an eine Versicherungsgesellschaft, wo ein Reservefonds durch Prä-

mieneinnahmen gleichmässig geäufnet wird. Diese Reserven verringern sich
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durch Vergütungen an Versicherungsnehmer, bei denen Schadenfälle aufgetre-
ten sind. Hier möchten wir den Verlauf der Reserven kennen oder auch die

Wahrscheinlichkeit eines Ruins der Gesellschaft.

Von den drei Problemkreisen stellte sich der dritte am frühesten. In den ersten

Jahrzehnten dieses Jahrhunderts befasste sich F. Lundbergmit diesen Versiehe-

rungsfragen; weiterführende Resultate erreichte H.Cramér in den dreissiger
Jahren.

Mit dem Problem der Wartezeiten befasste sich als erster A. K. Erlang im Zu-

sammenhang mit Gesprächsübertragungen in der Telefonie. Die mathemati-
sehen Untersuchungen machten später Fortschritte, in den dreissiger Jahren

durch Arbeiten von F. Pollaczek, A.N. Kolmogorov und A.Y. Khintchine. In

den letzten Jahren befasste man sich sehr ausführlich mit dem Problem der

Wartezeiten, nicht nur in der Theorie, sondern auch in vielen Anwendungs-
gebieten, in der Technik (Telefonie, Computer), in der Industrie (Produktions-
linien, Lagerhaltung), im Transportwesen.
Das erwähnte Dammproblem tauchte erst in den fünfziger Jahren auf im Zu-

sammenhang mit der Kühlung von Atomkraftwerken (P.A.P. Moran). Heute

benutzt man diese Fragestellung auch für allgemeinere Lagerhaltungsprobleme.
Jeder der drei Problemkreise wurde anfänglich für sich untersucht, Verbindun-

gen zwischen diesen Gebieten bestanden nicht. Erst W.L.Smith (1953) und

J. Gani( 1957) wiesen aufZusammenhängezwischen Damm- und Warteproblem
hin.

2. Die mathematischen Modelle

In diesem Abschnitt legen wir die uns interessierenden Prozesse und die Nota-

tionen fest. Zudem sollen einige grundlegende Beziehungen bereitgestellt wer-

den.

2.7. Der JTarte/>roz&5'5

Um einen Überblick über den Verlauf der Wartezeiten zu erhalten, versetzen

wir uns in die Lage des Bedienenden an einem Schalter. Die Kunden bringen

Arbeit und vergrössern so den Arbeitsvorrat, den der Bedienende abbaut.
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1. Die Zwischenankunftszeiten, die Zeiten, die zwischen zwei Ankünften von
Kunden verstreichen, haben die Verteilung F(/) 1-e 0 < r < oo.z((?)
sei die Anzahl Kunden, die im Zeitintervall (0, ?] ankommen, und somit ist

«}
«

2. Die Bedienungszeiten der Kunden sind Zufallsgrössen mit der Verteilung
ß(0, 0<
T(/) sei die gesamte Zeit, die diejenigen Kunden beanspruchen, die im Zeit-
intervall (0, /] angekommen sind. Die Verteilung von V(t) v, + V2 + • • • +
v,j„), v, unabhängige Zufallsgrössen mit der Verteilung Z?(v), ist eine zusammen-
gesetzte Poissonverteilung

*(*,/) P{V(t)<.v> V (x), (1)
(i «

wobei 5„(x), »>0, die n-fache Faltung von .ß(x) mit sich selbst ist, und (%)

0 falls x< 0 und J3o(x) 1 falls x>0
1K(0) sei der Arbeitsvorrat zur Zeit 0. Für uns ist fF(0) eine nichtnegative
Zufallsgrösse.

