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Grenzwertsitze fiir
Warteschlangen, Didmme und Risikotheorie

Von Kaspar Hosli
1. Einfithrung

Fir die vorliegende Zusammenfassung meiner Diplomarbeit (1973 bei Prof.
Biithlmann) sind folgende Probleme wegleitend :

1. Das Warteproblem

Wir stellen uns vor, dass an einem einzigen Bedienungsschalter Kunden erschei-
nen und eine gewisse Bedienungszeit beanspruchen. Ist der Schalter frei, dann
wird der Kunde sogleich bedient, ist der Schalter besetzt, so bleibt dem Kun-
den nichts anderes Ubrig, als anzustehen und zu warten. Wir kdnnen uns da-
bei fragen, wie gross die Wartezeiten der Kunden werden, wie lange die Warte-
schlange wird, oder auch, mit welcher Wahrscheinlichkeit der Schalter an einem
bestimmten Zeitpunkt frei ist.

2. Das Dammproblem

Wir stellen uns ein Wasserreservoir vor, das von zufilligen Regenfillen gespie-
senwird und aus dem gleichméssig Wasser abfliesst, solange das Reservoir nicht
leer ist. Wir konnen annehmen, dass das Reservoir beliebig viel Wasser fasst,
oder aber auch, dass die Kapazitit des Reservoirs endlich ist und dass, wie bei
einem Staudamm, Wasser iiberfliesst, wenn die Kapazitit iiberschritten wird.
Hier kénnen wir uns fiir den Verlauf des Reservoirinhalts interessieren, insbe-
sondere etwa fiir die Wahrscheinlichkeit, dass das Reservoir in einem bestimm-
ten Zeitpunkt zum erstenmal leer wird.

3. Das Risikoproblem

Wir denken an eine Versicherungsgesellschaft, wo ein Reservefonds durch Pra-
mieneinnahmen gleichmissig gedufnet wird. Diese Reserven verringern sich
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durch Vergilitungen an Versicherungsnehmer, bei denen Schadenfille aufgetre-
ten sind. Hier mochten wir den Verlauf der Reserven kennen oder auch die
Wahrscheinlichkeit eines Ruins der Gesellschaft.

Von den drei Problemkreisen stellte sich der dritte am frithesten. In den ersten
Jahrzehnten dieses Jahrhunderts befasste sich F. Lundberg mit diesen Versiche-
rungsfragen ; weiterfithrende Resultate erreichte H. Cramér in den dreissiger
Jahren.

Mit dem Problem der Wartezeiten befasste sich als erster A. K. Erlang im Zu-
sammenhang mit Gesprichsilibertragungen in der Telefonie. Die mathemati-
schen Untersuchungen machten spiter Fortschritte, in den dreissiger Jahren
durch Arbeiten von F. Pollaczek, A.N. Kolmogorov und A.Y. Khintchine. In
den letzten Jahren befasste man sich sehr ausfiihrlich mit dem Problem der
Wartezeiten, nicht nur in der Theorie, sondern auch in vielen Anwendungs-
gebieten, in der Technik (Telefonie, Computer), in der Industrie (Produktions-
linien, Lagerhaltung), im Transportwesen.

Das erwithnte Dammproblem tauchte erst in den fiinfziger Jahren auf im Zu-
sammenhang mit der Kithlung von Atomkraftwerken (P.A.P. Moran). Heute
benutzt mandiese Fragestellung auch fiir allgemeinere Lagerhaltungsprobleme.
Jeder der drei Problemkreise wurde anfanglich fiir sich untersucht, Verbindun-
gen zwischen diesen Gebieten bestanden nicht. Erst W.L. Smith (1953) und
J. Gani(1957)wiesenaufZusammenhdnge zwischen Damm-und Warteproblem
hin.

2. Die mathematischen Modelle

In diesem Abschnitt legen wir die uns interessierenden Prozesse und die Nota-
tionen fest. Zudem sollen einige grundlegende Beziehungen bereitgestellt wer-
den.