IF(t) sei die durch den Arbeitsvorrat zur Zeit t definierte Wartezeit zur Zeit
1F(0 ist bestimmt durch

W(f) sup{V(t)-V(w)-(t-"),0 < m< /; 1K(0) + W(0-?}• (2)

Denn, falls in (0, /) « der letzte Zeitpunkt war mit 1T(m) 0, dann ist 1F(/)

T(t) - W(m) - (t - m), falls kein solches m existiert, dann ist fF(t) 1F(0)
+ V(?) - t, und in beiden Fällen gilt (2).
DaZ(t), 0 < t < .oo, ein sépara bler stochastischer Prozess ist mit stationären
und unabhängigen Zuwächsen, können wir 2f(t) - V(w) durch V(? - w) ersetzen.
Wir erhalten so eine Zufallsgrösse IT(t) sup \V(w) - m, 0 < m < / ; fF(0)
+ -V(r) - ?}, die dieselbe Verteilung hat wie FF(/) ; also

< x| 1F(0) c} P{W(m)-m<x,0 < m < /,undc + X(r)-? < x}.(3)

Die Laplace-Stieltjes Transformation (L. S. T.) von £(?) sei

W(0) jV®'d5(/),üe(ö) > 0.
0
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Die L. S. T. von X ist
OO

f [e <"'<"] j <? A (x, /) <?" " '/•'®). (4)
0

Die erwartete Bedienungszeit sei endlich : 0 < A - y (0) < x
Mit o bezeichnen wir den Durchgangsindex

Erwartete Bedienungszeit „o a _ /.A, 0 < o < x
Erwartete Zwischenankunftszeit

Für den späteren Gebrauch führen wir noch einige Bezeichnungen ein :

/(/):' Gesamte freie Zeit des Schalters im Zeitintervall [0, ?]

7(0 - inf { fF(0) + A'(w) -«,0«u«(;0>
sup (m-X(m)- fF(0), 0 $ « < i;ö}.

r(c): Erster Zeitpunkt, in dem der Schalter frei wird, wenn 1F(0) c. 7~(c)ent-

spricht der Länge der ersten Arbeitsperiode.

r(c) inf {« | f + X(m) -u«:0, 0 < w < x}
oder r(c) a falls kein solches » existiert.

ß(?): Anzahl Personen, die zur Zeit / anstehen.

7): Erster Zeitpunkt, in dem der Schalter frei wird, falls (2(0) z.

Zwischen /(?) und T(c) bestehen die folgenden beachtenswerten Beziehungen,
die sich unmittelbar aus der Deßnition herleiten lassen:

P{/(?) 0 j (F(0) c} P{r(c) > ?}

p{/(0 > A- ; hF(0) c> P{j(c + a) < ?>.

2.2. Z)er Z)amw/>rorex.y

Wir betrachten den folgenden Dammprozess:
1. Das Reservoir erhält Zufluss an zufälligen Zeitpunkten: Diese Zeitpunkte

bilden einen homogenen Poissonprozess mit Intensität /.
2. Die Zuflussmengen sind Zufallsgrössen mit der Verteilung R(f), 0 < z < co •

3. Solange das Reservoir Wasser enthält, fliesst in jeder Zeiteinheit gleich viel

Wasser ab. O.B.d.A. nehmen wir an, dass pro Zeiteinheit eine Wasserein-

heit abfliesst. Hatdas Reservoir nur ein endliches Fassungsvermögen, so fliesst

die nicht fassbare Wassermenge sofort ab.

X(?) sei die gesamte Wassermenge, dieinder Zeit(0, ?]zufliesst.Z(?) ,0 < <

bildet einen zusammengesetzten Poissonprozess mit der Verteilung (1).
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a) Damm mit unbeschränkter Kapazität

Sei tK(O) die Wassermenge zur Zeit / 0, JK(7) diejenige welche zur Zeit / im
Reservoirist. Der Verlaufdes Wasserstandes ist bestimmt durch fF(O) und 27(?),
0 <: t < co Die graphische Darstellung ergibt etwa folgendes typisches Bild :

JR(t) sup { tL(0) + A(t) - /; A(?) - A(«) - (r-u), 0 < « < r},
denn, falls im Zeitintervall (0, r] der Damm nie leer wird, dann PL(?) 1K(0)
+ 27(7) - t, falls m der letzte Zeitpunkt in (0, ] war mit leerem Damm, dann
IL(7) 27(t) - 27(w) - (/- «), und in beiden Fällen gilt die Behauptung.
7(0 : Gesamte Zeit mit leerem Damm während 0, ?].

7(0 -inf{kL(0) + 27(w)-h, 0 ^L(c): Erster Zeitpunkt in dem der Damm leer wird, falls 1K(0) c.
r(c) inf{« c + 27(m) - « < 0}.

Wir sehen, dass diese Grössen vom Zufluss 27(7), 0 < f < co in der gleichen
Weise abhängen wie im Warteprozess die Wartezeit zur Zeit /, die gesamte freie
Zeit des Schalters im Zeitintervall (0, t] und die Länge der ersten Arbeits-
période von 27(7), 0 ^ t < co der gebrachten Arbeit, abhängen.

b) Damm mit endlicher Kapazität
Die Kapazität des Dammes werde durch eine endliche positive Zahl m darge-
stellt. ?7(0) sei die gespeicherte Wassermenge zur Zeit t 0, ?7 diejenige zur
Zeit t. Der Verlauf des Wasserstandes ist abhängig von // (0), 27(t), 0 $ / < x
und der Kapazität m des Dammes. Die folgende Figur zeigt den Graphen
eines möglichen Verlaufs.
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Es ist möglich, ?7 (f) mit Hilfe von 7(0), »2 und 0 «s f < x auszudrücken.

Der folgende Satz, den wir nicht beweisen, gilt auch für allgemeinere Zu- und

Abflüsse; <5(") sei die gesamte abgeflossene Wassermenge und £(m) V(w)

- <5 («). Die Notation 4* (w) 4 - 4 (7 — 1/), 0 < n U diene als Abkürzung.

Satz

Es sei ;/ (0) w ; 4 (w), 0 ^ m ^ /, habe keine negative Sprünge und 7"* (/«-*)
inf{zz I 4* (zz) U x- 0 ^ m ^ ?} existiere für 0 A x A w, dann gilt

7/(?) < A',0 < .y < zu G C*(w) < .y für 0 < m A iE* (w-.y).

Nehmen wir an, dass (V(zz), 0 U / }und{2f(?)-V(?-w); 0 A «U ?}

dieselbe Verteilung haben und b(") G dann ist

F{t/ < ,y|// (0) w} (7/) - m <x für (K m ^ r(m - .v) und r(nz-.v) A ?}•

(5)

2.3. RA/Ao/n'o-exs

Wir interessieren uns hier für den folgenden Risikoreservenprozess :

1. Das Anfangskapital ist Z(0). Die Prämieneinnahmen fliessen gleichmässig;

o. B. d. A. nehmen wir an, dass pro Zeiteinheit eine Geldeinheit die Reserven

vergrössert.
2. Die Zahlungen der Gesellschaft erfolgen zu Zeitpunkten, die einen homo-

genen Poissonprozess mit Intensität x bilden. (Durch Einführen der operatio-
nellen Zeit kann ein nichthomogener Poissonprozess in einen homogenen

übergeführt werden.) Die Zahlungen sind Zufallsgrössen mit der Verteilung

5 0 V / < co
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Sei A die gesamte Zahlung im Zeitraum (0, ?], dann ist AU), 0 ^ / <oo, ein

zusammengesetzter Poissonprozess mit Verteilung (1). Die Reserven zur Zeit /

betragen Z(?) und sind bestimmt durch Z(r) Z(0) + - A(?).
Ein wichtiges Problem in der Risikotheorie ist, die Wahrscheinlichkeit zu be-

stimmen, dass die Reserven im Zeitintervall (0, oo) oder [0, ?] negativ werden.
7? (c) : Erster Zeitpunkt, in dem die Reserven negativ werden, falls Z (0) c

7? (c) inf {m j c + zz - A(w) < 0 für 0 ^ m < oo}

Insbesondere gilt:

R{T?(c) < ?} R (f(c + M-A(u)) < 0]
p m)> cl

J (o « u « / j

1 - (") ~ ") ^ '
I 0< « < / J

3. Grenzwertsätze

Um einen Grenzwertsatz zu gewinnen, benützen wir jeweils die Redeweise von
einem der drei Problemkreise. Nachher untersuchen wir, was dieser Satz in den

andern Problemkreisen bedeutet.

3.7. Dz'e ZrèezYsperzWe

In diesem Abschnitt wollen wir die Verteilung des Zeitpunktes, an dem der
Schalter zum erstenmal frei wird, bestimmen. Wir folgen einer Idee von Prabhu
(I960), die besonders die Poissonverteilung der Ankünfte auswertet.