2.1. Der Warteprozess

Um einen Uberblick tiber den Verlauf der Wartezeiten zu erhalten, versetzen
wir uns in die Lage des Bedienenden an einem Schalter. Die Kunden bringen
Arbeit und vergrossern so den Arbeitsvorrat, den der Bedienende abbaut.
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1. Die Zwischenankunftszeiten, die Zeiten, die zwischen zwei Ankiinften von
Kunden verstreichen, haben die Verteilung F (1) = 1 e #,0 < t < oo. A (1)
sei die Anzahl Kunden, die im Zeitintervall (0, ¢] ankommen, und somit ist

1/ (I'{t)n
n!

P{a@) =n}=¢

2. Die Bedienungszeiten der Kunden sind Zufallsgrossen mit der Verteilung
B(t), 0 <t <oo,

X(t) sei die gesamte Zeit, die diejenigen Kunden beanspruchen, die im Zeit-
intervall (0, ¢] angekommen sind. Die Verteilung von X(7) = v, + v, + ... +
Vi, Vi unabhingige Zufallsgrossen mit der Verteilung B(v), ist eine zusammen-
gesetzte Poissonverteilung

K(x,t) = P{X()<x} = i e*'gif% B, (x), (1)
) .

wobei B,(x), n>0, die n-fache Faltung von B(x) mit sich selbst ist, und B, (X)
= 0 falls x< 0 und By(x) = 1 falls x>0.
W(0) sei der Arbeitsvorrat zur Zeit 0. Fir uns ist W(0) eine nichtnegative
Zufallsgrosse.
W(t) sei die durch den Arbeitsvorrat zur Zeit ¢ definierte Wartezeit zur Zeit ¢.
W(t) ist bestimmt durch

W(t) = sup{ X () — X(u) - (1-u),0 < u<t; W)+ X(t) 1 }. (2)

Denn, falls in (0, 7) u der letzte Zeitpunkt war mit W(u) = 0, dann ist W(r) =
X(t) - X(u) — (t — u), falls kein solches u existiert, dann ist W (t) = W(0)
+ X (¢) - ¢, und in beiden Fallen gilt (2).

Da X(1),0 < ¢ < o, ein separabler stochastischer Prozess ist mit stationédren
und unabhingigen Zuwichsen, kdnnen wir X (1) — X («) durch X (¢ — u) ersetzen.
Wir erhalten so eine Zufallsgrosse W (1) = sup <X (u) - u, 0 < u < ¢; W(0)
+ X (1) - 1}, die dieselbe Verteilung hat wie W (¢); also

PW(t)y<x|WO)=c)=P{Xw)-u<x,0<u<tunde+ X(@)—1 < x}.(3)

Die Laplace-Stieltjes Transformation (L.S.T.) von B(t) sei

(@) = [¢*dB(1),Re(0) > 0.
0
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Die L.S.T. von X (¢) 1st
Ele 0] = [ e d k(x,1) = e 7' #1¥©® (4)
0

Die erwartete Bedienungszeit sei endlich: 0 < b = - »(0) < =« .
Mit o bezeichnen wir den Durchgangsindex

o Erwartete Bedienungszeit

L

= 10,0 < ¢ < .

a Erwartete Zwischenankunftszeit

Fiir den spiteren Gebrauch fithren wir noch einige Bezeichnungen ein:
I(1): Gesamte freie Zeit des Schalters im Zeitintervall [0, #]

It) = —inf{W(O0) + X@w)-u,0 <u<t;:0}
= sup{u—X(w)-W(0),0 < u<1;0).

T'(c): Erster Zeitpunkt, in dem der Schalter frei wird, wenn W (0) = ¢. T(c) ent-
spricht der Lange der ersten Arbeitsperiode.

T(c) = iﬂf{u\'c+X(u)~u £0,0guc< :c,}
oder T(¢) = = falls kein solches u existiert.

Q(t): Anzahl Personen, die zur Zeit ¢ anstehen.