3.1.1. Die Verteilung von T(x)
Wie in 2.1. definieren wir :

?Xx) inf {? [ x + A(/) - ^ 0}
IV(x) Anzahl Kunden, die im Intervall (0, r(x)] ankommen
G„(x,f) P{T(x) < ?; A(x) «}.
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f 0 / A"
Es gilt: û?Go (x, /) < (6)

(e " t x

bzw. Go (x, f) e 5o('--v), denn, falls kein neuer Kunde ankommt redu-

ziert sich die Wartezeit zur Zeit x auf 0. Für « > 1 muss während (0,x] min-
destens ein neuer Kunde kommen, sonst würde sich die Wartezeit auf 0 redu-
zieren im Zeitpunkt x < /). Der erste neue Kunde komme zur Zeit r, wobei

t die Dichte 2 e " <7t, 0 < r < x, hat. Sei v die Bedienungszeit dieses Kunden,
dann ist IK( r+ 0) x - r + v, wobei v die Verteilung Z?(v) hat. Im ver-

bleibenden Zeitraum müssen (« - 1) Kunden bedient werden, also gilt

dG„ (x /)=] / / ^ ^ ^ ' 5" * (7)

[ 0, f < x.

(6) und (7) ergeben eine Rekursionsbeziehung für G„(x,t). Durch Induktion
kann bewiesen werden :

(A/)" '

fl?G„ (x, t) <j <? " 7.x f/5„ (t - x), / < x
/; '

0, < x.

Damit erhalten wir die Verteilung der Arbeitsperiode.

G(x, /) P{r(x) < t) 2 G„(x,0
« 0

' * (At)" '

r y e /.x <//#.(- M.
: -- .v 7= 0 »

Wir haben hier einen Satz von Kendall (1957) in einem speziellen Fall bestä-

tigt:
c/G(x, 0 — nW(/-x, t).

t

Setzen wir <? für die L.S.T. von 7\x), so kann folgende Beziehung ge-

wonnen werden :

£ en.r)] ^ SA- AA/A (8)
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so dass //(0)die folgende Funktionalgleichung erfüllen muss:

V (0) 0 + 2 - A y (//). (9)

Es kann gezeigt werden, dass genau eine Lösung existiert, welche die notwen-
dige Nebenbedingung >/(x) oo erfüllt, und dass

jP{r(x) < x}= lim £[<? ®] | '-«îow ^ ^

«> - ° + [ C ß > 1

wobei % die grösste positive Wurzel von x A-A y (x) ist.

3.1.2. Die Arbeitsperiode Li
Es sei t 0 der Zeitpunkt unmittelbar vor der Schalteröffnung, und zu dieser
Zeit warten /'Kunden, also (2(0) /. JK(0) x sei die gesamte Bedienungszeit
dieser / Kunden. ZV(7() sei die Anzahl Kunden, die während der ersten Arbeits-
période bedient werden, die /' Kunden am Anfang sind dabei mitgezählt. Es gilt

/> {r, < f; A(7)) »} / r/ZJ, (x) G„_, (x, /) (10)
.v 0

/ ' (z r)" ' '

/ (x) /" e-"~ —- /.x z/ß„ (t-x)
0 («-/)!

' (Irl" ' ' *

y e"«— — /' Ix r/ß, (x) (t-x)
7 0 («—0 ' ,/=o

- /* e *
'

rfg„(r)
« r=0 («-/)!

Mit /' 1 ergibt sich

G(0 P{r, £ /} V /• e
£4 rio «!
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Als Nebenresultat sei erwähnt

n aw- i

/; R{A(R,) /?> / <? ^L- (t); « > 1

o «

Mit (8) und (10) ergibt sich die L. S.T. von T, :

R(0) £"[c J c/5(_\') c
0

wobei R(0) der Funktionalgleichung R (0) y(0 + 2- 2/) genügt.
Wir erhalten weiter

wobei { die kleinste positive Wurzel von £ y (2- 2 ist.

3.1.3. Zusammenstellung und Vergleich

In 3.1. haben wir folgende Verteilungen für die Warteschlange gewonnen unter

der Annahme, dass V(z), 0 < z < x ein zusammengesetzter Poissonprozess
sei mit nur positiven Sprüngen, die die Verteilung R(x) haben:

Wie schon erwähnt, verhalten sich die Wartezeiten wie der Wasserstand eines

Dammes mit unbeschränkter Kapazität. R(x) ist die Dauer einer Periode mit

Wasser, wenn zu Beginn die Wassermenge x im Damm war. 7) ist die Dauer

einer Periode mit Wasser.
Beachten wir, dass

so gewinnen wir die Verteilung von sup (z/ - V(uj) Dabei erinnern wir uns,

dass « - V(«), 0 < m < co unsern Risikonervenprozess charakterisiert.
Setzen wir voraus, dass die Reserven auch negativ werden können, dann ist

R{r(x) ^ z} gleich der Wahrscheinlichkeit, dass Risikoreserven im Zeitraum

[0, Z] mindestens einmal den Anfangsstand von x übersteigen, und R (7) ^ 0
die Wahrscheinlichkeit, dass sich die Reserven im Zeitintervall (t, t + z) wenig-

stens einmal vom Schaden, der sich zur Zeit t ereignete, erholt haben.

r{R(x)<z>, r{r, < z>,

r{r(x) < co) < co}.
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3.2. Fer/ei7î(«g Jer JKar/ezePe«

3.2.1. Die Wahrscheinlichkeit einer leeren Warteschlange

Sei F(x ; _y, /) P {lK(r) < j j fP(O) x), t > 0, x > 0, >> 3= max (0, x - /)•
Im besonderen ist F(x; 0, /) P{lK(7) 0 | IK(0) x}, r > x > 0, die

Wahrscheinlichkeit, einen freien Schalter zu finden.
iV(7) sei die Anzahl Kunden, die während (0, t] bedient werden.

F„(x;0,0 P{lK(0 0,A(f) « | IK(0) x}.
Es gilt P(, (x ; 0, /) <? '' für t 5: x und 0 für / < x, und für « 5= 1

/ - .V

P„(x;0, /" y Ae"F„ (x-r + v; 0, ?-t) dr <iP(v)
r 0 v 0

+ I" y 2c P P„ | (v; 0, t-r) <7t <AB(v).
T X V

Es können die gleichen Überlegungen gemacht werden wie bei (7), nur kann
hier der erste Kunde auch im Intervall (x, r] ankommen. Durch Induktion er-
gibt sich wie in 3.1.1.:

F„ (x ; 0, t) e — f A (t- v) r/P„ (v), « > 0 ;

» v-0
und daraus

P(x;0,0 2 üü;0,0 2 7 A(/-v)dB„(v).
«-0 b 0 W '

|. 0

Die Laplacetransformierte von P(x ; 0, t) ist

F*(x;0, 0) / <r®'F(x; 0, — > (11)
A-.r ^(0)

wobei ?7(0) durch (9) bestimmt ist,

3.2.2. Übergangsverteilung von IK(t)

IndiesemAbschnittbefassenwirunsmitF(x;_y, t) P{lK(0 < P | W(0) x).
Es gilt F(x ; 0 + y - x, t) für 0 < t «; x, _y > x - t ; und uns bleibt,
E"(x; j, t) für t > x > 0, j > 0 zu bestimmen.
Es ist

<Ê(x; ©, 0 J e er F(jc;>>, t) rfg, F<?(0) > 0

_ 'J i7(x; o, t-r) e-u + An (»)+ ^ (|2)
^ n

0

1
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Daraus kann die Übergangsverteilung zurückgewonnen werden :

F(x; v, 0 A(? + v-x, /) - / ü(x; 0, t-r)r/A'(r + r), _v > 0

r 0

Für das Folgende halten wir noch die Laplacetransformierte von 12) in bezug

auf / fest:

x /«) 17 Ce") ~ '

(x; 0, .V) /V« '/' (X; 0,n<// ^ - (13)
5-0 + 2-2 ^(u)

jRe(s') > 0—2 + 2 y (6).