T,:  Erster Zeitpunkt, in dem der Schalter frei wird, falls Q(0) = i.
Zwischen I(z) und T'(¢) bestehen die folgenden beachtenswerten Beziehungen,
die sich unmittelbar aus der Definition herleiten lassen:

PUI() =0 | W) =c}y=P{T(c) >t}
P{I(t) > x| W) =cp=P{T(c+x)<t).

2.2. Der Dammprozess

Wir betrachten den folgenden Dammprozess:

1. Das Reservoir erhilt Zufluss an zufilligen Zeitpunkten: Diese Zeitpunkte
bilden einen homogenen Poissonprozess mit Intensitét A .

2. Die Zuflussmengen sind Zufallsgrossen mit der Verteilung B(z),0 < ¢t < .

3. Solange das Reservoir Wasser enthilt, fliesst in jeder Zeiteinheit gleich viel
Wasser ab. O.B.d. A. nehmen wir an, dass pro Zeiteinheit eine Wasserein-
heitabfliesst. Hatdas Reservoir nur einendliches Fassungsvermogen, so fliesst
die nicht fassbare Wassermenge sofort ab.

X (7)seidie gesamte Wassermenge, dieinder Zeit (0, 7] zufliesst. X(7) ,0 < 7 < @

bildet einen zusammengesetzten Poissonprozess mit der Verteilung (1).
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a) Damm mit unbeschrinkter Kapazitit

Sei W (0) die Wassermenge zur Zeit ¢ = 0, W(¢) diejenige welche zur Zeit ¢ im
Reservoirist. Der Verlauf des Wasserstandes ist bestimmt durch W (0) und X (¢),
0 <t < oo . Die graphische Darstellung ergibt etwa folgendes typisches Bild:

AN

w(0)

W(t) = sup{W(O0) + X(t)—1; X(1) - Xw) - (t-u),0 < u < t},
denn, falls im Zeitintervall (0, #] der Damm nie leer wird, dann W (t) = W (0)
+ X (2) - ¢, falls u der letzte Zeitpunkt in (0, #] war mit leerem Damm, dann
W(t) = X(t)— X(u)— (t—u), und in beiden Fillen gilt die Behauptung.
I(¢): Gesamte Zeit mit leerem Damm wihrend (0, ¢].

I(¢) = —inf{W(0) + X(u)—u,0 < u <t}
T(c): Erster Zeitpunkt in dem der Damm leer wird, falls W (0) = c.

T(c) = inf{u|c+ Xwu)-u<0}.
Wir sehen, dass diese Grossen vom Zufluss X (1), 0 < t < oo, in der gleichen
Weise abhdngen wie im Warteprozess die Wartezeit zur Zeit 7, die gesamte freie
Zeit des Schalters im Zeitintervall (0,7] und die Linge der ersten Arbeits-
periode von X (¢), 0 < t < a0, der gebrachten Arbeit, abhdngen.

b) Damm mit endlicher Kapazitit

Die Kapazitit des Dammes werde durch eine endliche positive Zahl m darge-
stellt. #(0) sei die gespeicherte Wassermenge zur Zeit ¢t = 0, #(¢) diejenige zur
Zeit 1. Der Verlauf des Wasserstandes ist abhdngig von #(0), X(¢),0 <t < = ,
und der Kapazitit m des Dammes. Die folgende Figur zeigt den Graphen
eines moglichen Verlaufs.
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Esist moglich, (1) mit Hilfe von# (0), mund X (7),0 < ¢ < oo, auszudriicken.
Der folgende Satz, den wir nicht beweisen, gilt auch fiir allgemeinere Zu- und
Abfliisse; & (u) sei die gesamte abgeflossene Wassermenge und { (u) = X (u)
— 0 (u). Die Notation {* (1) = {(t)-{(t—u),0 < u < ¢, diene als Abkiirzung.

Satz

Essein (0) = m; {(u),0 < u < 1, habe keine negative Spriinge und 7% (m —x)
= inf{u | {*(w) < x-m, 0 < u < ¢} existiere fiir 0 < x < m, dann gilt
n(H) < x,0<sx<me (Flu) < xfird <u< T*(m—x).

Nehmen wir an, dass {X (), 0 < u < t}und{X(t)—X(z—u); 0<uc<t)

dieselbe Verteilung haben und J (1) = u, dann ist

P{p (1)< x|n(0)=m}=P{X () ~u<xfir0<u< T(m x)und T(m-x) < t}.
(5)

2.3. Der Risikoprozess

Wir interessieren uns hier fiir den folgenden Risikoreservenprozess:

1. Das Anfangskapital ist Z(0). Die Pramieneinnahmen fliessen gleichméssig;
0.B.d. A. nehmen wir an, dass pro Zeiteinheit eine Geldeinheit die Reserven
vergrossert.

2. Die Zahlungen der Gesellschaft erfolgen zu Zeitpunkten, die einen homo-
genen Poissonprozess mit Intensitit 1 bilden. (Durch Einfiihren der operatio-
nellen Zeit kann ein nichthomogener Poissonprozess in einen homogenen
libergefiihrt werden.) Die Zahlungen sind Zufallsgrossen mit der Verteilung
B(1),0£ ¢t < o0,
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Se1 X (¢) die gesamte Zahlung im Zeitraum (0, ¢], dann ist X (¢), 0 < ¢t <oo, ein
zusammengesetzter Poissonprozess mit Verteilung (1). Die Reserven zur Zeit ¢
betragen Z(¢) und sind bestimmt durch Z(¢) = Z(0)+ — X(¢).

Ein wichtiges Problem in der Risikotheorie ist, die Wahrscheinlichkeit zu be-
stimmen, dass die Reserven im Zeitintervall (0, co) oder [0, 7] negativ werden.
R(c): Erster Zeitpunkt, in dem die Reserven negativ werden, falls Z(0) = ¢

R(c) =inf{u|c+tu—X(u) <0fir0 <u< o).

Insbesondere gilt:

PR() <1} =P {nf(§+u~X(u>) <ol {sup(X(u)—u)> g

1
0s O<us<¢

— I,P{sup(X(u)_u) - c}.

O0<u<t

3. Grenzwertsitze

Um einen Grenzwertsatz zu gewinnen, beniitzen wir jeweils die Redeweise von
einem der drei Problemkreise. Nachher untersuchen wir, was dieser Satz in den
andern Problemkreisen bedeutet.

3.1. Die Arbeitsperiode

In diesem Abschnitt wollen wir die Verteilung des Zeitpunktes, an dem der
Schalter zum erstenmal frei wird, bestinmen. Wir folgen einer Idee von Prabhu
(1960), die besonders die Poissonverteilung der Ankiinfte auswertet.

3.1.1. Die Verteilung von 7'(x)

Wie in 2.1. definieren wir:

T(x) =inf{s|x+ X()-t <0}

N(x) = Anzahl Kunden, die im Intervall (0, T'(x)] ankommen
Gi(x,1) = P{T(x) < t; N(x) = n}.
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Es gilt: 4G, (x, 1)—{0 X (6)

e’ t=x

bzw. G, (x,1) = e *' By(t—x), denn, falls kein neuer Kunde ankommt redu-
ziert sich die Wartezeit zur Zeit x auf 0. Fiir » > 1 muss wiahrend (0, x] min-
destens ein neuer Kunde kommen, sonst wiirde sich die Wartezeit auf 0 redu-
zieren im Zeitpunkt x (< ¢). Der erste neue Kunde komme zur Zeit 7, wobei
rdie Dichte e **d7,0 < 7 < x, hat. Sei v die Bedienungszeit dieses Kunden,
dann ist W( t+ 0) = x — v + v, wobei v die Verteilung B(v) hat. Im ver-
bleibenden Zeitraum miissen (n — 1) Kunden bedient werden, also gilt

v

dG, (x, )= Tf -

0,7 < x.