3.2.3. Grenzverteilung der Wartezeit

Vorerst nehmen wir an, dass fF(0) 0. Nach (3) in 2.1. ist dann P {tF(?)
+ x | tF(0) 0 } — P{V(m) - h + x für 0 + » + ?}.
Somit ist F (0; r, t) P {MF(z) < v | JF(0) 0 } 1 - P { t/(y) + ?},

wobei 17(>') inf {7 [ A'(?) - / > v}, eine monotone, nicht wachsende Funktion
in /, und lim P(0; v, 0 existiert:

/-> X

F*(y) lim P(0; j, t).

Mit (11) und (9) erhalten wir
f o e > i

F*(0) lim 0F*(O, 0, 0) 1

0-0 — I -£>,£> < 1
•

U'(o+) ^
Sei <P* (0) lim 0 (0, 0, dann ist mit (13)

/ -> x

(0) lim 5 <£* (0, 0, 5)
.y >0

0, o > 1

1-0
O < 1

0-2 + 2 y(0)
Es lässt sich zeigen, dass lim F(x ; j>, /) P* (v) unabhängig von x ist. Somit

gilt zusammenfassend :

Wenn g> + 1, dann lim P {fF(/) ^ v} 0 für alle v und unabhängig von der

Verteilung von fF(O).
Wenn £ < 1, dann existiert lim P {1F(7) < } P* (j>) und ist unabhängig

von der Verteilung von 1F(0), und es ist
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/ e^P*(y)Jy 1 /0_ 0 —A + A ^ (0)

Daraus kann P* (y) gewonnen werden :

F*(y) l-(l-e) J dK(f + y,0,y > 0.
/ 0

3.2.4. Zusammenstellung und Vergleich

Wir betrachten wieder die in 2. beschriebenen Prozesse und die in 3.2 gewönne-
nen Resultate:

F(x; 0, 0 P{fV(?) 0 | IV(0) 0}

F(x;y, 0 P{fV(?) < y | fV(0) x}
F*(y) lim P{fV(t) $ y }.

/ ->oo '
Da sich der Wasserstand eines unbeschränkten Dammes gleich verhält wie die
Wartezeit (vgl. 2.2.), ist somit auch
P(x ; y, f) die Wahrscheinlichkeit, dass der Damm zur Zeit t nicht mehr als
die Menge y enthält, falls die anfängliche Wassermenge x betrug; und
V* (y) die Wahrscheinlichkeit, dass im stationären Zustand nicht mehr als die
Menge y gespeichert ist.
Wir beachten (3) in 2.1. :

P < x | IV(0) c} pj sup (V(m) - w) < x, c + V(t) - / < x j.
\ 0 m $ / '

Damit ist

P(x ; y, f) Pjsup (z(v) - v < y, x + Z(t) - f $ yj

p|inf (y + v-Z(v) j > 0, y + t-Z(t) y xj

die Wahrscheinlichkeit, dass im Zeitraum [0, t] die Risikoreserven, falls Z (0) y,
nicht negativ werden und dass zur Zeit t die Reserven grösser als x sind und

P*(y) limP/sup (*)+Z(v) - v) < y }
/->co 1,0 $ v ' J

- 'fetlv -*w> > »}

die Wahrscheinlichkeit, dass die Reserven nie negativ werden, falls Z (0) y
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3.J. Gre«zver/ez7w«g cfe.v /«/za/z.v eines enc/Z/W/en öamms

Die hier dargestellten Resultate wurden von L. Takâcs (1967) erreicht als Ver-

allgemeinerung des klassischen Ruinproblems bei einem 2-Personen-Spiel. In

speziellen Fällen wurden schon früher Ergebnisse erziehlt, so durch Gani und

Prabhu (1959) für den zusammengesetzten Poissonprozess mit konstanten

Sprüngen und Weesakul B.,Yeo G. F. (1963) für den zus. Poissonprozess mit

negativ exponentiellen Sprüngen.