[ e dG, (x—t+v,1-1)drdB(v), t > x (7)
-0

(6) und (7) ergeben eine Rekursionsbeziehung fiir G, (x,t). Durch Induktion
kann bewiesen werden:

o /ﬂvf n-1
dG, (x,1)= e”Ax( )1
n!

Gt < &

dB, (t—x),t < x

Damit erhalten wir die Verteilung der Arbeitsperiode.

Gr,t) = P{T(x) <1} = 3 G,(x,1)

n =20

/ e 3 yn-1
- rf > e (/T—)! Ax dB,(t-x).

=X N 0 H:

Wir haben hier einen Satz von Kendall (1957) in einem speziellen Fall besta-
tigt:
dG(x,1) = 2 dK(t-x, 1).
1 3

Setzen wir ¢ *"® fiir die L.S.T. von T'(x), so kann folgende Bezichung g¢-
wonnen werden:

E [€ OT(,V)] = o Ox- x [x-pim) , (8)
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so dass 7 (f)die folgende Funktionalgleichung erfiillen muss:
n@)=6e+i-Ly(n). 9)

Es kann gezeigt werden, dass genau eine Losung existiert, welche die notwen-
dige Nebenbedingung #(c0) = oo erfiillt, und dass

: . 1 0
_— @T(x) = e
P{T(x) 2 cc} 10Hno+E[€ ] {e Moy o

AVAR/AN

[UN Y

wobei 7, die grosste positive Wurzel von x = 14 v (x) ist.

3.1.2. Die Arbeitsperiode T

Essei r = 0 der Zeitpunkt unmittelbar vor der Schalteroffnung, und zu dieser
Zeit warten i Kunden, also Q(0) = i. W(0) = x sei die gesamte Bedienungszeit
dieser i Kunden. N(T) sei die Anzahl Kunden, die wihrend der ersten Arbeits-
periode bedient werden, die i Kunden am Anfang sind dabei mitgezahlt. Es gilt

P{T, < ;N(T) =n}= [ dB ()G, (x,1) = (10)
x=0
B ;‘ / . (;,T)” i—1 i
- ]: dB; (x) Tf\ e W Ax dB, ; (t—Xx)
! (/17:)” i-1 T

I )] j Jx dB; (x)dB, ; (1—x)
= Ll dB, (1)

R (n—i)!

Mit i = 1 ergibt sich
/ ; (lf)” 1
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Als Nebenresultat se1 erwiahnt

fo=P{NT)=n}= [ ¢* 'Lf,,):-ldﬂz(”;” = !

t=0
Mit (8) und (10) ergibt sich die L.S. T. von T;:
[(©) = Ele ) = [dB() e " = y(m),

wobei /(@) der Funktionalgleichung I (®) = v»(®@ + 1 - AI) genlgt.
Wir erhalten weiter

AR/

P{T, < 0} ={5

1
< 1.
wobei ( die kleinste positive Wurzel von { = ¥ (A4 {) 1st.

[T Te)

3.1.3. Zusammenstellung und Vergleich

In 3.1. haben wir folgende Verteilungen fiir die Warteschlange gewonnen unter
der Annahme, dass X(¢),0 < ¢ < oo, ein zusammengesetzter Poissonprozess
sei mit nur positiven Spriingen, die die Verteilung B(x) haben:

P{T(x) < 1}, P{T, <1t},
P{T(x) < o}, P{T < =)}

Wie schon erwihnt, verhalten sich die Wartezeiten wie der Wasserstand eines
Dammes mit unbeschrinkter Kapazitit. T(x) ist die Dauer einer Periode mit
Wasser, wenn zu Beginn die Wassermenge x im Damm war. 7 ist die Dauer
einer Periode mit Wasser.

Beachten wir, dass

P{T(x) <t )

I

{mf(x + X(u)—u) < 0}

O ucxgt

= {u (u X(w) < }

Osu<t

so gewinnen wir die Verteilung von sup ilf — X(u)) . Dabei erinnern wir uns,
dass u— X(u), 0 < u < co, unsern Riéik;)nervenprozess charakterisiert.
Setzen wir voraus, dass die Reserven auch negativ werden koénnen, dann ist
P{T(x) < % gleich der Wahrscheinlichkeit, dass Risikoreserven im Zeitraum
[0, /] mindestens einmal den Anfangsstand von x iibersteigen, und P (T, & ty
die Wahrscheinlichkeit, dass sich die Reserven im Zeitintervall (z, 7+ 1) wenig-
stens einmal vom Schaden, der sich zur Zeit t ereignete, erholt haben.
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3.2. Verteilung der Wartezeiten

3.2.1. Die Wahrscheinlichkeit einer leeren Warteschlange

Sei F(x;y,t) = P{W(z) <y| W) = x},t >0,x 20,y =2 max (0, x—1).
Im besonderen ist F(x; 0,7) = P{W() = 0| W(0) = x},t > x > 0, die
Wahrscheinlichkeit, einen freien Schalter zu finden.

N(t) se1 die Anzahl Kunden, die wiahrend (0, ¢] bedient werden.

F,(x;0,1) = P{W({) =0,N@) =n| WO) = x).

Es gilt F, (x;0,¢) = e¥fiirt = xund = 0fir7z < x, und fiirn > 1

by L=

F,(x;0,0)= [ [ 2e™F,,(x=t+v;0,1-7) drdB(v)

* o f e F , (v;0,t-1)dtdB(v).

v,
t=x v=2_0

Es kénnen die gleichen Uberlegungen gemacht werden wie bei (7), nur kann
hier der erste Kunde auch im Intervall (x, z] ankommen. Durch Induktion er-
gibt sich wie in 3.1.1.:

a-1  (_x
F,(x;0,) = el‘@r [ A(t-v)dB,(v),n > 0;
n! §

y =

und daraus

x*L o n—-1 4
Fe;0,0 = 3 F o0 =3 en )

Y i (t=v) dB, (v).
n=0 n=20 n ' v=20
Die Laplacetransformierte von F(x; 0, 7) ist

o & e“‘xﬂ(g)
F*(x;0,0) = [ ¢®F(x;0,0)dr = o (11)

wobei 77 (@) durch (9) bestimmt ist,

3.2.2. Ubergangsverteilung von W ()
Indiesem Abschnitt befassen wirunsmit F(x;y,¢) = P{W () <y | W(0) = x}.
Bsgilt F(x;p, 1) = K(t+y—x,)fir0 < ¢ < x,y = x— ¢; und uns bleibt,

F(x;y,0)fiirt > x = 0,y > 0 zu bestimmen.
Es ist

P(x;0,1) = [e® F(x;y,1)dy, Re(6) > 0
0

1 t=% -
= _@me@ (t=x)-2[1- (@) _ f F(x;0,t-7)e st ¥©+ergr  (12)
0
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Daraus kann die Ubergangsverteilung zuriickgewonnen werden :

F(x;p. 1) = K(t+y-x,0)~ [ F(x;0,t-0)dK(x+y,7),y > 0.

=10
Fiir das Folgende halten wir noch die Laplacetransformierte von (12) in bezug
auf ¢ fest:

(l)— o 0% _ omxn(s) (,7 (s))-’"

SO+ p(®) (13)

D (x; 0,5) = [en®(x; 0, 0)dt =
0
Re(s) > @A+ v (0).

3.2.3. Grenzverteilung der Wartezeit
Vorerst nehmen wir an, dass W (0) = 0. Nach (3) in 2.1. ist dann P {W(t)
<x|W0) =0}=P{Xwu)-u<xfird <u<i)
Somit ist F(0; y, t) = P{W({) < y | W(©0) =0,)=1-P{U®) < t},
wobeil U(y) = inf {t ' X(1)—1t > y}, eine monotone, nicht wachsende Funktion
in ¢, und (hr{} F(0; y, t) existiert:

F*(y) = lim F(0;y, 1).
Mit (11) und (9) erhalten wir

0,021
sk — 11 % =
F*(0) = lim ©F*(0,0, 6) 1 =1-ga % L,
7' (0+)

Sei @*(©) = li_m @ (0, @, 1), dann 1st mit (13)
P*(P) = lir_lt’)} s @*(0, O, )

0,921

== |

= , 0 <1.