3.3.1. Ein Satz von Takâcs

37(0,0 < / < oc sei ein separabler' stochastischer Prozess mit stationären und

unabhängigen Zuwächsen und fast alle Stichprobenfunktionen seien nicht ab-

nehmende Treppenfunktionen mit Y (0) 0. 7\c) inf{/ j c + Y(/)- V 0;

0 < / < go}
Wenn 0 $ x <; g, dann

P{Y(/)-*^ or für 0 V / g T(y-x)} -^0)
undfi(.s) /" e "c/F(x) =—, F(0) > 0 beliebig für Refs) > co:

o .v-0(O

grösste nichtnegative Lösung von 0(.s) .v wobei £"[e '*<"'] e

Betrachten wir nun den zusammengesetzten Poissonprozess mit der Verteilung
(1) von 2.1. In (4) von 2.1. zeigten wir

R[e e VWi,

und somit ist 0 (5) 2 [1 - ^ (s)] und D (.s)
^(Q)s—

Wegen lim F(x) lim Q(.v) ^—^ ,0+ ^ l-<p'(0+) 1-e
und C! (0) 1 ist F(0) 1 - g für g < 1, und somit

/" e "c/F (x) ,v
i——

i j-A[i-y(j)]
> Jf(/) heisst separabel, falls eine Folge /,- und eine Ereignisnullmenge /I existiert, so dass für

jedes offene /-Intervall / und jedes geschlossene x-Intervall Z( sich die beiden co-Mengen

{ to j X, (co) £ ol, / £ /)>und { co .v,.(co) £ zl, /y £ /}•

höchstens um eine Teilmenge von /I unterscheiden (nach Doob, Stochastic Processes, Seite 52).
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Nach 3.2.3.

7 <? «P(ï)à =- - / ~ ^ falls o < 1.
ä-A[1-v(j)]

Darausfolgt:
K(x) F*(x) lim P{lT(/) < x).

/ >00

3.3.2. Grenzverteilung im endlichen Damm

Mit 77(f) haben wir den Inhalt eines Dammes mit Kapazität m zur Zeit t be-
zeichnet und wir erinnern uns an (5) in 2.2. :

P{>7(/) < x | >7(0) w } P{V(m) - m < x für 0 < « ^ P(m-x) und P(m-x)
$ }für 0 $ x $ m. Folglich ist

limP{>7(t) < x | >/(0) m} p{x(m)-m sg x für 0 -$ m A 7(w-x)}
für 0 ^ x < m, denn falls P{7"(w-x) < co} 1, ist dies klar, und wenn
P{P(ra-x) co) > 0, dann ist P{Z(w)-w < x, 0 < « < co} 0, und
dies gilt auch in diesem Fall.
Mit dem Satz von 3.3.1. (Takäcs) erhalten wir:

Ist A(w), 0 < « < oo ein separabler stochastischer Prozess mit stationären,
unabhängigen Zuwächsen, fast alle Stichprobenfunktionen sind Treppen-
funktionen mit V(0) 0, dann gilt

lim P{« (/) .<: x } für 0 <: x ^ m,
' ' F(m)

und es kann gezeigt werden, dass diese Verteilung unabhängig von der Vertei-
lung von >7 (0) ist.

3.3.3. Zusammenstellung und Vergleich

Wir setzen die in 2. beschriebenen Prozesse voraus und verwenden die dort
gebrauchten Schreibweisen.
Für die Grenzverteilung von /7(f) im Damm mit Kapazität m haben wir im
letzten Abschnitt erhalten :

F* fx")
lim p{j/(0 < x} ,0 < x £ m.
' F*(m)
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Damit haben wir aber auch die Verteilung der maximalen Wartezeiten in der

ersten Arbeitsperiode gewonnen, denn es gilt mit dem Satz von Takâcs

V.n v. l) s T(c)}=^^
F (sup fK(/) « A- I tv(0) c\

loi u 7 (t J

F* (A")
oder f( sup fF(() ^ hî j fF(0) wj-xj

V 0 ^ - F(ah-X) ' F*(m)'

Gleichzeitig gewannen wir die Wahrscheinlichkeit dafür, dass die Risikoreser-

ven Z(t) < X nicht negativ werden bevor sie den

Stand »! erreichen, denn

P/sup JF(?) $ ff! j fK(O) ff! x \
\ 0 ^ r(m-x) J

F / sup (V( v) - v < ff! und sup (»7 - a + A(v) - v < m I
\ 0 V $ r(m-A) o/v.< r(m-A) ' J

pjinf(x + v-A(v)) > 0 für 0 C v ^ inf {/ j x + t-A(t) 5 fff}j-
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