O-L+ Ly(O)

Es ldsst sich zeigen, dass lim F'(x; y, t) = F*(y) unabhingig von x ist. Somit
gilt zusammenfassend:
Wenn o > 1, dann lim P {W(t) < y } = 0 fiir alle y und unabhingig von der
Verteilung von 1 (0).
Wenn o < 1, dann existiert lim P {W(@) <y b= I*(y) und ist unabhingig
von der Verteilung von W (0), und es ist
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e 1__9
o F* () dy = -
[ 2P0 = 5T 6

Daraus kann F*(y) gewonnen werden:

Fr() = 1-(1-¢) [ dK(t+y,0),y>0.

t=0

324 Zusammenstellung und Vergleich

Wir betrachten wieder die in 2. beschriebenen Prozesse und die in 3.2 gewonne-
nen Resultate:

F(x;0,1) = P{W()=0|W(©0)=0)
Fx;y,1) = PAW(@) <y | W(0) = x}
F*(y) = }i;l;P{W(t) <y}

Da sich der Wasserstand eines unbeschriankten Dammes gleich verhilt wie die
Wartezeit (vgl.2.2.), ist somit auch

F(x; y, t) die Wahrscheinlichkeit, dass der Damm zur Zeit ¢ nicht mehr als
die Menge y enthilt, falls die anfingliche Wassermenge x betrug; und

F*(y) die Wahrscheinlichkeit, dass im stationdren Zustand nicht mehr als die
Menge y gespeichert ist.

Wir beachten (3) in 2.1.:

P{W(t)< x| W(0) =c) = P{sup (X(w)—u) < x,c+X()—1 < x}.

O<ust

Damit ist

Flx;y, 1) = P{%‘l,.:?(")—")s y,x+X()-t < y}

= Plinf(y+v=X() =0,y +1-X(1) =
Plinf [y +v-X (1) 0,y () > x|
die Wahrscheinlichkeit,dassim Zeitraum [0, ¢]die Risikoreserven, falls Z (0) = y,
nicht negativ werden und dass zur Zeit ¢ die Reserven grosser als x sind und

P10 = lim Plgup_(3Hx(-v) <y }

= P{inf &Vj' v—X(v)) > O}

Dy e

die Wahrscheinlichkeit, dass die Reserven nie negativ werden, falls Z(0) = y.
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3.3. Grenzverteilung des Inhalts eines endlichen Damms

Die hier dargestellten Resultate wurden von L. Takacs (1967) erreicht als Ver-
allgemeinerung des klassischen Ruinproblems bei einem 2-Personen-Spiel. In
speziellen Féllen wurden schon frither Ergebnisse erziehlt, so durch Gani und
Prabhu (1959) fiir den zusammengesetzten Poissonprozess mit konstanten
Spriingen und Weesakul B.,Yeo G.F. (1963) fiir den zus. Poissonprozess mit
negativ exponentiellen Spriingen.

3.3.1. Eimn Satz von Takadcs

X(1),0 <t < oo, seiein separabler' stochastischer Prozess mit stationdren und
unabhingigen Zuwichsen und fast alle Stichprobenfunktionen seien nicht ab-
nehmende Treppenfunktionen mit X (0) = 0. T'(c) = inf{z‘ e+ X()-t <0
0<t< o).

Wenn 0 € x € y,dann

P{X() -1 < xfir0 <1< Tr-x) = %%
und Q (s) :je “dV(x) =_?_?(&)%, V(©0) > 0 beliebig fir Re(s) > w:

= grosste nichtnegative Losung von @ (s) = s wobei E[e *{W] = ¢ “*1),
Betrachten wir nun den zusammengesetzten Poissonprozess mit der Verteilung
(1) von 2.1. In (4) von 2.1. zeigten wir

E[e xX(u)] = ¢ Au [l ’q‘)(x)}’

und somit st @ (s) = A[l -y (5)] und Q(s) = —;EI(—Ol-%—ﬁ
s- A[l-vp(s
Vo) ¥

Wegen lim V' (x) = lim Q(s) = =
g X0 (X) s—>0+ (?) 1*®’(0+) l_Q

und Q(0) = list V(0) = 1 - p fiir ¢ < 1, und somit

T o _ .. l-o
Ofe dV(x) =s 5= Al—y O]

I X (t) heisst separabel, falls eine Folge #; und eine Ereignisnullmenge A existiert, so dass fir
jedes offene t-Intervall 7 und jedes geschlossene x-Intervall A4 sich die beiden w-Mengen

{w}x,(co)sA tel}und {w %, (cu cA, t s[}

héchstens um eine Teilmenge vonA unterscheiden (nach Doob, Stochastic Processes, Seite 52)-
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Nach 3.2.3.

o le
e F*(x)dx = cfalls o < 1.
[ @ =y o]

Daraus folgt: .
V(x) = F*(x) = lim P{W(t) < x}.

3.3.2. Grenzverteilung im endlichen Damm

Mit 5 (¢) haben wir den Inhalt eines Dammes mit Kapazitit m zur Zeit ¢ be-
zeichnet und wir erinnern uns an (5) in 2.2.:

P{n(t) < x 7)) =mp=P{Xw)-u< xfir0 < u < T(m—x)und T(m—x)
< tyfiir0 € x < m. Folglich ist

tli__rBP{n(t) <x |0 =mp=PXu-u<xfir0<u< Tim-x))

fir 0 < x < m, denn falls P{T'(m—x) < w0} = 1, ist dies klar, und wenn
P{T(m-x) = oo} > 0, dann ist P{X(u)~u < x,0 < u < 0} = 0, und
dies gilt auch in diesem Fall.

Mit dem Satz von 3.3.1. (Takécs) erhalten wir:

Ist X(u),0 < u < oo, ein separabler stochastischer Prozess mit stationiren,
unabhidngigen Zuwichsen, fast alle Stichprobenfunktionen sind Treppen-
funktionen mit X (0) = 0, dann gilt

V(x)

lim P 1)y < = fir0 < x < m,
fim Py 0y < xp =50

und es kann gezeigt werden, dass diese Verteilung unabhéngig von der Vertei-
lung von #(0) ist.

3.3.3. Zusammenstellung und Vergleich

Wir setzen die in 2. beschriebenen Prozesse voraus und verwenden die dort
gebrauchten Schreibweisen.

Fiir die Grenzverteilung von #(¢) im Damm mit Kapazitdt m haben wir im
letzten Abschnitt erhalten:

® o
}Ing P{n(t) < xp = F*(S;;,O <x<m.
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Damit haben wir aber auch die Verteilung der maximalen Wartezeiten in der
ersten Arbeitsperiode gewonnen, denn es gilt mit dem Satz von Takacs

F*(x—c)
P{e+X({)~-i< %0 i< T(C)}::—FT;(TM
= P{sup W) < x| W() = c}
0=srg Tic)
‘ F*(x)
oder P¢sup W(t)y <m W) =m-x, =——.
' {Uliq:t):_ T(f: ).\'} " | ( ) " x} F* (m)

Gleichzeitig gewannen wir die Wahrscheinlichkeit dafiir, dass die Risikoreser-
ven Z(t) = x+t- X(),0 < ¢t < oo, nicht negativ werden bevor sie den
Stand m erreichen, denn

P{gg}l) W) < m| W(Q0) = m—x}

< T(m-x)

x) 0 < T(m—x)

= P{%up (X y)—v) < mund sup (m—x+X(v)—v)€ m}

= P{inf(x+ v X(v)) = 0fir0 < v < inf {t| x+1-X(1) 2 m}}.
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